Formal Definitions of Elliptic Curves
Rong-Jaye Chen
Department of Computer Science, National Chiao Tung University
ECC 2008
Rong-Jaye Chen
Formal Definitions of Elliptic Curves
ECC 2008
1 / 19
1
Cryptanalysis Lab
Outline
(1)
(2)
(3)
(4)
(5)
Definitions
Group Law
The Discriminant and j-Invariant
Curves over K, char(K) ≠ 2, 3
Curves over K, char(K) = 2
Rong-Jaye Chen
Formal Definitions of Elliptic Curves
ECC 2008
2 / 19
Cryptanalysis Lab
Definitions
Fq : the finite field containing q elements, q is prime power
K:the algebraic closure of a field K
i.e. if K = Fq then
K F qm
m 1
The projective plane P2(K) over K is the set of equivalence
classes of the relation ~ acting on K3 \{(0 , 0, 0)},
where (x1, y1, z1) ~ (x2, y2, z2) iff there exists u K* such
that x1=ux2, y1=uy2, z1=uz2.
We denote the equivalence class containing (x, y, z) as
(x : y : z).
Rong-Jaye Chen
Formal Definitions of Elliptic Curves
ECC 2008
3 / 19
Cryptanalysis Lab
Definitions - Weierstrass equation
Y 2 Z a1 XYZ a3YZ 2 X 3 a2 X 2 Z a4 XZ 2 a6 Z 3
where a1, a2, a3, a4, a6 K
P ( X : Y : Z ) P 2 ( K ) satisfying
F ( X , Y , Z ) Y 2 Z a1 XYZ a3YZ 2 X 3 a2 X 2 Z a4 XZ 2 a6 Z 3 0
Smooth (non-singular) :
at least one of
F F F
,
,
X Y Z
is non-zero at P.
Singular :
F
F
F
0,
0,
0
X
Y
Z
at P, then P is called a singular point.
Rong-Jaye Chen
Formal Definitions of Elliptic Curves
ECC 2008
4 / 19
Cryptanalysis Lab
Definitions - Elliptic curve
Elliptic curve E: the set of all solutions in P 2 K of a smooth
Weierstrass equation.
Point at infinity O : there is exactly one point in E with Zcoordinate equal to 0, namely (0:1:0).
For convenience, let x=X/Z, y=Y/Z
y 2 a1 xy a3 y x3 a2 x 2 a4 x a6
(2.1)
E/K : if a1, a2, a3, a4, a6 K, then E is said to be defined over
K.
E(K) :
E ( K ) {( x, y ) K : y 2 a1 xy a3 y x 3 a2 x 2 a4 x a6 } {O}
Rong-Jaye Chen
Formal Definitions of Elliptic Curves
ECC 2008
5 / 19
Cryptanalysis Lab
Definitions - Isomorphism
Theorem
Two elliptic curves E1/K and E2/K given by the equations
2
3
2
y
a
xy
a
y
x
a
x
a 4 x a6
E1:
1
3
2
2
3
2
E2: y a1 xy a3 y x a2 x a4 x a6
are isomorphic over K, denoted by E1 / K E2 / K , iff there
exists u, r, s, t K, u 0 ,such that
: ( x, y) (u 2 ( x r ), u 3 ( y sx t rs)) maps E1 onto E 2
: ( x, y) (u 2 x r , u 3 y u 2 sx t ) maps E 2 onto E1
Rong-Jaye Chen
Formal Definitions of Elliptic Curves
ECC 2008
6 / 19
Cryptanalysis Lab
Group Law
Theorem
(E,+) is an abelian group with identity element O. If E is
defined over K, then E(K) is a subgroup of E.
Addition rule
For all P,Q E,
(i) O+P=P+O=P.
(ii) -O=O.
(iii) If P=(x1,y1) O, then -P=(x1,-y1-a1x1-a3).
(iv) If Q=-P, then P+Q=O.
(v) If P,Q O, Q -P, then let R be the third point of
intersection of either the line PQ if P Q, or the
tangent line to the curve at P if P=Q, with the curve.
Then P+Q=-R.
Rong-Jaye Chen
Formal Definitions of Elliptic Curves
ECC 2008
7 / 19
Cryptanalysis Lab
Group Law
Rong-Jaye Chen
Formal Definitions of Elliptic Curves
ECC 2008
8 / 19
Cryptanalysis Lab
Group Law
Rong-Jaye Chen
Formal Definitions of Elliptic Curves
ECC 2008
9 / 19
Cryptanalysis Lab
Group Law
Formulas for case (v)
The slop λ of PQor tangent line is
y2 y1
x x , if P Q
2 1
2
3x1 2a2 x1 a4 a1 y1 , if P Q
2 y1 a1 x1 a3
β=y1-λx1
The line is y=λx+β.
Hence P+Q=(x3,y3) where
Q
P
x3 2 a1 a2 x1 x2
P+Q
y3 ( a1 ) x3 a3
Rong-Jaye Chen
Formal Definitions of Elliptic Curves
ECC 2008
10 / 19
Cryptanalysis Lab
The Discriminant and j -invariant
Define the quantities
d 2 a12 4a2
d 4 2a4 a1a3
d 6 a32 4a6
d8 a12 a6 4a2 a6 a1a3a4 a2 a32 a42
c4 d 22 24d 4
d 22 d8 8d 43 27d 62 9d 2 d 4 d 6
j ( E ) c43 /
The quantity Δ is called the discriminant of the Weierstrass
equation, while j(E) is called the j-invariant of E if Δ≠0.
Rong-Jaye Chen
Formal Definitions of Elliptic Curves
ECC 2008
11 / 19
Cryptanalysis Lab
The Discriminant and j -invariant
Theorem
E is an elliptic curve, i.e., the Weierstrass equation is nonsingular, if and only if 0
Theorem
If two elliptic curve E1/K and E2/K are isomorphic over K,
then j(E1)=j(E2). The converse is also true if K is an
algebraically closed field.
Rong-Jaye Chen
Formal Definitions of Elliptic Curves
ECC 2008
12 / 19
Cryptanalysis Lab
Curves over K, char(K)≠2, 3
E/K, if char(K) ≠2 then
a3
a1
( x, y ) ( x, y x )
2
2
transforms E/K to the curve
E' /K : y 2 x 3 b2 x 2 b4 x b6
note that E E'
Rong-Jaye Chen
Formal Definitions of Elliptic Curves
ECC 2008
13 / 19
Cryptanalysis Lab
Curves over K, char(K)≠2, 3
E/K, if char(K) ≠2,3 then
x 3b2 y
( x, y ) (
,
)
36
216
transforms E’/K to the curve
E' ' /K : y x ax b
2
note that E' E' ' E E' '
3
E' ' /K : y 2 x 3 ax b
E : y 2 x3 ax b , a,b K.
Rong-Jaye Chen
Formal Definitions of Elliptic Curves
ECC 2008
14 / 19
(2.11)
Cryptanalysis Lab
Curves over K, char(K)≠2, 3
With equation (2.11),
16(4a3 27b 2 ) 0
j ( E ) 1728(4a3 ) /
Theorem
2
3
2
3
The elliptic curves E1/K : y x ax b and E 2 /K : y x a x b
*
are isomorphic over K iff there exists u K such that
u 4 a a and u 6 b b
If E1 E2 over K, then the isomorphism is given by
: E1 E2 , : x, y u 2 x, u -3 y
: E2 E1 , : x, y u 2 x, u 3 y
Rong-Jaye Chen
Formal Definitions of Elliptic Curves
ECC 2008
15 / 19
Cryptanalysis Lab
Curves over K, char(K)≠2, 3
Addition formulas
If P=(x1, y1) E, then -P=(x1, -y1).
If Q=(x2, y2) E, Q≠-P, then P+Q=(x3, y3), where
x3 λ 2 x1 x2
y3 λ(x1 x3 )
y2 y1
x x ,if P Q
2
1
λ
2
3
x
1 a ,if P Q
2 y1
Rong-Jaye Chen
Formal Definitions of Elliptic Curves
ECC 2008
16 / 19
Cryptanalysis Lab
Curves over K, char(K) = 2
E/K, char(K)=2
E : y 2 a1 xy a3 y x 3 a2 x 2 a4 x a6
If j(E) ≠0, then E is isomorphic to
E1 / K : y 2 xy x3 a2 x 2 a6
for E1, a6 and j(E1 ) 1 / a6
If j(E) =0, then E is isomorphic to
E2 / K : y 2 a3 y x3 a4 x a6
for E2, a34 and j(E2 ) 0
Rong-Jaye Chen
Formal Definitions of Elliptic Curves
ECC 2008
17 / 19
Cryptanalysis Lab
Curves over K, char(K) = 2
Addition formulas when j(E) ≠0
P ( x1 , y1 ) E1 , P ( x1 , y1 x1 )
Q ( x2 , y2 ) E1 , Q P, P Q ( x3 , y3 )
y y 2 y y
2
1
2
1
x1 x2 a2 , P Q
x1 x2
x x2
x3 1
2 a6
x1 x 2 , P Q
1
y1 y2
x1 x3 x3 y1 , P Q
x1 x2
y3
x 2 x y1 x x , P Q
3
1 1 x 3
1
Rong-Jaye Chen
Formal Definitions of Elliptic Curves
ECC 2008
18 / 19
Cryptanalysis Lab
Curves over K, char(K) = 2
Addition formulas when j(E) = 0
P ( x1 , y1 ) E2 , P ( x1 , y1 a3 )
Q ( x2 , y2 ) E2 , Q P, P Q ( x3 , y3 )
y y 2
2
1
x1 x2 , P Q
x x2
x3 1
x14 a42
a2 , P Q
3
y1 y2
x1 x3 y1 a3 , P Q
x1 x2
y3
2
x
1 a4 x x y a , P Q
1
3
1
3
a
3
Rong-Jaye Chen
Formal Definitions of Elliptic Curves
ECC 2008
19 / 19
Cryptanalysis Lab
© Copyright 2026 Paperzz