ISBN 3 901 906 xx x IMPROVEMENT TO INDUSTRIAL COLOURDIFFERENCE EVALUATION CIE 14x - 2001 UDC: 159.937.51 535.66 612.843.31 Descriptor: Perception of colour Colours of objects Colour vision THE INTERNATIONAL COMMISSION ON ILLUMINATION The International Commission on Illumination (CIE) is an organisation devoted to international co-operation and exchange of information among its member countries on all matters relating to the art and science of lighting. Its membership consists of the National Committees in 39 countries and one geographical area and of 9 associate members. The objectives of the CIE are : 1. To provide an international forum for the discussion of all matters relating to the science, technology and art in the fields of light and lighting and for the interchange of information in these fields between countries. 2. To develop basic standards and procedures of metrology in the fields of light and lighting. 3. To provide guidance in the application of principles and procedures in the development of international and national standards in the fields of light and lighting. 4. To prepare and publish standards, reports and other publications concerned with all matters relating to the science, technology and art in the fields of light and lighting. 5. To maintain liaison and technical interaction with other international organisations concerned with matters related to the science, technology, standardisation and art in the fields of light and lighting. The work of the CIE is carried on by seven Divisions each with about 20 Technical Committees. This work covers subjects ranging from fundamental matters to all types of lighting applications. The standards and technical reports developed by these international Divisions of the CIE are accepted throughout the world. A plenary session is held every four years at which the work of the Divisions and Technical Committees is reviewed, reported and plans are made for the future. The CIE is recognised as the authority on all aspects of light and lighting. As such it occupies an important position among international organisations. LA COMMISSION INTERNATIONALE DE L'ÉCLAIRAGE La Commission Internationale de l'Éclairage (CIE) est une organisation qui se donne pour but la coopération internationale et l'échange d'informations entre les Pays membres sur toutes les questions relatives à l'art et à la science de l'éclairage. Elle est composée de Comités Nationaux représentant 39 pays plus un territoire géographique, et de 9 membres associés. Les objectifs de la CIE sont : 6. De constituer un centre d'étude international pour toute matière relevant de la science, de la technologie et de l'art de la lumière et de l'éclairage et pour l'échange entre pays d'informations dans ces domaines. 7. D'élaborer des normes et des méthodes de base pour la métrologie dans les domaines de la lumière et de l'éclairage. 8. De donner des directives pour l'application des principes et des méthodes d'élaboration de normes internationales et nationales dans les domaines de la lumière et de l'éclairage. 9. De préparer et publier des normes, rapports et autres textes, concernant toutes matières relatives à la science, la technologie et l'art dans les domaines de la lumière et de l'éclairage. 10. De maintenir une liaison et une collaboration technique avec les autres organisations internationales concernées par des sujets relatifs à la science, la technologie, la normalisation et l'art dans les domaines de la lumière et de l'éclairage. Les travaux de la CIE sont effectués par 7 Divisions, ayant chacune environ 20 Comités Techniques. Les sujets d'études s'étendent des questions fondamentales, à tous les types d'applications de l'éclairage. Les normes et les rapports techniques élaborés par ces Divisions Internationales de la CIE sont reconnus dans le monde entier. Tous les quatre ans, une Session plénière passe en revue le travail des Divisions et des Comités Techniques, en fait rapport et établit les projets de travaux pour l'avenir. La CIE est reconnue comme la plus haute autorité en ce qui concerne tous les aspects de la lumière et de l'éclairage. Elle occupe comme telle une position importante parmi les organisations internationales. DIE INTERNATIONALE BELEUCHTUNGSKOMMISSION Die Internationale Beleuchtungskommission (CIE) ist eine Organisation, die sich der internationalen Zusammenarbeit und dem Austausch von Informationen zwischen ihren Mitgliedsländern bezüglich der Kunst und Wissenschaft der Lichttechnik widmet. Die Mitgliedschaft besteht aus den Nationalen Komitees in 39 Ländern und einem geographischen Gebiet und aus 9 assoziierten Mitgliedern. Die Ziele der CIE sind : 11. Ein internationaler Mittelpunkt für Diskussionen aller Fragen auf dem Gebiet der Wissenschaft, Technik und Kunst der Lichttechnik und für den Informationsaustausch auf diesen Gebieten zwischen den einzelnen Ländern zu sein. 12. Grundnormen und Verfahren der Meßtechnik auf dem Gebiet der Lichttechnik zu entwickeln. 13. Richtlinien für die Anwendung von Prinzipien und Vorgängen in der Entwicklung internationaler und nationaler Normen auf dem Gebiet der Lichttechnik zu erstellen. 14. Normen, Berichte und andere Publikationen zu erstellen und zu veröffentlichen, die alle Fragen auf dem Gebiet der Wissenschaft, Technik und Kunst der Lichttechnik betreffen. 15. Liaison und technische Zusammenarbeit mit anderen internationalen Organisationen zu unterhalten, die mit Fragen der Wissenschaft, Technik, Normung und Kunst auf dem Gebiet der Lichttechnik zu tun haben. Die Arbeit der CIE wird in 7 Divisionen, jede mit etwa 20 Technischen Komitees, geleistet. Diese Arbeit betrifft Gebiete mit grundlegendem Inhalt bis zu allen Arten der Lichtanwendung. Die Normen und Technischen Berichte, die von diesen international zusammengesetzten Divisionen ausgearbeitet werden, sind von der ganzen Welt anerkannt. Tagungen werden alle vier Jahre abgehalten, in der die Arbeiten der Divisionen überprüft und berichtet und neue Pläne für die Zukunft ausgearbeitet werden. Die CIE wird als höchste Autorität für alle Aspekte des Lichtes und der Beleuchtung angesehen. Auf diese Weise unterhält sie eine bedeutende Stellung unter den internationalen Organisationen. Published by the CIE 2001 COMMISSION INTERNATIONALE DE L'ECLAIRAGE CIE Central Bureau Kegelgasse 27, A-1030 Vienna, AUSTRIA Tel: +43(01)714 31 87 0, Fax: +43(01)713 08 38 18 e-mail: [email protected] WWW: http://www.cie.co.at/cie/ ISBN 3 901 906 xx x IMPROVEMENT TO INDUSTRIAL COLOURDIFFERENCE EVALUATION CIE 14x - 2001 UDC: 159.937.51 535.66 612.843.31 Descriptor: Perception of colour Colours of objects Colour vision CIE 14x - 2001 This Technical Report has been prepared by CIE Technical Committee 1-47 of Division 1 “Vision and Colour” and has been approved by the Board of Administration of the Commission Internationale de l'Eclairage for study and application. The document reports on current knowledge and experience within the specific field of light and lighting described, and is intended to be used by the CIE membership and other interested parties. It should be noted, however, that the status of this document is advisory and not mandatory. The latest CIE proceedings or CIE NEWS should be consulted regarding possible subsequent amendments. Ce rapport technique a été préparé par le Comité Technique CIE 1-47 de la Division 1 “Vision et Couleur” et a été approuvé par le Bureau d'Administration de la Commission Internationale de l'Eclairage, pour étude et application. Le document traite des connaissances courantes et de l'expérience dans le domaine spécifique indiqué de la lumière et de l'éclairage, et il est établi pour l'usage des membres de la CIE et autres groupements intéressés. Il faut cependant noter que ce document est indicatif et non obligatoire. Pour connaître d'éventuels amendements, consulter les plus récents comptes rendus de la CIE ou le CIE NEWS. Dieser Technische Bericht ist vom CIE Technischen Komitee 1-47 der Division 1 “Sehen und Farbe” ausgearbeitet und vom Vorstand der Commission Internationale de l'Eclairage gebilligt worden. Das Dokument berichtet über den derzeitigen Stand des Wissens und Erfahrung in dem behandelten Gebiet von Licht und Beleuchtung; es ist zur Verwendung durch CIEMitglieder und durch andere Interessierte bestimmt. Es sollte jedoch beachtet werden, daß das Dokument eine Empfehlung und keine Vorschrift ist. Die neuesten CIE-Tagungsberichte oder das CIE NEWS sollten im Hinblick auf mögliche spätere Änderungen zu Rate gezogen werden. Any mention of organisations or products does not imply endorsement by the CIE. Whilst every care has been taken in the compilation of any lists, up to the time of going to press, these may not be comprehensive. Toute mention d'organisme ou de produit n'implique pas une préférence de la CIE. Malgré le soin apporté à la compilation de tous les documents jusqu'à la mise sous presse, ce travail ne saurait être exhaustif. Die Erwähnung von Organisationen oder Erzeugnissen bedeutet keine Billigung durch die CIE. Obgleich große Sorgfalt bei der Erstellung von Verzeichnissen bis zum Zeitpunkt der Drucklegung angewendet wurde, ist es möglich, daß diese nicht vollständig sind. CIE 2001 II CIE 14x - 2001 The following members of TC 1-47 Hue and Lightness-Dependent Correction to Industrial Colour-Difference Evaluation took part in the preparation of this technical report. TC 1-47 comes under CIE Division 1 Colour and Vision. Members: D. H. Alman (chairman) US R. S. Berns US H. Komatsubara JP W. Li CH M. R. Luo GB M. Melgosa ES J. H. Nobbs GB B. Rigg GB A. R. Robertson CA K. Witt DE Adviser: G. Cui GB III CIE 14x - 2001 Table of contents SUMMARY V RÉSUMÉ V ZUSAMMENFASSUNG V 1. INTRODUCTION 1 2. RECOMMENDED PRACTICE FOR INDUSTRIAL COLOUR-DIFFERENCE EVALUATION 1 2.1 Scope 2 2.2 Reference conditions 2 2.2.1 Note. 2.3 Modification of the a* (red-green opponent) axis 2.3.1 Note 2.4 Total colour-difference 2.4.1 Note 2.5 Colour-difference components 2 2 3 3 3 4 2.5.1 Note 4 2.5.2 Note 4 2.6 Weighting functions 4 2.6.1 Note 5 2.6.2 Note 5 2.7 Rotation function 5 2.8 Parametric factors 5 2.8.1 Note 5 2.9 Nomenclature 6 2.10 Development 6 2.11 Future work 6 3. REFERENCES 7 4. APPENDIX: WORKED EXAMPLES 9 IV CIE 14x - 2001 IMPROVEMENT TO INDUSTRIAL COLOUR-DIFFERENCE EVALUATION SUMMARY Recommended practice for industrial colour-difference evaluation is presented. The recommended model is an extension of the CIE 1976 (L*a*b*) colour-difference model with corrections for variation in colour-difference perception dependent on lightness, chroma, hue and chroma-hue interaction. The corrections for the chroma dependence of chroma and hue differences in the CIE94 model have been retained and supplemented by several additional corrections based on new experimental data and analysis. Reference conditions define material and viewing environment characteristics to which the colour-difference model applies. Factors are introduced to correct for the parametric effects of various conditions of use. EVALUATION AMELIOREE DES DIFFERENCES DE COULEUR RÉSUMÉ Le document recommande une méthode pour l'évaluation des différences de couleur. Le modèle est destiné à l'industrie et repose sur la formule de différence de couleur CIE 1976 (L*a*b*) à la-quelle on ajoute des corrections tenant compte des effets de la clarté, du chroma, de la tonalité et de l'interactions tonalité-chroma sur la perception des différences de couleur. On retient les corrections du modèle CIE94 pour l’effet du chroma sur les différences de chroma et de tonalité, complétées de corrections additionnelles établies par l’analyse de nouvelles données expérimentales. Des conditions de base définissent les caractéristiques des matériaux et les modalités d'observation pour les-quelles le modèle s'applique. Des paramètres du modèle corrigent les effets résultant de conditions d'emploi différentes. VERBESSERTE INDUSTRIELLE FARBABSTANDSBEWERTUNG ZUSAMMENFASSUNG Empfehlungen zur Praxis der industriellen Farbabstandsbewertung werden gegeben. Das empfohlene Modell stellt eine Erweiterung des L*,a*,b*-Farbenraums CIE 1976 dar mit Korrekturen für Abweichungen in der Farbunterschiedsempfindung von berechneten Formelwerten bezogen auf die Beiträge der Helligkeit, der Buntheit, des Bunttones und der Wechselwirkung zwischen Buntheit und Buntton. Bezugsbedingungen legen Material und Gestaltung der Sehaufgabe fest, für die das Farbabstandsmodell gilt. Faktoren sind eingeführt, um parametrische Effekte bei verschiedenen Gebrauchsbedingungen zu korrigieren. V CIE 14x - 2001 VI CIE 14x - 2001 1. INTRODUCTION CIE has carried out a long-term program of periodic improvement of colour-difference evaluation and coordination of colour-difference research. In 1976 CIELAB and CIELUV were chosen as uniform colour spaces with associated colour-difference components and total colour-difference equations (CIE, 1986). At that time colour-difference research had emphasized development of uniform colour spaces representing equality of visual colourdifference distances. CIELAB and CIELUV were selected from many uniform colour spaces then in use to promote standardization in colour-using industries. One of these spaces (CIELUV) provides a chromaticity diagram, which was judged to be advantageous for some colour industries. Recognizing that further improvement was desirable, a set of guidelines for coordinated research in colour differences was reported (Robertson, 1978). Colour materials industries (textiles, paint, plastics, etc.) tended to adopt CIELAB and found significant evidence of non-uniformity of this colour space. McLaren introduced and McDonald further developed the idea of empirically correcting an approximate uniform colour space to improve the association between visual and numerical colour difference (McLaren 1972, McDonald 1980a, 1980b, 1980c). The corrections generally are related to the location of a colour-difference pair in the colour space and the direction of difference between the colourdifference pair. This has led to the development of many CIELAB-based colour-difference models with a variety of empirical corrections fitted to specific sets of visual colour-difference data. Among these the CMC model has been widely adopted by the textile industry (Clarke 1984). CIE TC1-28 Parameters Affecting Colour-Difference Evaluation recognized that the variation among uniform-colour-space models and empirically corrected CIELAB models was largely due to the influence of experimental observation and material variables on the visual colour-difference perception experiments (CIE, 1993). These additional experimental variables have parametric effects that influence the visual colour-difference results. TC1-28 introduced a set of reference conditions for colour-difference experiments. Experiment conditions other than the reference conditions could have parametric effects on the results, which could be characterized by parametric factors to correct for the effects. CIE TC1-29 Industrial Colour-Difference Evaluation developed a CIE94 total colourdifference model based on the CIELAB space (CIE, 1995). Correction for non-uniformity of CIELAB space was incorporated through sensitivity functions that could correct the lightness, chroma and hue differences for non-uniformity of CIELAB. TC1-29 took a conservative approach to these sensitivity functions by including only corrections for those non-uniformity effects that could be reliably estimated from several visual colour-difference experimental data sets. Parametric factors and reference conditions were incorporated in the CIE94 colourdifference evaluation report. Again recognizing the need for further improvement, new guidelines for coordinated colour-difference research were reported (CIE, 1995, Witt, 1996). Several researchers responded with new experiments on hue-dependence of colour difference culminating in a topical symposium (CIE, 1997). A new CIE technical committee was proposed with the goal to improve colour-difference evaluation by including a hue effect correction using these new and existing data. CIE TC1-47 Hue and Lightness-Dependent Correction to Industrial Colour-Difference Evaluation was formed to carry out a working program to improve industrial colour-difference evaluation through empirical corrections to a CIELAB approximate uniform colour space. 2. RECOMMENDED PRACTICE FOR INDUSTRIAL COLOUR-DIFFERENCE EVALUATION Improvements to the calculation of total colour difference for industrial colour-difference evaluation are made through corrections for the effects of lightness dependence, chroma dependence, hue dependence, and hue-chroma interaction on perceived colour difference. A set of reference conditions is defined under which the recommended model is expected to perform well. When conditions of use deviate appreciably from the reference conditions the introduction of parametric factors may be used to correct for the effects of experimental or material variables. 1 CIE 14x - 2001 The method described in this report is recommended as a replacement for total colour-difference calculations using the CIE 1976 L*a*b* formula, the CIE 1976 L*u*v* formula, and the CIE 1994 formula. A period of use, testing and reporting by the user community will precede a determination on whether to make the new method a CIE standard. 2.1 Scope The recommended colour-difference model is intended to represent a numerical scale of colour difference between pairs of colour samples defined by their tristimulus values. The calculated colour difference is associated with the perceived visual magnitude of colour difference between pairs of samples. The data on which the model is based were primarily taken from experiments on object colours with colour differences from threshold through the range of colour differences observed in the manufacture of coloured materials. Large colour differences of the size observed between samples in colour order systems were not considered. The model is expected to perform best under conditions corresponding to a set of reference conditions, which describe common experimental and material conditions for the available data. As the conditions of use increasingly deviate from the reference conditions users should expect decreasing association with visual colour-difference estimates. The effect of deviations from the reference conditions may be corrected through parametric factors when sufficient information is available to estimate the effect of an experimental variable. 2.2 Reference conditions Reference conditions describe a set of experimental and material variables that are typical of the conditions used in developing visual colour-difference data sets for object colours. The reference conditions may not have been universally employed in all data sets used by CIE TC1-47 in developing and testing the recommended model but they represent common levels of the experimental variables. The reference conditions are: Illumination: source simulating the spectral relative irradiance of CIE Standard Illuminant D65. Illuminance: 1000 lx. Observer: normal colour vision. Background field: uniform, neutral gray with L* = 50. Viewing mode: object. Sample size: greater than 4 degrees subtended visual angle. Sample separation: minimum sample separation achieved by placing the sample pair in direct edge contact. Sample colour-difference magnitude: 0 to 5 CIELAB units. Sample structure: homogeneous colour without visually apparent pattern or nonuniformity. 2.2.1 Note. Deviations from the reference conditions can affect the performance of the colour-difference model. Changes in viewing and illuminating conditions affect the validity of CIELAB as a colour space and further necessitate the definition of parametric factors. Changes in the source correlated colour temperature from 6500 K affect the accuracy of the chromatic adaptation transformation embedded in CIELAB, i. e. X/Xn, Y/Yn, and Z/Zn. Illuminance levels much lower than 1000 lux result in reduced discrimination. With an increase in the angle subtended by the colour-difference pair, the influence of background lightness on colour discrimination decreases. 2.3 Modification of the a* (red-green opponent) axis The CIE 1976 (L*a*b*) colour space (CIE, 1986) is retained as an approximate uniform colour space representing perceptual colour magnitudes in terms of opponent colour scales with a 2 CIE 14x - 2001 localized modification to the a* (red-green opponent) axis. This modification was made to improve agreement with visual colour-difference-perception for neutral colours. The modification increases the magnitudes of a’ values compared to a* values for colours at low chroma. At higher chroma the modified a’ value approaches the conventional a* value. Quantities L’ and b’ are defined as equal to L* and b* respectively. Primed quantities in this report refer to quantities derived from L’, a’, b’ coordinates. L’ = L * a’ = a * (1 + G ) b’ = b * (2.1) 0,5 7 C * ab G = 0,5 1 − C * ab 7 + 257 (2.2) In Equation 2.2 the CIE 1976 a*, b* chroma value is the mean of the CIE 1976 a*, b* chroma values for each sample of a colour-difference pair. In this report quantities with a bar over the symbol indicate the arithmetic mean of the values for the colour-difference pair samples. Modified chroma (C’ ) and hue angle (h’ ) are calculated using the a’, b’ coordinate values when they are used in colour-difference calculations. Hue-angle values are in degree units. ( ) (2.3) b’ h’ = tan −1 a’ (2.4) C ’ = a’2 + b’2 0,5 2.3.1 Note The L’, a’, b’ values are used only for the calculation of colour difference and should not be used as an alternative uniform colour space. When reporting CIE 1976 colour space coordinates use L*, a*, b* values. When reporting perceptual correlates of lightness, chroma and hue use CIE 1976 lightness, CIE 1976 a, b chroma and CIE 1976 a, b hue angle calculated without the a’ modification. 2.4 Total colour-difference A perceived visual colour-difference magnitude, (00, through an overall sensitivity factor, kE. 9 , is related to the total colour difference, ∆V = k E−1∆E 00 (2.5) The total colour-difference between two colour samples with lightness, chroma and hue differences, /¶, &¶, +¶, with weighting functions, SL, SC, SH, parametric factors, kL, kC, kH and rotation function RT is determined by Equation 2.6. ∆E 00 ∆L’ = k L S L 2 ∆C ’ + k CSC 2 ∆H ’ + k HSH 2 ∆C ’ + RT k C SC ∆H ’ k H S H 0,5 (2.6) 2.4.1 Note The use of an overall sensitivity factor, kE, and parametric factors, kL, kC, kH, to weight a CIELAB /, &ab, +ab colour difference was introduced by CIE TC1-28 Parameters Affecting Colour-difference Evaluation (CIE, 1993). The overall sensitivity factor, kE, may be used to account for variation in overall perceptual sensitivity under a given set of experimental conditions. In general industrial 3 CIE 14x - 2001 practice this is not necessary. The total colour difference is usually used as the correlate of perceived colour difference. The overall sensitivity is not intended to be used as a commercial colour-difference tolerance factor. The setting of an allowable commercial colour tolerance is a separate issue from the adjustment for variation in overall visual sensitivity to colour differences. 2.5 Colour-difference components The CIEDE2000 lightness, chroma and hue rectangular colour-difference components between two colour samples are computed by Equations 2.7 through 2.9. Equation 2.9 is a direct calculation of hue difference that does not require a conditional statement for sign (Sève, 1991). Subscripts s and b refer to standard and batch of a colour-difference pair. ∆L’ = L’b −L’s (2.7) ∆C ’ = C ’b −C ’s (2.8) ∆h’ ∆H ’ = 2(C ’b C ’s )0,5 sin 2 (2.9) ∆h’ = h’b −h’s where (2.10) 2.5.1 Note Take care calculating the hue-angle difference in Equation 2.10 if the colour-difference pair has samples in different quadrants. For example, a colour-difference pair has hue angles of 30 (standard) and 300 (batch) degrees. The simple difference, 270, gives an incorrect sign in Equation 2.9. To determine the hue-angle difference correctly, calculate the absolute difference of the hue angles. If the absolute difference is larger than 180 then add 360 to the smaller hue angle before taking the difference. 2.5.2 Note Users must explicitly report the colour-difference components. There are three alternatives; 1, report the CIE1976 colour-difference component ∆L*, ∆C*, ∆H* values; 2, report CIEDE2000 colour-difference component ∆L’, ∆C’ ∆H’ values; or 3, report the weighted CIEDE2000 colour-difference components as the CIEDE2000 colour-difference components divided by the product of their parametric factors and weighting functions. 2.6 Weighting functions Weighting functions, SL, SC, SH adjust the total colour-difference equation for variation in perceived colour-difference magnitude with variation in the location of the colour-difference pair in L’, a’, b’ coordinates. The weighting functions account for variation in visual colourdifference sensitivity with lightness, chroma, and hue angle. Equations 2.11 through 2.14 represent best estimates obtained by fitting visual colour-difference perception data sets. SL = 1 + ( 0,015 L’−50 ( ) ) 2 20 + L’−50 2 (2.11) 0,5 S C = 1 + 0,045C ’ (2.12) SH = 1 + 0,015C’T (2.13) ( ) ( ) ( ) ( T = 1 − 0,17 cos h’−30 + 0,24 cos 2h’ + 0,32 cos 3h’+6 − 0,20 cos 4h’−63 4 ) (2.14) CIE 14x - 2001 2.6.1 Note Take care calculating the mean hue-angle if the colour-difference pair has samples in different quadrants. For example, a colour-difference pair has hue angles of 30 and 300 degrees. The simple mean, 165, is incorrect. To determine the mean correctly, calculate the absolute difference of the hue angles. If the absolute difference is larger than 180 then add 360 to the smaller hue angle before taking the mean. 2.6.2 Note The L’ , C ’ , h’ values for calculation of weighting functions are taken as the arithmetic mean of the corresponding values of the colour-difference pair. There are two consequences of this definition. First, total colour-difference is reversible, that is, the total colour-difference between a pair is the same whether the first or second sample is used as the standard for calculation of colour-difference components. Second, the locus of points of equal total colour-difference from a standard is not an exact ellipsoid and is not exactly centered on the standard. 2.7 Rotation function Visual colour-difference perception data show an interaction between chroma difference and hue difference in the blue region. The interaction results in a significant tilt of the major axis of the colour-difference ellipse. The ellipse tilt is in the counter-clockwise direction and away from the direction of constant hue angle. To account for this effect, a rotation function is applied to weighted hue and chroma differences. The rotation function has a significant effect only for the blue high chroma region of the a’, b’ plane. RT = − sin(2∆Θ )RC (2.15) h’−275 2 ∆Θ = 30 exp − 25 (2.16) C ’7 RC = 2 7 7 C ’ +25 0,5 (2.17) Mean hue angle and delta theta are in degree units. 2.8 Parametric factors Parametric factors, kL, kC, kH, are correction terms for variation in perceived colour-difference component sensitivity with variation in experimental conditions. Under the reference conditions the parametric factors have assigned values of unity and do not affect the total colour difference. kL= kC= kH =1 for reference conditions (2.18) The parametric factors provide a method to correct for deviation in experimental conditions from the defined reference conditions. Users are cautioned against indiscriminate use of these parametric factors without thorough experimental validation. Industry groups may define parametric factors to correspond to typical experimental conditions for that industry. 2.8.1 Note In the textile industry it is common practice to set the lightness parametric factor to 2. kL=2 kC= kH =1 (2.19) However, the experimental conditions leading to this parametric correction to lightnessdifference sensitivity are not yet well understood. 5 CIE 14x - 2001 2.9 Nomenclature The complete colour-difference model for industrial colour-difference evaluation is termed the &¶ +¶ ) colour-difference model with symbol, (00, and abbreviation CIE 2000 ( /¶ CIEDE2000. When parametric factors other than one are used, the factors should be explicitly stated in brackets, (kL: kC: kH), after the symbol or abbreviation. For example, CIEDE2000 (2: 1: 1) with symbol (00 (2: 1: 1) might be used in a textile application. Alternatively the parametric factors may be explicitly defined in documentation accompanying the application of the model. 2.10 Development CIE TC1-47 developed CIEDE2000 through a three-stage working program. In the first stage existing colour-difference perception data sets were compiled into a database for use in building and testing colour-difference models. The data sets included several large studies of object colour-difference perception under conditions more or less similar to the reference conditions (Luo, 1986, Berns, 1991, Kim, 1997, Witt, 1999). The database is available to colour-difference researchers on the internet at http://cie.kee.hu/newcie. In the second stage of the working program, members of TC1-47 investigated the non-uniformity of the CIELAB space and developed empirical corrections to improve agreement between perceived visual colour difference and numerical colour difference. In some cases these investigations used additional existing or newly developed visual experimental data to more precisely characterize specific non-uniformity effects. The chromadependent corrections to chroma difference and hue difference developed by TC1-29 in CIE94 were retained. Berns developed a correction for hue-dependence of hue difference (Berns, 2000) based on several data sets (Witt 1983, 1987; Luo, 1986; Berns 1991; Qiao, 1998). A continuous function of hue angle with three maxima and three minima is the best fit for the data. Nobbs investigated the lightness dependence of lightness difference and found that for most data sets the lightness weighting function is a minimum near a lightness value of 50 and slopes upwards toward both lower and higher lightness values (Nobbs, 1999). Nobbs and co-workers then carried out new experimental investigations of lightness difference sensitivity under several parametric observation and material conditions to develop a lightness correction as a function of lightness (Nobbs, 2000, Chou, 2000). Luo and colleagues investigated two localized non-uniformities: the rotation of the major axis of colour-difference ellipses in the blue region from the direction of constant hue angle and non-uniformity of ellipses for neutral colours. Their investigations led to development of a rotation function that involves an interaction of hue and chroma differences and a rescaling of the red-green opponent axis (Luo, 2000a, Luo, 2000c). All of the corrections were combined into a complete total colour-difference model and this was tested using the TC1-47 database. Performance of CIEDE2000 was compared to colour-difference models including CIELAB, CIE94 and CMC. Luo has reported on these comparisons and the development of the CIEDE2000 equations (Luo, 2000c). In the final stage of the working program tests of statistical significance were used to verify the performance improvements in CIEDE2000 (Alman, 2000, Luo, 2000b, Rigg, 2000). The lightness, chroma and hue weighting functions, the rotation term, and the red-green opponent axis rescaling corrections were significant at the 99% confidence level for the combined visual experimental data. The hue angle-dependent correction was significant at the 95% confidence level for a subset of the visual data in which hue difference was the major component of the total colour difference. A second significance test compared CIEDE2000, CIELAB, CIE94 and CMC performance and found that CIEDE2000 was a significant improvement at the 99% confidence level. 2.11 Future work CIE has published “CIE Guidelines for Coordinated Future Work on Industrial ColourDifference Evaluation” (CIE, 1995, Witt, 1996). These guidelines recommend development objectives, reference conditions, test colours and data reporting formats to be used in 6 CIE 14x - 2001 coordinating colour-difference research programs with the CIE program in industrial colourdifference evaluation standardization. A new objective is to test the performance of the CIEDE2000 industrial colourdifference evaluation model. There is no CIE colour-difference reporter at this time. Researchers who wish to contribute reports pertaining to the objectives of the CIE program in industrial colour-difference evaluation should send them to the CIE Central Bureau (Kegelgasse 27, A - 1030 Vienna, Austria). TC1-47 believes it likely that significant future improvement of industrial colourdifference evaluation will require a colour space with improved uniformity compared to CIELAB. CIE has established a new technical committee, TC1-55 Uniform Colour Space for Industrial Colour-Difference Evaluation, to carry out this work. 3. REFERENCES Alman, DH (2000). Performance Comparison for Full and Reduced Color-Difference Models, unpublished CIE TC1-47 report. Berns, RS - Alman, DH - Reniff, L - Snyder, GD - Balonon-Rosen, MR (1991). Visual Determination of Suprathreshold Color-Difference Tolerances Using Probit Analysis, Color Res Appl, 16, 297-316. Berns, RS (2000). Derivation of a hue-angle dependent, hue-difference weighting function for CIEDE2000, submitted to the AIC Color 01 Rochester conference. Chou, W - Lin, H - Luo, MR - Westland, S - Rigg, B - Nobbs, J (2000). The Performance of Lightness Difference Formulae, submitted to J Soc Dyers Col. CIE 15.2 - 1986. Colorimetry. CIE 101 - 1993. Parametric Effects in Colour-Difference Evaluation. CIE 116 - 1995. Industrial Colour-Difference Evaluation. CIE. 118/7 - 1995, CIE Collection in Colour and Vision. CIE Guidelines for Co-Ordinated Future Work on Industrial Colour-Difference Evaluation (Witt, K) CIE 124/3 - 1997. CIE Collection in Colour and Vision: Next step in industrial colour difference evaluation, Report on a colour-difference research meeting (Alessi, P). Clarke, FJJ - McDonald, R - Rigg, B (1984). Modification to the JPC79 colour-difference formula, J Soc Dyers Col. 100, 128-132 and 281-282. Kim, DH - Nobbs, J (1997). New weighting functions for the weighted CIELAB colour difference formula, Proc Colour 97 Kyoto, 1, 446-449. Luo, MR - Rigg, B (1986). Chromaticity-Discrimination Ellipses for Surface Colours, Color Res Appl, 11, 25-42. Luo, MR - Cui, G - Rigg, B (2000a). Derivation of a Rotation Function for the New CIE Colour Difference Formula, unpublished CIE TC1-47 report. Luo, MR - Cui, G - Rigg, B (2000b). Performance of the CIE2000 Colour Difference Equation Statistical Significance of the New Terms, unpublished CIE TC1-47 report. Luo, MR - Cui, G - Rigg, B (2000c). The Development of the CIE 2000 Colour Difference Formula: CIEDE2000, submitted to Color Res Appl. McDonald, R (1980a). Industrial pass/fail colour matching. Part I - Preparation of visual colour matching data, J Soc Dyers Col, 96, 372-376. McDonald, R (1980b). Industrial pass/fail colour matching. Part II - Methods of fitting tolerance ellipsoids, J Soc Dyers Col, 96, 418-433. McDonald, R (1980c). Industrial pass/fail colour matching. Part III - Development of a pass/fail formula for use with instrumental measurement of colour difference, J Soc Dyers Col , 96, 486-496. 7 CIE 14x - 2001 McLaren, K (1972). Multiple linear regression: A new technique for improving colour difference formulae, Soesterberg, Colour Metrics, AIC/Holland, 296-307. Nobbs, JH (1999). Lightness difference weighting term SL, unpublished CIE TC1-47 report. Nobbs, JH (2000). Private communication. Qiao, Y - Berns, RS - Reniff, L - Montag, E (1998). Visual determination of hue suprathreshold color-difference tolerances, Color Res Appl, 23, 302-313. Rigg, B - Cui, G - Luo, MR (2000). Statistical Significance Tests of the New T Function, unpublished CIE TC1-47 report. Robertson, AR (1978). CIE guidelines for coordinated research on color-difference evaluation, Color Res Appl, 3, 149-151. Sève, R (1991). New Formula for the Computation of CIE 1976 Hue Difference, Color Res Appl, 16, 217-218. Witt, K - Döring, G (1983). Parametric variations in threshold color-difference ellipsoid for green painted samples, Color Res Appl, 8, 153-163. Witt, K (1987). Three-dimensional threshold color-difference perceptibility in painted samples: variability of observers in four CIE color regions, Color Res Appl, 12, 128-134. Witt, K (1996). CIE Guidelines for Coordinated Future Work on Industrial Colour-Difference Evaluation, Color Res Appl, 20, 399-403. Witt, K (1999). Geometric Relations between Scales of Small Colour Differences, Color Res Appl, 24, 78-92. 8 CIE 14x - 2001 4. APPENDIX: WORKED EXAMPLES Tables 4.1 and 4.2 provide data for confirmation of software implementation of CIEDE2000. Most data are given to 0,0001 resolution to check the numerical accuracy of the calculations. This does not imply that colour-difference calculations should be reported to 0,0001 resolution. Consideration of the uncertainty of colour measurement suggests that 0,1 or 0,01 resolution is appropriate for colour-difference reports. The data for these tables are taken from Luo, 2000c pending permission of John Wiley and Sons. Table 4.1 Colour-difference pair data. Note: Illuminant D65, 1964 standard observer, X0 = 94,811; Y0 = 100,000; Z0 = 107,304. Pair 1 2 3 4 5 6 7 8 9 10 X Y Z L’ a’ b’ C’ h’ 19,4100 28,4100 11,5766 60,2574 -34,0678 36,2677 49,7590 133,21 19,5525 28,6400 10,5791 60,4626 -34,2333 39,4387 52,2238 130,96 22,4800 31,6000 38,4800 63,0109 -32,6195 -5,8663 33,1428 190,20 22,5833 31,3700 36,7901 62,8187 -31,2542 -4,0864 31,5202 187,45 28,9950 29,5800 35,7500 61,2901 5,5669 -5,3901 7,7488 315,92 28,7704 29,7400 35,6045 61,4292 3,3643 -4,9620 5,9950 304,14 4,1400 8,5400 8,0300 35,0831 -44,3939 3,7933 44,5557 175,12 4,4129 8,5100 8,6453 35,0232 -40,3237 1,5901 40,3550 177,74 4,9600 3,7200 19,5900 22,7233 20,1424 -46,6940 50,8532 293,33 4,6651 3,8100 17,7848 23,0331 15,0118 -42,5619 45,1317 289,43 15,6000 9,2500 5,0200 36,4612 47,9197 18,3852 51,3256 20,99 15,9148 9,1500 4,3872 36,2715 50,5717 21,2231 54,8444 22,77 73,0000 78,0500 81,8000 90,8027 -3,1244 1,4410 3,4407 155,24 73,9351 78,8200 84,5156 91,1528 -2,4651 0,0447 2,4655 178,96 73,9950 78,3200 85,3060 90,9257 -0,8108 -0,9208 1,2269 228,63 69,1762 73,4000 79,7130 88,6381 -1,3477 -0,7239 1,5298 208,24 0,7040 0,7500 0,9720 6,7747 -0,4362 -2,4247 2,4636 259,80 0,613873 0,650000 0,851025 5,8714 -0,1477 -2,2286 2,2335 266,21 0,3250 2,0776 0,1192 -1,1350 1,1412 275,99 0,093262 0,100000 0,145292 0,9033 -0,0954 -0,5514 0,5595 260,18 0,2200 0,2300 9 CIE 14x - 2001 Table 4.2 CIEDE2000 total colour difference and intermediate calculated values for the colourdifference pair data of table 4.1. Note: kL = kC = kH = 1. Pair G T SL SC SH RT ∆E00 1 0,0017 1,3010 1,1427 3,2946 1,9951 0,0000 1,2644 2 0,0490 0,9402 1,1831 2,4549 1,4560 0,0000 1,2630 3 0,4966 0,6952 1,1586 1,3092 1,0717 -0,0032 1,8731 4 0,0063 1,0168 1,2148 2,9105 1,6476 0,0000 1,8645 5 0,0026 0,3636 1,4014 3,1597 1,2617 -1,2537 2,0373 6 0,0013 0,9239 1,1943 3,3888 1,7357 0,0000 1,4146 7 0,4999 1,1546 1,6110 1,1329 1,0511 0,0000 1,4440 8 0,5000 1,3916 1,5930 1,0620 1,0288 0,0000 1,5381 9 0,4999 0,9556 1,6517 1,1057 1,0337 -0,0004 0,6378 10 0,5000 0,7827 1,7246 1,0383 1,0100 0,0000 0,9082 10 CIE 14x - 2001 CIE PUBLICATIONS Recommendations Standards 2.2 Colours of light signals, 2nd ed., 1975. 17.4 International lighting vocabulary, 4th ed. (Joint publication IEC/CIE), 1987. 23 International recommendations for motorway lighting, 1973. 39.2 Recommendations for surface colours for visual signalling, 2nd ed., 1983. ISO 10526/CIE S005 CIE standard illuminants for colorimetry, 1999. ISO/CIE 10527 Colorimetric observers, 1991 (S002, 1986). CIE S003-1996 Spatial distribution of Daylight — CIE standard overcast sky and clear sky, 1996. CIE DS004.4-1998 Colours of light signals (Draft standard), 1998. ISO 16508/CIE S006 Road traffic light — 200 mm roundel signals photometric properties, 1999. ISO 17166/CIE S007 Erythema reference action spectrum and standard erythema dose, 1998. DS008.2-2000 Lighting of indoor work places, 2000. DS009.1-2000 Photobiological safety of lamps and lamp systems, 2000. Technical Committee Reports 1 Guide lines for minimising urban sky glow near astronomical observatories (Joint publication IAU/CIE), 1980. 13.3 Method of measuring and specifying colour rendering of light sources, 1995. 15.2 Colorimetry, 2nd ed., 1986. 16 Daylight, 1972. 18.2 The basis of physical photometry, 2nd ed., 1983. 19.21 An analytic model for describing the influence of lighting parameters upon visual performance, 2nd ed., Vol.1.: Technical foundations, 1981. 19.22 An analytic model for describing the influence of lighting parameters upon visual performance, 2nd ed., Vol.2.: Summary and application guidelines, 1981. 22 Standardization of luminance distribution on clear skies, 1972. 29.2 Guide on interior lighting, 2nd ed., 1986. 30.2 Calculation and measurement of luminance and illuminance in road lighting, 2nd ed., 1982. 31 Glare and uniformity in road lighting installations, 1976. 32 Lighting in situations requiring special treatment (in road lighting), 1977. 33 Depreciation of installation and their maintenance (in road lighting), 1977. 34 Road lighting lantern and installation data: photometrics, classification and performance, 1977. 38 Radiometric and photometric characteristics of materials and their measurement, 1977. 40 Calculations for interior lighting: Basic method, 1978. 41 Light as a true visual quantity: Principles of measurement, 1978. 42 Lighting for tennis, 1978. 43 Photometry of floodlights, 1979. 44 Absolute methods for reflection measurements, 1979. 45 Lighting for ice sports, 1979. 46 A review of publications on properties and reflection values of material reflection standards, 1979. 47 Road lighting for wet conditions, 1979. 48 Light signals for road traffic control, 1980. 49 Guide on the emergency lighting of building interiors, 1981. 51.2 A method for assessing the quality of daylight simulators for colorimetry, 1981. 52 Calculations for interior lighting: Applied method, 1982. 53 Methods of characterising the performance of radiometers and photometers, 1982. 54 55 57 58 59 60 61 62 63 64 65 66 67 69 70 72 73 74 75 76 77 78 79 80 81 82 83 Retroreflection: Definition and measurement, 1982. Discomfort glare in the interior working environment, 1983. Lighting for football, 1983. Lighting for sports halls, 1983. Polarisation: Definitions and nomenclature, instrument polarisation, 1984. Vision and the visual display unit work station, 1984. Tunnel entrance lighting: A survey of fundamentals for determining the luminance in the threshold zone, 1984. Lighting for swimming pools, 1984. The spectroradiometric measurement of light sources, 1984. Determination of the spectral responsivity of optical radiation detectors, 1984. Electrically calibrated thermal detectors of optical radiation (absolute radiometers), 1985. Road surfaces and lighting (joint technical report CIE/PIARC), 1984. Guide for the photometric specification and measurement of sports lighting installations, 1986. Methods of characterising illuminance meters and luminance meters: Performance, characteristics and specifications, 1987. The measurement of absolute luminous intensity distributions, 1987. Guide to the properties and uses of retroreflectors at night, 1987. Visual aspects of road markings (joint technical report CIE/PIARC; French translation: Aspects visuels des marquages routiers is available from PIARC), 1988. Roadsigns, 1988. Spectral luminous efficiency functions based upon brightness matching for monochromatic point sources, 2° and 10° fields, 1988. Intercomparison on measurement of (total) spectral radiance factor of luminescent specimens, 1988. Electric light sources: State of the art 1987, 1988. Brightness-luminance relations: Classified bibliography, 1988. A guide for the design of road traffic lights, 1988. Special metamerism index: Change in observer, 1989. Mesopic photometry: History, special problems and practical solutions, 1989. CIE History 1913 - 1988, 1990. Guide for the lighting of sports events for colour television and film systems, 1989. 11 CIE 14x - 2001 84 85 86 87 88 89 90 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 12 Measurement of luminous flux, 1989. Solar spectral irradiance, 1989. CIE 1988 2° spectral luminous efficiency function for photopic vision, 1990. Colorimetry of self-luminous displays - A bibliography, 1990. Guide for the lighting of road tunnels and underpasses, 1990. Technical Collection 1990: 89/1 Results of a CIE detector response intercomparison 89/2 Photobiological effects of sunlamps 89/3 On the deterioration of exhibited museum objects by optical radiation 89/4 Guide for the measurement of underground mine lighting. Sunscreen testing (UV.B), 1991. Road lighting as an accident countermeasure, 1992. Guide for floodlighting, 1993. Contrast and visibility, 1992. Electric light sources - State of the art, 1992. Maintenance of indoor electric lighting systems, 1992. Personal dosimetry of UV radiation, 1992. Lighting education (1983-1989), 1992. Fundamentals of the visual task of night driving, 1992. Parametric effects in colour-difference evaluation, 1993. Recommended file format for electronic transfer of luminaire photometric data, 1993. Technical Collection 1993: 103/1 Colour appearance analysis 103/2 Industrial lighting and safety at work 103/3 Reference action spectra for ultraviolet induced erythema and pigmentation of different human skin types 103/4 Biologically effective emissions and hazard potential of desk-top luminaires incorporating tungsten halogen lamps 103/5 The economics of interior lighting maintenance 103/6 Clarification of maintained illuminance and associated terms. Daytime running lights (DRL), 1993. Spectroradiometry of pulsed optical radiation sources, 1993. CIE Collection in Photobiology and Photochemistry, 1993: 106/1 Determining ultraviolet action spectra 106/2 Photokeratitis 106/3 Photoconjunctivitis 106/4 A reference action spectrum for ultraviolet induced erythema in human skin 106/5 Photobiological effects in plant growth 106/6 Malignant melanoma and fluorescent lighting 106/7 On the quantification of environmental exposures: limitations of the concept of risk-to-benefit ratio 106/8 Terminology for photosynthetically active radiation for plants. Review of the official recommendations of the CIE for the colours of signal lights, 1994. Guide to recommended practice of daylight measurement, 1994. A method of predicting corresponding colours under different chromatic and illuminance adaptation, 1994. Spatial distribution of daylight - Luminance distributions of various reference skies, 1994. Variable message signs, 1994. Glare evaluation system for use within outdoor sports- and area lighting, 1994. 113 Maintained night-time visibility of retroreflective road signs, 1995. 114 CIE Collection in photometry and radiometry, 1994: 114/1 Survey of reference materials for testing the performance of spectrophotometers and colorimeters 114/2 International intercomparison on transmittance measurement - Report of results and conclusions 114/3 Intercomparison of luminous flux measurements on HPMV lamps 114/4 Distribution temperature and ratio temperature 114/5 Terminology relating to non-selective detectors 114/6 Photometry of thermally sensitive lamps. 115 Recommendations for the lighting of roads for motor and pedestrian traffic, 1995. 116 Industrial colour-difference evaluation, 1995. 117 Discomfort glare in interior lighting, 1995. 118 CIE Collection in colour and vision, 1995: 118/1 Evaluation of the attribute of appearance called gloss 118/2 Models of heterochromatic brightness matching 118/3 Brightness-luminance relations 118/4 CIE guidelines for co-ordinated research on evaluation of colour appearance models for reflection print and self-luminous display image comparisons 118/5 Testing colour appearance models: Guidelines for co-ordinated research 118/6 Report on color difference literature 118/7 CIE guidelines for co-ordinated future work on industrial colour-difference evaluation. 121 Photometry and goniophotometry of luminaires, 1996. 122 The relationship between digital and colorimetric data for computer-controlled CRT displays, 1996. 123 Low Vision - Lighting needs for the partially sighted, 1997. 124 CIE Collection in Colour and Vision, 1997: 124/1 CIE TC 1-31 Report: Colour notations and colour order systems 124/2 CIE TC 1-18 Chairman's Report: On the course of the disability glare function and its attribution to components of ocular scatter 124/3 Next step in industrial colour difference evaluation, Report on a colour difference research meeting. 125 Standard erythemal dose — A review, 1997. 126 Guidelines for minimizing sky glow, 1997. 127 Measurement of LEDs, 1997. 128 Guide to the lighting for open-cast mines, 1998. 129 Guide for lighting exterior work areas, 1998. 130 Practical methods for the measurement of reflectance and transmittance, 1998. 131 The CIE 1997 interim colour appearance model (simple version), CIECAM97s, 1998. 132 Design methods for lighting of roads, 1999. 134 CIE Collection in Photobiology and Photochemistry, 1999. 134/1 CIE TC 6-26 Report: Standardization of the terms UV-A1, UV-A2 and UV-B 134/2 CIE TC 6-30 Report: UV protection of the eye 134/3 CIE TC 6-38 Report: Recommendation on photobiological safety of lamps. A review of standards CIE 14x - 2001 135 CIE Collection 1999: Vision and colour, physical measurement of light and radiation. 135/1 Disability Glare 135/2 Colour rendering, closing remarks 135/3 Virtual metamers for assessing the quality of simulators of CIE illuminant D50 (Supplement 1-1999 to CIE 511981) 135/4 Some recent developments in colourdifference evaluation 135/5 Visual adaptation to complex luminance distribution 135/6 45°/0° Spectral reflectance factors of pressed polytetrafluoroethylene (PTFE) Proceedings of the Sessions: 1921 1924 1927 1928 1931 1935 1939 1948 1951 1955 1959 4-7 Paris Genèva Bellagio Saranac Cambridge Berlin Scheweningen Paris Stockholm Zürich Bruxelles (Vol. A,B,C,D) 140 power (Reprint of NIST Technical Note 1413) Guide to the lighting of urban areas, 2000. The conspicuity of traffic signs in complex background, 2000. CIE Collection 2000: Photobiology and Photochemistry. 138/1 Blue-light photochemical retinal hazard 138/2 Action spectrum for photocarcinogenesis (non-melanoma skin cancers) 138/3 Standardized protocols for photocarcinogenesis safety testing 138/4 A proposed global UV index. Road lighting calculations, 2000 1963 1967 1971 1975 1979 1983 1987 1991 1995 1999 11 14 21 36 50 56 71 91 119-120 133 136 137 138 Vienna (Vol. A,B,C,D) Washington (Vol. A,B) Barcelona (Vol. A,B,C) London Kyoto Amsterdam Venice, Vol.1-2 Melbourne, Vol.1-2 New Delhi, Vol. 1-2 Warsaw, Vol. 1-2 Discs and other publications D001 Disc version of CIE Colorimetric Data (S001 and S002 Tables), 1988. D002 Disc version of CIE Colorimetric and Colour Rendering Data (Publ. 13.2 and 15.2 Tables), 1991. D003 CIE Roster. D004 CIE publications. D005 A method for assessing the quality of D65 daylight simulators for colorimetry (based on CIE 51-1981) 1994. D006 Automatic quality control of daylight measurement - Software for IDMP stations (computer program to CIE 1081994), 1994. D007 A computer program implementing the "Method of predicting corresponding colours under different chromatic and illuminance adaptation" (described in CIE 109-1994), 1994. D008 Computer program to calculate CRIs (according to CIE 13.3-1995), 1995. x001 Aktuelle Themen der Außenbeleuchtung (SLG - CIE Div. 5 Symposium Proceedings, Fribourg, 1 Feb. 1989). x003 Daylight and solar radiation measurement (CIE - WMO Symposium Proceedings, Berlin 9-11 Oct. 1989). x004 Symposium on light and radiation measurement '81, Hajdúszoboszoló (CIEHungarian NC). x005 Proceedings of the CIE Seminar '92 on Computer programs for light and lighting. x006 Japan CIE Session at PRAKASH 91. x007 Proceedings of the CIE Symposium '93 on Advanced Colorimetry. x008 Urban sky glow - a worry for astronomy (Proceedings of a Symposium of CIE TC 4-21), 1994. x009 Proceedings of the CIE Symposium '94 on Advances in Photometry. x010 Proceedings of the CIE Expert Symposium '96 Colour Standards for Image Technology. x011 Special volume, 23rd Session, New Dehli ’95, Late papers. x012 NPL — CIE-UK Visual Scales Conference. x013 Proceedings of the CIE LED Symposium ’97 on Standard Methods for Specifying and Measuring LED Characteristics, 1998. x014 Proceedings of the CIE Expert Symposium ’97 on Colour Standards for Imaging Technology, 1998. x015 Proceedings of the First CIE Symposium on Lighting Quality, 1998. x016 Proceedings of the CIE/ICNIRP Conference on Measurements of Optical Radiation Hazards, 1998. x017 Special volume, 24th Session, Warsaw ’99, Late papers x018 Proceedings of the CIE Symposium ’99 “75 Years of CIE Photometry” 13 CIE 14x - 2001 CIE publications on CD-ROM A CD-ROM with all current CIE Technical Reports and Standards is available from IHS, Information Handling Services, 15 Inverness Way East, M/S B203 Englewood, Colorado 80112-5776 USA. CIE-Journal Vol.1 - Vol.8 1982 - 1989. CIE NEWS No. 1 - No. 56 For latest information on CIE publications see the CIE Home Page on the World Wide Web: http://www.cie.co.at/ 14 1986 - 2000.
© Copyright 2026 Paperzz