Organic-Based Aqueous Flow Batteries for Massive Electrical Energy Storage Brian Huskinson1, Michael P. Marshak1, Changwon Suh2, Süleyman Er2, Michael R. Gerhardt1, Cooper J. Galvin1, Xudong Chen2, Qing Chen1, Liuchuan Tong2, Alán Aspuru-Guzik2, Roy G. Gordon1,2 & Michael J. Aziz1 Harvard School of Engineering & Applied Sciences 2 Dept. of Chemistry & Chemical Biology, Harvard University 1 • Grid-scale storage • Flow Batteries • Quinones and hydroquinones • Quinone-based flow batteries: First results • Future prospects Andlinger Center for Energy & Environment, Princeton University, 10/20/2014 Wind Power Becomes Competitive The state’s biggest utilities, in a milestone for New England’s wind power industry, have signed long-term contracts to buy windgenerated electricity at prices below the costs of most conventional sources, such as coal and nuclear plants. The contracts, filed jointly Friday with the Department of Public Utilities, represent the largest renewable energy purchase to be considered by state regulators at one time. If approved, the contracts would eventually save customers between 75 cents and $1 a month, utilities estimated. “This proves that competitively priced renewable power exists and we can get it, and Massachusetts can benefit from it,” said Robert Rio, a spokesman for Associated Industries of Massachusetts, a trade group that represents some of the state’s biggest electricity users. The utilities — National Grid, Northeast Utilities, and Unitil Corp. — would buy 565 megawatts of electricity from six wind farms in Maine and New Hampshire, enough to power an estimated 170,000 homes. ... initial reaction to the price — on average, less than 8 cents per kilowatt hour? “Wow.” ... Boston Globe 9/23/2013, http://www.bostonglobe.com/business/2013/09/22/suddenlywind-competitive-with-conventional-power-sources/g3RBhfV440kJwC6UyVCjhI/story.html Electricity Prices Go Negative (Europe) 10/12/2013 Electricity Prices Go Negative (US) Slide courtesy of Prof. George Baker, HBS https://www.misoenergy.org/LMPContourMap/MISO_MidWest.html Electricity Prices Go Negative (US) Slide courtesy of Prof. George Baker, HBS https://www.misoenergy.org/LMPContourMap/MISO_MidWest.html Electricity Prices Go Negative (US) Slide courtesy of Prof. George Baker, HBS https://www.misoenergy.org/LMPContourMap/MISO_MidWest.html Intermittency Causes California to Require Storage 10/17/2013 California adopts energy storage mandate for major utilities California today became the first state in the country to require utilities to invest in energy storage, a move... USA electric power (Dec. 2013): 1100 GWe gen. capacity 24.6 GW (2.3%) storage: = 23.37 GW PHES, +1.23 GW other storage Enersys Nickel-Cadmium + Valve-regulated Lead-Acid 1 MWh, 1.5 MW http://www.windpowerengineering.com /featured/business-news-projects /improving-grid-lots-stored-mws/ Large-Scale Deployment of Off-Grid Storage No access to grid: 1.4 Billion people (incl. 550 million in Africa, 400 million in India) Photo courtesy of Prof. Sri Narayan, University of Southern California http://www.raisinahill.org/2013/02/indo-us-dispute-on-solar-panel.html http://3.bp.blogspot.com/-beOrvaf2wzw/URT3ohD796I/AAAAAAAABkA/ 9xwL0o5qO6I/s1600/Home+Lighting+System+in+a+hut+in+Jaisalmer+District+of+Rajasthan..jpg Storage Makes Intermittent Renewables Dispatchable Power 3 weeks Wind supply Power Power Solar supply Grid demand J. Rugolo and M.J. Aziz, “Electricity Storage for Intermittent Renewable Sources”, Energy Environ. Sci. 5, 7151 (2012) Some Grid Supply Scenarios Enabled by Storage Power Completely Levelized Power Grid minus baseload Power 5 hr peak-consumption centered square wave J. Rugolo and M.J. Aziz, “Electricity Storage for Intermittent Renewable Sources”, Energy Environ. Sci. 5, 7151 (2012) Three storage scenarios: Power and energy requirements, 1 MW nameplate production supplied to grid Power 1 MW Power 1 MW wind production Grid minus baseload (GMB) STORAGE PV production Constant output 5 hr centered square wave Electrochem storage: a distribution of instantaneous efficiencies Requirement: high system efficiency 1 MW nameplate PV requirement: ~?? MW peak power capacity; ?? MWh energy capacity (Energy/Power = ?? hr) 1 MW nameplate wind requirement: ~?? MW peak power capacity; ?? MWh energy capacity (Energy/Power = ?? hr) J. Rugolo and M.J. Aziz, “Electricity Storage for Intermittent Renewable Sources”, Energy Environ. Sci. 5, 7151 (2012) Storage: A Distribution of Efficiencies Electrolytic (Charging mode) Galvanic (Discharging mode) Linear Potential Approximation: Realistic Thermo. limit Thermo. limit p, Power Density [mW/cm2] E, Cell Potential [V] Power dens’y: Peaks at: How much A? i, Current Density [mA/cm2] J. Rugolo and M.J. Aziz, “Electricity Storage for Intermittent Renewable Sources”, Energy Environ. Sci. 5, 7151 (2012) Power [MW] Power [MW] Storage Requirements for 1 MW Nameplate Production Capacity Supplied power to grid = 0.276 MW Supplied power to grid = 0.119 MW Storage characteristics: ηavg = 85% Max. power = 0.480 MW Stored energy = 23 MWhr E/P ratio = 48 hr Wind characteristics: Nameplate = 1 MW CF = 32.5% Storage characteristics: ηavg = 85% Max. power = 0. 568 MW Stored energy = 8.0 MWhr E/P ratio = 14 hr PV characteristics: Nameplate = 1 MW CF = 14% J. Rugolo and M.J. Aziz, “Electricity Storage for Intermittent Renewable Sources”, Energy Environ. Sci. 5, 7151 (2012) Diminishing Returns on Buying Storage Power Wind Solar , Galvanic Power Capacity [MW] Solar Wind Energy/Power ratio [hr] J. Rugolo and M.J. Aziz, “Electricity Storage for Intermittent Renewable Sources”, Energy Environ. Sci. 5, 7151 (2012) Three storage scenarios: Power and energy requirements, 1 MW nameplate production Batteries: 100x too little energy per power NiMH Pb-acid Li+ ion NiMH Lead Acid Lithium ion 25 Constant output (CONS) in blue 50 75 25 50 75 Grid minus baseload (GMB) in red 5 hr centered (SW) in pink J. Rugolo and M.J. Aziz, “Electricity Storage for Intermittent Renewable Sources”, Energy Environ. Sci. 5, 7151 (2012) Batteries Have Only About 1% of the Required Energy for a Given Power Requirements for Efficient Storage, 1 MW nameplate Solar Wind Power 1 MW 1 MW Energy 16 MWhr 60 MWhr 16 hr 60 hr energy power Ratio J. Rugolo and M.J. Aziz, “Electricity Storage for Intermittent Renewable Sources”, Energy Environ. Sci. 5, 7151 (2012) Batteries Have Only About 1% of the Required Energy for a Given Power Requirements for Efficient Storage, 1 MW nameplate Available Solar Wind Batteries Power 1 MW 1 MW 1 MW Energy 16 MWhr 60 MWhr 0.2 MWhr 16 hr 60 hr 12 minutes energy power Ratio 1 MW 0.2 MWhr $40k J. Rugolo and M.J. Aziz, “Electricity Storage for Intermittent Renewable Sources”, Energy Environ. Sci. 5, 7151 (2012) Batteries Have Only About 1% of the Required Energy for a Given Power Requirements for Efficient Storage, 1 MW nameplate Available Solar Wind Batteries Power 1 MW 1 MW 2 MW Energy 16 MWhr 60 MWhr 0.4 MWhr 16 hr 60 hr 12 minutes energy power Ratio 1 MW 0.2 MWhr 1 MW 0.2 MWhr $40k J. Rugolo and M.J. Aziz, “Electricity Storage for Intermittent Renewable Sources”, Energy Environ. Sci. 5, 7151 (2012) Batteries Have Only About 1% of the Required Energy for a Given Power Requirements for Efficient Storage, 1 MW nameplate Available Solar Wind Batteries Power 1 MW 1 MW 3 MW Energy 16 MWhr 60 MWhr 0.6 MWhr 16 hr 60 hr 12 minutes energy power Ratio 1 MW 0.2 MWhr 1 MW 0.2 MWhr 1 MW 0.2 MWhr $40k J. Rugolo and M.J. Aziz, “Electricity Storage for Intermittent Renewable Sources”, Energy Environ. Sci. 5, 7151 (2012) Batteries Have Only About 1% of the Required Energy for a Given Power Requirements for Efficient Storage, 1 MW nameplate Available Solar Wind Batteries Power 1 MW 1 MW 4 MW Energy 16 MWhr 60 MWhr 0.8 MWhr 16 hr 60 hr 12 minutes energy power Ratio 1 MW 0.2 MWhr 1 MW 0.2 MWhr 1 MW 0.2 MWhr 1 MW 0.2 MWhr $40k J. Rugolo and M.J. Aziz, “Electricity Storage for Intermittent Renewable Sources”, Energy Environ. Sci. 5, 7151 (2012) Batteries Have Only About 1% of the Required Energy for a Given Power Requirements for Efficient Storage, 1 MW nameplate Available Solar Wind Batteries Power 1 MW 1 MW 5 MW Energy 16 MWhr 60 MWhr 1.0 MWhr 16 hr 60 hr 12 minutes energy power Ratio 1 MW 1 MW 0.2 MWhr 0.2 MWhr 1 MW 0.2 MWhr 1 MW 0.2 MWhr 1 MW 0.2 MWhr $40k J. Rugolo and M.J. Aziz, “Electricity Storage for Intermittent Renewable Sources”, Energy Environ. Sci. 5, 7151 (2012) Batteries Have Only About 1% of the Required Energy for a Given Power Requirements for Efficient Storage, 1 MW nameplate Available Solar Wind Batteries Power 1 MW 1 MW 10 MW Energy 16 MWhr 60 MWhr 2.0 MWhr 16 hr 60 hr 12 minutes energy power Ratio 1 MW 1 MW 0.2 MWhr 0.2 MWhr 1 MW 0.2 MWhr 1 MW 0.2 MWhr 1 MW 0.2 MWhr $40k 1 MW 1 MW 0.2 MWhr 0.2 MWhr 1 MW 0.2 MWhr 1 MW 0.2 MWhr 1 MW 0.2 MWhr J. Rugolo and M.J. Aziz, “Electricity Storage for Intermittent Renewable Sources”, Energy Environ. Sci. 5, 7151 (2012) Batteries Have Only About 1% of the Required Energy for a Given Power Requirements for Efficient Storage, 1 MW nameplate Available Solar Wind Batteries Power 1 MW 1 MW 15 MW Energy 16 MWhr 60 MWhr 3.0 MWhr 16 hr 60 hr 12 minutes energy power Ratio 1 MW 1 MW 0.2 MWhr 0.2 MWhr 1 MW 0.2 MWhr 1 MW 0.2 MWhr 1 MW 0.2 MWhr $40k 1 MW 1 MW 0.2 MWhr 0.2 MWhr 1 MW 0.2 MWhr 1 MW 0.2 MWhr 1 MW 0.2 MWhr 1 MW 1 MW 0.2 MWhr 0.2 MWhr 1 MW 0.2 MWhr 1 MW 0.2 MWhr 1 MW 0.2 MWhr J. Rugolo and M.J. Aziz, “Electricity Storage for Intermittent Renewable Sources”, Energy Environ. Sci. 5, 7151 (2012) Batteries Have Only About 1% of the Required Energy for a Given Power Requirements for Efficient Storage, 1 MW nameplate 1 MW 1 MW 1 MW 1 MW 1 MW 1 MW 1 MW 1 MW1 MW 1 MW 0.2 M 0.21 MWhr 0.21 MWhr 0.21 MWhr 0.21MWhr Available 0.2 MWhr 1 MW0.2 MWhr MW0.2 MWhr MW0.2 MWhr MW0.2 MWhr MW 0.2 MWhr 0.2 MWhr 0.2 MWhr 0.2 MWhr 0.2 MWhr Solar Wind Batteries Power 1 MW 1 MW 300 MW Energy 16 MWhr 60 MWhr 60 MWhr 16 hr 60 hr 12 minutes energy power Ratio 1 MW 1 MW 1 MW 1 MW 1 MW 1 MW 1 MW 1 MW1 MW 1 MW 0.21 MWhr 0.21 MWhr 0.21 MWhr 0.21MWhr 0.2 M 0.2 MWhr 1 MW0.2 MWhr MW0.2 MWhr MW0.2 MWhr MW0.2 MWhr MW 0.2 MWhr 1 0.2 0.2 MWhr 1 MW 0.2 MWhr 1 MW MWMWhr 1 0.2 MWMWhr 1 MW 1 MW 1 MW MWhr1 MW 1 MW 1 MW M MWhr MWhr MWhr 10.2 MW 1 MW 10.2 MW 10.2 MW 10.2 MW MW 1 MW 1 MW10.2 1 MW 1 MW 0.2 MWhr 0.2 MWhr 0.2 MWhr 0.2 MWhr 0.2 MWhr 0.21 MWhr 0.21 MWhr 0.21 MWhr 0.21MWhr 0.2 M 0.2 MWhr 1 MW0.2 MWhr MW0.2 MWhr MW0.2 MWhr MW0.2 MWhr MW 0.2 MWhr 1 0.2 0.2 MWhr 1 MW 0.2 MWhr 1 MW MWMWhr 1 0.2 MWMWhr 1 MW 1 MW 1 MW 1 MW 1 MW 1 MW 1 MW 1 MW 1 MW 1 MW 1 MW 0.2 MWhr 0.2 MWhr 0.2 MWhr 0.2 MWhr 0.2 M 0.20.2 MWhr MWhr MWhr MWhr MWhr MWhr0.20.2 MWhr0.20.2 MWhr0.20.2 MWhr0.20.2 MWhr 1 MW 1 MW1 MW 1 MW1 MW 1 MW1 MW 1 MW 1 MW 11MW 1 MW 1 MW 1 MW 1 MW 1 MW 1 MW MW 1 MW 1 MW 1 MW 0.2 MWhr 0.2 MWhr 0.2 MWhr 0.2 MWhr 0.2 M 0.20.2 MWhr MWhr MWhr MWhr MWhr 0.2 MWhr 0.2 MWhr 0.2 MWhr 0.2 MWhr MWhr0.2 0.2 MWhr0.2 0.2 MWhr0.2 0.2 MWhr0.2 0.2 MWhr 0.2 MW 1 MW 1 MW 1 MW 1 MW 1 MW 1 MW 1 MW 1 1MW 1 1MW 1 1MW MW MW MW MW 1 MW 0.2 MWhr 1 MW 0.2 MWhr1 1MW 1 MW 1 MW 1 MW 1 MW 1 MW0.2 MWhr 1 MW0.2 MWhr 1 MW0.2 MWhr 1 MW 0.21MWhr 0.2 MWhr 0.2 MWhr 0.2 MWhr 0.2 MWhr MW 1 MW 1 MW 1 MW 1 MW 0.2MWhr MWhr 0.2 0.2MWhr MWhr 0.2 0.2MWhr MWhr 0.2 MWhr 0.2 MW MWhr 1 0.2 MWhr 1 0.2 0.2 MWhr 0.2 MWhr 0.2 MWhr 0.2 MWhr 0.20.2 MW MW 1 MW 1 MW 1 MW MWhr 0.2 MWhr 0.2 MWhr 0.2 MWhr 0.2 MWhr 1 MW 1 MW 1 MW0.2 MWhr 1 MW 1 MW 1 MW 1 MW 1 MW 1 MW $40k 0.2 MWhr 0.2 MWhr 0.2 MWhr 0.2 MWhr 0.2 MWhr 1 MW 1 MW 1 MW 1 MW 1 MW 0.2 MWhr 0.2 MWhr 0.2 MWhr 0.2 MWhr 0.2 MWhr 0.2 MWhr 0.2 MWhr 0.2 MWhr 0.2 MWhr 1MW MW MW MW 1 MW 1 MW 0.2 MWhr 0.2 MWhr 0.2 MWhr 0.2 MWhr 0.2 MWhr 1 MW 1 MW 1 11MW 11MW 1 MW 1 MW 1 MW 1 MW 1 MW 1 MW 1 MW 1 MW 1 MW 1 MW 0.2MWhr MWhr 0.2 0.2MWhr MWhr 0.2 0.2MWhr MWhr 0.2 MWhr 0.2 MW MWhr 1 0.2 MWhr 1 0.2 MW MW 1 MW 1 MW 1 MW 0.2 MWhr 0.2 MWhr 0.2 MWhr 0.2 MWhr 0.20.2 MWhr 0.2 MWhr 0.2 MWhr 0.2 MWhr 0.2 1 MW 1 MW MWhr 1 MW0.2 MWhr 1 MW 1 MW 1 MW 1 MW 1 MW 1 MW 0.2 MWhr 0.2 MWhr 0.2 MWhr 0.2 MWhr 0.2 MWhr 1 MW 1 MW 1 MW 1 MW 1 MW 0.2 MWhr 0.2 MWhr 0.2 MWhr 0.2 MWhr 0.2 MWhr 0.2 MWhr 0.2 MWhr 0.2 MWhr 0.2 MWhr 0.2 MWhr 0.2 MWhr 0.2 MWhr 0.2 MWhr 0.2 MWhr 1 MW 1 MW 1 MW 1 MW 1 MW 1 MW 1 MW 1 MW 1 MW 1 MW 1 MW 1 MW 1 MW 1 MW 1 MW MWhr 1 0.2 MWhr 1 0.2 MWhr 1 MW 0.2 MWhr 1 MW 0.2 MWhr 1 MW MW MW 0.2 MWhr 0.2 MWhr 0.2 MWhr 0.2 MWhr 0.20.2 MWhr 0.2 MWhr 0.2 MWhr 1 MW0.2 MWhr 1 MW0.2 MWhr 1 MW0.2 MWhr 1 MW 1 MW 1 MW 1 MW 1 MW 1 MW 0.2 MWhr 0.2 MWhr 0.2 MWhr 0.2 MWhr 0.2 MWhr 0.2 MWhr 0.2 MWhr 0.2 MWhr 0.2 MWhr 0.2 MWhr 0.2 MWhr 0.2 MWhr 0.2 MWhr 0.2 MWhr J. Rugolo and M.J. Aziz, “Electricity Storage for Intermittent Renewable Sources”, Energy Environ. Sci. 5, 7151 (2012) Flow Batteries Independently Size Energy and Power Requirements for Efficient Storage, 1 MW nameplate Solar Wind Power 1 MW 1 MW Energy 16 MWhr 60 MWhr 16 hr 60 hr energy energy Ratio Ratio power power 1 MW power conversion unit energy storage unit electrode ion-transport separator Electrolyte Electrolyte 1 MWhr 1 MWhr pump energy storage unit Power source and load pump based on image from vrbpower.com J. Rugolo and M.J. Aziz, “Electricity Storage for Intermittent Renewable Sources”, Energy Environ. Sci. 5, 7151 (2012) Flow Batteries Independently Size Energy and Power Requirements for Efficient Storage, 1 MW nameplate Solar Wind Power 1 MW 1 MW Energy 16 MWhr 60 MWhr 16 hr 60 hr energy energy Ratio Ratio power power 1 MW power conversion unit energy storage unit electrode ion-transport separator Electrolyte 10 MWhr pump energy storage unit Electrolyte 10 MWhr Power source and load pump based on image from vrbpower.com J. Rugolo and M.J. Aziz, “Electricity Storage for Intermittent Renewable Sources”, Energy Environ. Sci. 5, 7151 (2012) Flow Batteries Independently Size Energy and Power Requirements for Efficient Storage, 1 MW nameplate Solar Wind Power 1 MW 1 MW Energy 16 MWhr 60 MWhr 16 hr 60 hr energy energy Ratio Ratio power power 1 MW power conversion unit energy storage unit electrode energy storage unit ion-transport separator Electrolyte Electrolyte 60 MWhr 60 MWhr pump Power source and load pump based on image from vrbpower.com J. Rugolo and M.J. Aziz, “Electricity Storage for Intermittent Renewable Sources”, Energy Environ. Sci. 5, 7151 (2012) Flow Batteries Independently Size Energy and Power Requirements for Efficient Storage, 1 MW nameplate Solar Wind Power 1 MW 1 MW Energy 16 MWhr 60 MWhr 16 hr 60 hr energy energy Ratio Ratio power power 1 MW power conversion unit energy storage unit electrode energy storage unit ion-transport separator Electrolyte Electrolyte 100 MWhr 100 MWhr pump Power source and load pump based on image from vrbpower.com J. Rugolo and M.J. Aziz, “Electricity Storage for Intermittent Renewable Sources”, Energy Environ. Sci. 5, 7151 (2012) “Hope and Change” for Electrical Energy Storage Vanadium Redox Flow Battery: the Most Commercialized RFB Power source and load Red Red Ox Ox Quinones for Battery Storage Plastoquinone in photosynthesis simplest quinone oxidized +2 H+, +2 e– reduced +2 H+, +2 e– +2 H+, +2 e– +2 H+, +2 e– Quinones/Hydroquinones: Reversible proton and electron addition reactions with known and estimated pKa’s O– Q2- -e+e- -e+e- Q- O parabenzoquinone Q O– OH O 9.85 QH2 OH -e+e- +H+ OH hydroquinone 4.1 11.84 +H+ QHO– “pBQ” QH ~ -1 -e+e- +H+ ~ -7 -e+e- +H+ QH2+ +e- OH+ QH+ < -7 -e- +H+ +H+ O OH+ QH22+ OH+ Quan, Sanchez, Wasylkiw, Smith, “Voltammetry of Quinones in Unbuffered Aqueous Solution...”, JACS 129, 12847 (2007) Quinones/Hydroquinones: Reversible or Irreversible proton and electron addition reactions with known and estimated pKa’s O– Q2- -e+e- -e+e- Q- O parabenzoquinone Q O– OH O 9.85 QH2 OH -e+e- +H+ OH hydroquinone 4.1 11.84 +H+ QHO– “pBQ” QH ~ -1 -e+e- +H+ ~ -7 -e+e- +H+ QH2+ +e- OH+ QH+ < -7 -e- +H+ +H+ O OH+ QH22+ OH+ Quan, Sanchez, Wasylkiw, Smith, “Voltammetry of Quinones in Unbuffered Aqueous Solution...”, JACS 129, 12847 (2007) Quinone-Based Flow Batteries Primary requirements: • Reduction potential • Solubility • Redox kinetics • Stability • Cost Cost of Chemicals Sets Floor on System Cost / kWh Compound $/kg Source $/kAh per side $/kWh per side Vanadium pentoxide (V2O5) 14.37 USGS (2011) 48.77 40.64 Anthraquinone <4.74 eBioChem <18.41 <21.46 Benzoquinone 5.27 Shanghai Smart Chemicals Co. 10.63 10.63 Bromine 1.76 5.25 6.12 USGS (2006) “I wish I could get that price!” Full Cell $/kAh $/kWh Anthraquinone with Bromine <23.66 <27.58 Anthraquinone with Benzoquinone <29.04 <32.09 Vanadium with Vanadium 97.54 81.28 Anthraquinone Di-sulfonate (AQDS) SO3H Ox AQDSH2 AQDS O SO3H Red AQDS + 2H+ + 2e- Oxidation 200 –2 O Potentiostat Working electrode glassy C Reference electrode Ag/AgCl Current Density (A cm ) 34 mV Counter electrode Pt 100 0 O SO3H -100 -200 O OH SO3H SO3H OH 1 M H2SO4, pH 0, 20 oC, 1 mM AQDS SO3H -300 -100 0 Reduction 100 200 300 400 500 Potential (mV vs. SHE) B. Huskinson, M.P. Marshak, C. Suh, S. Er, M.R. Gerhardt, C.J. Galvin, X. Chen, A. Aspuru-Guzik, R.G. Gordon and M.J. Aziz, “A metal-free organic-inorganic aqueous flow battery”, Nature 505, 195 (2014) 61 AQDS Pourbaix Diagram 1 mM Quinone 2 electrons, 2 protons 2 electrons, 1 proton 2 electrons, 0 protons B. Huskinson, M.P. Marshak, C. Suh, S. Er, M.R. Gerhardt, C.J. Galvin, X. Chen, A. Aspuru-Guzik, R.G. Gordon and M.J. Aziz, “A metal-free organic-inorganic aqueous flow battery”, Nature 505, 195 (2014) AQDS: Rotating Disk Electrode Response -100 -200 -90 -80 200 RPM Limiting Current (A) –2 Current Density (A cm ) 0 -400 -600 -800 -1000 -1200 -1400 50 3600 RPM -70 -60 -50 -40 -30 -20 -10 100 150 200 250 300 Potential (mV vs. SHE) iL = Current limited by mass transport 0 0 2 4 6 8 10 1/2 12 14 16 18 20 1/2 (Rad/s) Levich Equation: iL = 0.62n F A D2/3 ω1/2 1/6 CO* D = 3.8 × 10−6 cm2/s. B. Huskinson, M.P. Marshak, C. Suh, S. Er, M.R. Gerhardt, C.J. Galvin, X. Chen, A. Aspuru-Guzik, R.G. Gordon and M.J. Aziz, “A metal-free organic-inorganic aqueous flow battery”, Nature 505, 195 (2014) AQDS: Rotating Disk Electrode Response -60 -200 -50 200 RPM -400 -40 i (mA ) –1 -600 -800 –1 –2 Current Density (A cm ) 0 -1000 -1200 -1400 50 3600 RPM 100 150 200 250 300 Potential (mV vs. SHE) Current is limited by mass transport and electrode kinetics 1 iK / mV -30 13 18 23 28 33 38 363 -20 -10 0 0.00 0.04 0.08 –1/2 0.12 (s 1/2 0.16 0.20 0.24 –1/2 rad ) Koutecký-Levich Plot: Extrapolate to infinite rotation rate Gives the kinetically-limited current, iK B. Huskinson, M.P. Marshak, C. Suh, S. Er, M.R. Gerhardt, C.J. Galvin, X. Chen, A. Aspuru-Guzik, R.G. Gordon and M.J. Aziz, “A metal-free organic-inorganic aqueous flow battery”, Nature 505, 195 (2014) AQDS: Rotating Disk Electrode Response exchange current density ik0 rate const k0 = ik0/(FAC) = 7.2 × 10−3 cm/s -60 F = Faraday’s constant A = surface area C = concentration 7.2 x 10-3 (carbon) Br2/Br- 5.8 X 10-4 (carbon)* Fe3+/Fe2+ 2.2 x 10-5 (gold)* Cr3+/Cr2+ 2 x 10-4 (mercury)* VO2+/VO2+ 3 x 10-6 (carbon)* V3+/V2+ 4 x 10-3 (mercury)* –1 AQDS/ AQDSH2 –1 k0 [cm/s] (electrode) -40 i (mA ) Redox couple -50 1 iK / mV -30 13 18 23 28 33 38 363 -20 -10 0 0.00 0.04 0.08 –1/2 0.12 (s 1/2 0.16 0.20 0.24 –1/2 rad ) Koutecký-Levich Plot: Extrapolate to infinite rotation rate Gives the kinetically-limited current, iK *Weber, A. Z.; Mench, M. M.; Meyers, J. P.; Ross, P. N.; Gostick, J. T.; Liu, Q. J. Appl. Electrochem. 2011, 41, 1137 Quinone-Bromide Flow Battery AQDSH2 Ox Red AQDS + 2H+ + 2e- OH SO3H SO3H AQDSH2 AQDSH2 OH O SO3H SO3H AQDS AQDS O E0: +0.21 V +1.09 V Porous carbon paper electrode (no catalyst) B. Huskinson, M.P. Marshak, C. Suh, S. Er, M.R. Gerhardt, C.J. Galvin, X. Chen, A. Aspuru-Guzik, R.G. Gordon and M.J. Aziz, “A metal-free organic-inorganic aqueous flow battery”, Nature 505, 195 (2014) Cell Assembly Serpentine flow field or Interdigitated flow field Carbon paper Teflon gasket Assembled single-cell stack Nafion membrane Cell Performance State of Charge (SOC) • • • • • Interdigitated flow fields Toray carbon paper electrodes (pretreated, 6 layers/side, no added catalyst) Nafion 212 (50 um), 40 oC posolyte: 3 M HBr + 0.5 M Br2 negolyte: 1 M 2,7-AQDS + 1 M H2SO4 B. Huskinson, M.P. Marshak, C. Suh, S. Er, M.R. Gerhardt, C.J. Galvin, X. Chen, A. Aspuru-Guzik, R.G. Gordon and M.J. Aziz, “A metal-free organic-inorganic aqueous flow battery”, Nature 505, 195 (2014) Cell Performance Electrolytic power density now 1.0 W/cm2 Galvanic power density Peak galvanic power density > 0.6 W cm-2 Electrolytic power density of 3.3 W cm-2 at 2.25 A cm-2 spans decades of VRB development in 1 year • • • 40 oC posolyte: 3 M HBr + 0.5 M Br2 negolyte: 1 M AQDS + 1 M H2SO4 B. Huskinson, M.P. Marshak, C. Suh, S. Er, M.R. Gerhardt, C.J. Galvin, X. Chen, A. Aspuru-Guzik, R.G. Gordon and M.J. Aziz, “A metal-free organic-inorganic aqueous flow battery”, Nature 505, 195 (2014) SOC Voltage Efficiency 1.00 Charge: 125-200 mW cm-2 at 90% voltage efficiency Voltage Efficiency 0.95 0.90 0.85 0.80 Discharge: 75-150 mW cm-2 at 90% voltage efficiency 10% SOC 25% 50% 75% 90% 0.75 0.70 -0.7 charge -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 discharge 0.0 0.1 0.2 0.3 0.4 -2 Power Density (W cm ) B. Huskinson, M.P. Marshak, C. Suh, S. Er, M.R. Gerhardt, C.J. Galvin, X. Chen, A. Aspuru-Guzik, R.G. Gordon and M.J. Aziz, “A metal-free organic-inorganic aqueous flow battery”, Nature 505, 195 (2014) 75 Cycling to ~102 Impose ±0.25 A/cm2 square wave, switched at 0, +1.5 V Cycle Number Cycle Number 20 40 60 80 100 1.8 Cell Potential (V) 98 1.4 96 1.2 94 92 1.0 90 0.8 88 0.6 86 0.4 84 0.2 82 0.0 80 0 20 40 60 80 100 120 140 160 180 200 Time (hrs) 50 51 52 53 100 1.6 98 1.4 Cell Potential (V) 99.986% average Discharge Capacity Retention (%) 100 1.6 49 1.8 96 1.2 94 1.0 92 0.8 90 88 0.6 86 0.4 84 0.2 0.0 82 100 102 104 106 108 Discharge Capacity Retention (%) 0 80 Time (hrs) Capacity Retention = (Coulombs of discharge) / (immediately preceding coulombs of discharge) • • • • Nafion 115 (125 um); 30 oC Toray carbon electrodes 2 cm2, 6 layers, no catalyst Negolyte: 1 M AQDS in 1 M H2SO4 Posolyte: 3 M HBr + 0.5 M Br2 in H2O B. Huskinson, M.P. Marshak, M.R. Gerhardt and M.J. Aziz, “Cycling of a quinone-bromide flow battery for large-scale electrochemical energy storage”, ECS Trans. 61, 27 (2014) 76 Cycling to ~103 Capacity Retention = (Coulombs of discharge) / (immediately preceding coulombs of discharge) Current Efficiency = (Coulombs of discharge) / (immediately preceding coulombs of charge) 99.84% avg. discharge capacity retention 1.0 Current Efficiency (%) 98.35% avg. current efficiency 0.8 0.8 0.6 0.6 • ±0.75 A/cm2 square wave, switched at 0, +1.5 V • Nafion 115 (125 um); 40 oC • Toray carbon electrodes, 6 layers, no catalyst • Negolyte: 1 M AQDS in 1 M H2SO4 750 cycles • Posolyte: 3 M HBr + 0.5 M Br2 in H2O -2 0.75 A cm 0.4 0.2 0.0 0 100 200 300 400 500 600 700 0.4 0.2 Discharge Capacity Retention (%) 1.0 0.0 B. Huskinson, M.P. Marshak, M.R. Gerhardt and M.J. Aziz, “Cycling of a quinone-bromide flow battery for large-scale electrochemical energy storage”, ECS Trans. 61, 27 (2014) Cycle Number Efficiency vs. Current Density Nafion 212 Nafion 115 1.0 1.0 0.8 0.6 0.4 Current Efficiency Voltage Efficiency 0.98 0.25 0.50 0.75 2 Current density (A/cm ) 1.00 0.0 0.99 current efficiency loss: • Br2 crossover? • O2 permeation? • H2 evolution? 0.00 1.0 0.8 0.8 Energy Efficiency Negolyte: 20 mL (1M AQDS + 1M H2SO4) Posolyte: 125 mL (3.5M HBr + 0.5M Br2) Electrode Area: 5 cm2 0.4 0.2 0.0 0.00 0.25 0.50 0.75 2 Current density (A/cm ) 1.00 0.6 0.4 1.0 0.6 Current Efficiency Voltage Efficiency 0.98 Energy Efficiency Energy Efficiency 0.00 0.2 Current Efficiency 0.99 Voltage Efficiency Current Efficiency 0.8 0.2 0.25 0.50 0.75 Current density (mA/cm2) 1.00 Energy Efficiency 0.6 0.4 0.2 0.0 0.00 0.25 0.50 0.75 2 Current density (A/cm ) 1.00 0.0 Voltage Efficiency 1.00 1.00 Additional Advantages of Quinones for Energy Storage Low chemicals cost: Rapid redox kinetics: Enables low cost/kWh Enable low cost/kW Redox couple k0 [cm/s] (electrode material) AQDS/AQDSH2 7.2 x 10-3 (carbon) Br2/Br- 5.8 X 10-4 (carbon) Fe3+/Fe2+ 2.2 x 10-5 (gold) Cr3+/Cr2+ 2 x 10-4 (mercury) VO2+/VO2+ 3 x 10-6 (carbon) V3+/V2+ 4 x 10-3 (mercury) Quinone kinetics on glassy carbon exceed those of most other battery redox couples Additional Advantages of Quinones for Energy Storage Low chemicals cost: Rapid redox kinetics: Small organic molecules: • • • • Enables low cost/kWh Enable low cost/kW Enable inexpensive separator Dianions: reduced crossover through cation-exchange membranes Quinones on both sides would eliminate Br2 exposure and Br2 crossover hydrocarbon membranes Bulky molecules may enable inexpensive separator Possibility of functionalizing with additional R groups for physical or chemical membrane exclusion Quinones as an Energy Storage Medium Low chemicals cost: Rapid redox kinetics: Small organic molecules: All-liquid storage: Enables low cost/kWh Enable low cost/kW Enable inexpensive separator Enables inexpensive BOS and high cycle life Quinones as an Energy Storage Medium Low chemicals cost: Rapid redox kinetics: Small organic molecules: All-liquid storage: Aqueous electrolyte: Enables low cost/kWh Enable low cost/kW Enable inexpensive separator Enables inexpensive BOS and high cycle life Enables fireproof operation Li-ion batteries ubiquitous . . . but safety concerns are not going away • Damaged/overheated Li‐ion cells can ignite spontaneously & create fierce fires • Li cells have been implicated in at least 24 combustion incidents on or around aircraft in 2010‐2012, both in cargo and carry‐on bags (Wall Street Journal, 12/30/2012) • Li‐ion batteries containing more than 25 grams (0.88 oz) equivalent lithium content (ELC) are forbidden in air travel (safetravel.dot.gov) 9‐Nov‐2008—Li‐ion fire destroys Pearl Harbor‐ docked Advanced SEAL Delivery System (ASDL); $237M in damage May‐2011—fire ignites in battery pack 3 weeks after crash test of Chevy Volt 3‐Sep‐2010—Li battery fire ignites aboard UPS 747 departing Dubai; crash kills both pilots 7‐Jan‐2013—fire ignites in Li-ion battery pack (2× size of a car battery) of auxiliary power unit in 787 Dreamliner while on the ground in Boston Slide courtesy of Dr. Debra Rolison, NRL Quinones as an Energy Storage Medium Low chemicals cost: Rapid redox kinetics: Small organic molecules: All-liquid storage: Aqueous electrolyte: Non-toxic: Enables low cost/kWh Enable low cost/kW Enable inexpensive separator Enables inexpensive BOS and high cycle life Enables fireproof operation Ideal for commercial, residential markets Quinones as an Energy Storage Medium Low chemicals cost: Rapid redox kinetics: Small organic molecules: All-liquid storage: Aqueous electrolyte: Non-toxic: Scalability: Enables low cost/kWh Enable low cost/kW Enable inexpensive separator Enables inexpensive BOS and high cycle life Enables fireproof operation Ideal for commercial, residential markets Enables rapid chemistry scaleup Scalability Bulk synthesis of AQDS mixtures without purification leads to nearly identical half-cell performance. Estimated electrolyte cost of <$21/kWh for AQDS and $6 for Br Gives <$27/kWh cost of chemicals for QBFB. Quinones as an Energy Storage Medium Low chemicals cost: Rapid redox kinetics: Small organic molecules: All-liquid storage: Aqueous electrolyte: Non-toxic: Scalability: Tunability: Enables low cost/kWh Enable low cost/kW Enable inexpensive separator Enables inexpensive BOS and high cycle life Enables fireproof operation Ideal for commercial, residential markets Enables rapid chemistry scaleup Enables performance improvements Computational Screening Calc. Calc. Exp. 6 Number of –OH Groups 5 4 3 DHAQDS 2 1 AQDS 0 -400 -300 -200 -100 0 100 200 300 400 Potential (mV vs. SHE) Changwon Suh, Süleyman Er, Michael Marshak, Alán Aspuru-Guzik Electron-donating –OH groups lower the reduction potential. Tunability 200 –2 Current Density (A cm ) Oxidation Reduction Electron-donating –OH groups lower the reduction potential. 100 end 0 start -100 AQDS 1,8-DHAQDS MH-AQDS -200 -300 -100 0 100 200 300 400 500 Potential (mV vs. SHE) AQDS E0 = 0.210 V Tunability 200 –2 Current Density (A cm ) Oxidation Reduction 100 end 0 start -100 AQDS 1,8-DHAQDS MH-AQDS -200 -300 -100 0 100 200 300 400 500 Potential (mV vs. SHE) OH O HO3S OH SO3H O 1,8-DHAQDS E0 = 0.118 V AQDS E0 = 0.210 V Cooper Galvin Tunability 200 –2 Current Density (A cm ) Oxidation Reduction • 100 end 0 • start Addition of OH groups lowers the reduction potential by ~170 mV Expect ~20% increase in OCV of Quinone-Bromide cell -100 AQDS 1,8-DHAQDS MH-AQDS -200 -300 -100 0 100 200 300 400 500 Potential (mV vs. SHE) OH O HO3S OH SO3H O MH-AQDS E0 = 0.039 V 1,8-DHAQDS E0 = 0.118 V AQDS E0 = 0.210 V Cooper Galvin, Michael Marshak Open Circuit Voltage (V) Tunability Demonstration in Quinone-Bromide Cell 1.10 0.5 M DHAQDS 0.5 M AQS 0.5 M AQDS 1 M AQDS 1.05 1.00 0.95 0.90 0.85 0.80 0.75 0.70 0.65 2 0 20 40 2 ln 60 80 100 State of Charge (%) AQDS E0 = 0.210 V Preliminary results from DHAQDS and AQS flow cells against HBr/Br2 show open circuit voltage rising above 1.0 V at high state of charge. Michael Gerhardt (unpublished) O AQS E0 = 0.193 V 17 mV OCV gain SO3H O Open Circuit Voltage (V) Tunability Demonstration in Quinone-Bromide Cell 1.10 0.5 M DHAQDS 0.5 M AQS 0.5 M AQDS 1 M AQDS 1.05 1.00 0.95 0.90 0.85 0.80 0.75 0.70 0.65 0 20 40 60 80 100 State of Charge (%) AQDS E0 = 0.210 V Preliminary results from DHAQDS and AQS flow cells against HBr/Br2 show open circuit voltage rising above 1.0 V at high state of charge. Michael Gerhardt (unpublished) DHAQDS E0 = 0.118 V 92 mV OCV gain O AQS E0 = 0.193 V 17 mV OCV gain SO3H O Open Circuit Voltage (V) Tunability Demonstration in Quinone-Bromide Cell 1.10 0.5 M DHAQDS 0.5 M AQS 0.5 M AQDS 1 M AQDS 1.05 1.00 0.95 0.90 0.85 0.80 0.75 0.70 0.65 0 20 40 60 80 100 State of Charge (%) AQDS E0 = 0.210 V Preliminary results from DHAQDS and AQS flow cells against HBr/Br2 show open circuit voltage rising above 1.0 V at high state of charge. Michael Gerhardt (unpublished) 1.0 V Quinone-Quinone Cell 0.1 M in H2O Open Circuit Potential = 1.03 V Peak power density = 50 mA cm−2 >99% current Efficiency High cell resistance due (primarily?) to low ion conc. Michael Marshak, Liuchuan Tong (unpublished) Are quinones special? “[Quinones] seem to involve a different kind of process from such irreversible reductions as the hydrogenation of ethylene derivatives, or the reduction of aldehydes, ketones, and nitriles.” hydroquinone benzoquinone J. B. Conant ethane ethylene L. F. Fieser J.B. Conant, H.M. Kahn, L.F. Fieser, S.S. Kurtz,, J. Am. Chem. Soc. 44, 1382 (1922). Quinone Redox Scheme Q QH2 Redox-Active Orbital of Quinone HOMO • SOMO Hydroquinone HOMO is π-type • Virtually identical to quinone LUMO • Zero electron density on O-H bond e– H+ • e– H+ Q H+ Near zero motion of any other atoms e– + - LUMO + + - + H+ QH2 e– H+ e– H+ e– DFT Calculations using Gaussian03; B3LYP functional / TZVP basis set (Michael Marshak) Ethane/Ethylene Orbitals C2H6 Degenerate HOMO of Ethane consists of C−H σ bonds C2H4 LUMO of Ethylene is the π* (anti-bond) Outlook • • • • Cost and tunability of redox-active organics look promising for E storage, other apps? High power density, low cost quinone-bromine Redox Flow Batt proves the concept There is plenty of room for improvement • molecules • separators • porous electrodes and fluidics How low can the capital cost be? Fun Facts about Quinones Hydroquinone cream is used to bleach Emodin is found in Aloe Vera dark spots, moles, etc off of skin Vitamin K1 is part of the electron transport chain in photosystem I, found in all green plants Blatellaquinone is a sex pheromone female cockroaches use to attract males Acknowledgments Harvard U Ctr for the Environment, Harvard School of Engrg & Appl Sci Harvard Physics Department, NSF Grad Rsch Fellowship Program, DOE ARPA-E award DE-AR0000348 Not pictured: Dr. Brian Huskinson, Professor Theodore Betley, Saraf Nawar, Rachel Burton, Cooper Galvin, Sidharth Chand, Tyler Van Valkenburg, Bilen Aküzüm, Ryan Duncan, Dr. Süleyman Er, Dr. Xudong Chen, Phil Baker, Dr. Trent Molter Top Row: Prof. Alán Aspuru-Guzik, Dr. Rafa Gómez-Bombarelli, Tim Hirzel, Louise Eisenach, Dr. Jorge Aguilera Iparraguirre, Prof. Mauricio Salles Second Row: Jessa Piaia, Drew Wong, Kaixiang Lin, Prof. Xin Li, Dr. David Hardee, Dr. Michael Marshak Third Row: Jennifer Wei, Dr. Qing Chen, Michael Gerhardt, Liuchuan Tong, Xinyou Ke Front Row: Dr. Ed Pyzer-Knapp, Dr. Changwon Suh, Lauren Hartle, Prof. Michael Aziz, Prof. Roy Gordon Not pictured: Prof. Theodore Betley, Saraf Nawar, Bilen Aküzüm, Rachel Burton, Cooper Galvin, Sidharth Chand, Phil Baker, Dr. Trent Molter, Dr. Brian Huskinson, Ryan Duncan, Dr. Süleyman Er, Dr. Xudong Chen
© Copyright 2025 Paperzz