Functional Nonparametric Prediction Methodologies Markus Kuusisto Prediction problem • Chemometric data, 215 samples – functional sample curves i (spectra) – scalar response yi (fat content) • How to predict fat content from spectrum – using whole spectrometric curve, continuity – combining nonparametric consepts and functional variable modeling • Following slides presents three different approaches Different approaches • Regression, conditional expectation – r() = E(Y| = ) – y’ = r’() • conditional c.d.f, median – – – – • FY (,y) = P(Y y | = ) m() = FY (,y) 1/2 y’ = m’() Can also be used to calculate confidence band conditional p.d.f, mode – f Y (,y) = FY (,y) y – () = arg supf Y – y’ = ’() (,y) , y S Properties of models • r, FY, fY are required to be continuous • Continuity-type models – convergence results can be obtained • If also Lipschits-type – function will never have a slope steeper than Lipschitz constant – precise rate of convergence can be found • Difficulties – infinite dimensional space of constrains (nonparametric model) – infinite dimensional space of the functional feature of the explanatory variable Kernel Estimators: regression • Estimating the regression 1 Y K ( h d ( new , i )) i1 i n r ( new ) 1 K ( h d ( new , i )) i1 n – K is an asymmetrical kernel – h is bandwidth of kernel • r(new) is weighted average of Y 1 K ( h d ( new , i )) i1 n wh ( new ) n i 1 K (h d ( new , i )) 1 1 Kernel Estimators: conditional c.d.f • Estimating the conditional c.d.f 1 1 K ( h d ( , )) H ( g ( y Yi )) i1 new i n FY ( new , y) • g is bandwith • H is c.d.f of Kernel type 0 u H (u) K 0 (v)dv • m() = FY (,y) 1/2 1 K ( h d ( new , i )) i1 n Integrated symmetrical Kernels Kernel Estimators: conditional p.d.f • Estimating the conditional p.d.f – fY (,y) = FY (,y) y 1 K ( h d ( , )) H ( g ( y Yi )) i1 new i y 1 n FY ( new , y ) y 1 1 K ( h d ( , )) K ( g ( y Yi )) i1 new i 0 g n fY ( new , y ) 1 K ( h d ( new , i )) i1 n 1 1 K ( h d ( new , i )) i1 n
© Copyright 2026 Paperzz