Complex network approach for recurrence analysis of time series J.F. Donges (1,2), N. Marwan (1), Y. Zou (1), R.V. Donner (1) and J. Kurths (1,2) 1 Potsdam Institute for Climate Impact Research, Germany 2 Department of Physics, Humboldt University, Berlin, Germany DSWC 09 Dresden, July 30th Contact: [email protected], http://www.pik-potsdam.de/~donges Outline • Introduction • Conceptual foundation • Quantifying recurrence networks • Application to climatological time series • Conclusions & Outlook Introduction What do we start with? 1 kyr ) Time series x(t) Terr Flux (g cm 2 4 2 0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 Time (Ma) Marwan et al. (2009) Recurrence plot Marwan et al. (2009) Complex network Duality ? Analogies Recurrence plot Complex network Recurrence matrix R Adjacency matrix A RQA Network statistics Recurrence network A=R-I Conceptual foundation Equivalence I Phase space Recurrence network State x(i) Vertex i Recurrence ||x(i)-x(j)||< ε Edge (i,j) Phase space (Lorenz) Z 40 20 20 0 −20 0Y X0 20 −20 Donner et al. (2009) Equivalence II Phase space Recurrence network ε - ball sequence Path Phase space (Rössler) Z 20 10 0 10 Y 10 0 −10 −20 −10 0X Donner et al. (2009) Crucial properties • Time ordering is lost - Arbitrary vertex labeling • Strong spacial constraints • Recurrence network reflects attractor geometry Quantifying recurrence networks Degree centrality 40 Z 30 20 10 20 0 !20 X 0.001 0 0 Y 20 !20 0.011 0.021 0.031 Donner et al. (2009) Clustering coefficient 1.00 0.83 40 30 0.65 20 Z Z 30 40 20 0.48 10 10 20 0 ! 20 0.31 0Y X0 20 ! 20 0.13 20 0 ! 20 0 Y X0 20 ! 20 Donner et al. (2009) Scalar measures Recurrence network Phase space Edge density Recurrence rate Clustering Higher order density Average path length Mean separation Applications Logistic map Marwan et al. (2009) 4 Terr Flux (g cm 2 A kyr 1) Terrigenous dust flux B 2 0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 0 0.5 1 1.5 2 2.5 Time (Ma) 3 3.5 4 4.5 8 L 6 4 2 C C 0.8 0.6 0.4 ODP site 659 Marwan et al. (2009) Lessons learned • Clustering coefficient is sensitive to periodicity (longer time scales) • Average path length sensitive to transition periods (shorter time scales) Conclusions & Outlook Advantages of recurrence networks • Method does NOT require equidistant time scale • Applicable to univariate and multivariate time series • Simple significance testing Take home messages • Toolbox of complex network theory available to time series analysis • RNs allow an intuitive and natural interpretation of results • Complementary to established methods of time series analysis (linear, nonlinear, RQA) Related publications N. Marwan, J.F. Donges,Y. Zou, R.V. Donner and J. Kurths, Complex network approach for recurrence analysis of time series (2009), arXiv:0907.3368v1 [nlin.CD], R.V. Donner,Y. Zou, J.F. Donges, N. Marwan and J. Kurths, Recurrence networks - A novel paradigm for nonlinear time series analysis (2009), in preparation. Thank you!
© Copyright 2026 Paperzz