1 EXPERIMENTA10:LINESPECTRUM LearningOutcomes Uponcompletionofthislab,thestudentwillbeableto: 1) Examinethelinespectrumofthehydrogenatom. 2) Calculatethefrequencyandenergyoftheelectronictransition correspondingtoeachobservedlineinthespectrum. Introduction Muchoftheknowledgeofatomicstructureisaresultofspectroscopy.Spectroscopy istheanalysisoflightemittedorabsorbedbysubstances.Lightissaidtohavea “dualnature”. Thedualnatureoflightimpliesthatlighthasbothparticle-likeandwave-like properties.Theparticle-likepropertyoflightisinferredfromitconsistingof packets(orquanta)ofenergy(E)calledphotons.Thewave-likepropertyoflight leadsittohaveacharacteristicfrequency(ν)andwavelength(λ).Theenergyofthe photonisproportionaltoitsfrequency. Therelationshipbetweentheseaspectsisdescribedbythefollowingequation: hc E=hν= λ Intheaboveequation:“h”isPlanck’sconstant(6.626×10-34Js)and“c”isthespeed oflight(3.00×108m/s). € Alllightmovesthroughspacewiththesamespeed,butitseffectonmatterdepends onitsenergy.Lightinthevisibleandultravioletregionsoftheelectromagnetic spectrumisassociatedwithchangesintheenergyofelectronsinatoms,molecules, orions.Thiscanleadtovariousobservedeffects:neonsigns,streetlamps,black lightsetc. Thelowestpossibleenergystateofanatomiscalledthegroundstate.Intheground statealloftheelectronsareintheirlowestpossibleenergylevels,asdictatedbythe Aufbauprinciple.Whenanatomabsorbsenergy,byabsorbingaphotonoflight,an electronentersanexcitedstate,jumpingtoahigherenergylevel.Dueto quantization,theenergyofthelightabsorbedbyanatomisequaltothedifference intheenergyofthegroundstateandtheexcitedstateoftheelectron. 2 Atomsintheirexcitedstatesareinherentlyunstableandmustlosetheirexcess energytoreturntolowerenergystates.Theamountofenergylostisequaltothe differenceinenergyoftheexcitedandthegroundstatesoftheatom. Theamountofenergylostwhenanelectronmovesfromahigherenergyleveltoa lowerenergylevelisquantized.Themagnitudeoftheemittedenergy(orlight)is directlyproportionaltoitsfrequency(andinverselyproportionaltothe wavelength)oftheradiation.Aplotofemittedradiationasafunctionofthe wavelengthofthelightisreferredtoastheEmissionSpectrum.Theemission spectrumofanatomisacharacteristicfeatureofthatatom.Duetothequantization oftheemittedphoton,theemissionspectrumconsistsofdiscretelines. Thedifferenceinenergybetweentheenergylevelsrelatestothewavelengthofthe emittedlineaccordingtothefollowingformula: ⎛ 1 1 ⎞ hc ΔE = E final − E initial = −2.179 × 10 −18 J⎜⎜ 2 − 2 ⎟⎟ = ⎝ n final n initial ⎠ λ Intheaboveequation:“h”isPlanck’sconstant(6.626×10-34Js)and“c”isthespeed oflight(3.00×108m/s). € 3 ExperimentalDesign Inthisexperimenttheemissionspectrumofhydrogenatomwillbestudied.The wavelengthsofthespectrallineswillbeusedtodeterminethespecificelectronic transitions.Itshouldbenotedthatsincetheobservedwavelengthsareallinthe visibleregionoftheelectromagneticspectrum,thefinalenergylevelofthe transitioningelectronswillbenf=2. ReagentsandSupplies SourceofH-atoms,He-atoms,Xe-atoms,spectroscope (SeepostedMaterialSafetyDataSheets) Procedure 1. ObservethelinespectrumoftheH-atomthroughthespectroscope. 2. Recordtheexactwavelengthsofeachobservedlineinthespectrum. 3. ObservethelinespectraofHeandXe(ifavailable). DataTable Colorofline Wavelength(nm) DataAnalysis 4 1. UsingtheBohr’sequation,givenbelow,fortheallowedenergylevelsof hydrogenatom,calculatetheenergyofthefirstsixenergylevels.Theenergiesof n=1,andn=2arealreadycalculatedandshowninthetable.[NOTE:Expressall theanswersinthesamepowerof10(i.e.10-19)]. 2.179 × 10 −18 Joules Bohr’sEquation: E n = − n2 Valueof“n” EnergyinJ € 6 5 4 3 2 -5.44x10-19 1 -21.79x10-19 2. CompletethetablegivenbelowbycalculatingtheenergyofaphotoninJoules andthewavelengthinnanometers. Energyofthephoton=ΔE=Efinal–Einitial NOTE:Theenergyofeachenergylevel,En,wasalreadycalculatedinQuestion1 above.ThesevaluesmaybeusedtocalculateΔE. 5 Transition(ninitialtonfinal) 6!2 6!1 5!4 5!3 5!2 5!1 4!3 4!2 4!1 3!2 3!1 2!1 PhotonEnergy(×10-19J) Wavelength(nm) −16.34 121.6 6 3. Usingthetablefromquestion2,identifythetransitionscorrespondingtothe dataobtained. Colorofline Wavelength(nm) Transition 4. Constructanenergyleveldiagramtoscalefortheallowedenergiesofthe electroninthehydrogenatom.Usetheresultsfromquestion1above.Onthe energyleveldiagram: a. Drawandlabelthen=1andn=6energylevels.Givethevalueofn andtheenergyforeachlevel. b. Indicatewhichenergylevelisthegroundstate. c. Indicatewhichtransitionscorrespondtotheemissionlinesobserved forhydrogen.Drawthetransitionsasdownarrowsinthediagram andlabeleachtransitionwiththewavelengththatisobserved.
© Copyright 2026 Paperzz