improvement to industrial colour

ISBN 3 901 906 xx x
IMPROVEMENT TO
INDUSTRIAL COLOURDIFFERENCE
EVALUATION
CIE 14x - 2001
UDC:
159.937.51
535.66
612.843.31
Descriptor: Perception of colour
Colours of objects
Colour vision
THE INTERNATIONAL COMMISSION ON ILLUMINATION
The International Commission on Illumination (CIE) is an organisation devoted to international co-operation and exchange of
information among its member countries on all matters relating to the art and science of lighting. Its membership consists of
the National Committees in 39 countries and one geographical area and of 9 associate members.
The objectives of the CIE are :
1.
To provide an international forum for the discussion of all matters relating to the science, technology and art in the fields
of light and lighting and for the interchange of information in these fields between countries.
2.
To develop basic standards and procedures of metrology in the fields of light and lighting.
3.
To provide guidance in the application of principles and procedures in the development of international and national
standards in the fields of light and lighting.
4.
To prepare and publish standards, reports and other publications concerned with all matters relating to the science,
technology and art in the fields of light and lighting.
5.
To maintain liaison and technical interaction with other international organisations concerned with matters related to the
science, technology, standardisation and art in the fields of light and lighting.
The work of the CIE is carried on by seven Divisions each with about 20 Technical Committees. This work covers subjects
ranging from fundamental matters to all types of lighting applications. The standards and technical reports developed by
these international Divisions of the CIE are accepted throughout the world.
A plenary session is held every four years at which the work of the Divisions and Technical Committees is reviewed, reported
and plans are made for the future. The CIE is recognised as the authority on all aspects of light and lighting. As such it
occupies an important position among international organisations.
LA COMMISSION INTERNATIONALE DE L'ÉCLAIRAGE
La Commission Internationale de l'Éclairage (CIE) est une organisation qui se donne pour but la coopération internationale et
l'échange d'informations entre les Pays membres sur toutes les questions relatives à l'art et à la science de l'éclairage. Elle
est composée de Comités Nationaux représentant 39 pays plus un territoire géographique, et de 9 membres associés.
Les objectifs de la CIE sont :
6.
De constituer un centre d'étude international pour toute matière relevant de la science, de la technologie et de l'art de la
lumière et de l'éclairage et pour l'échange entre pays d'informations dans ces domaines.
7.
D'élaborer des normes et des méthodes de base pour la métrologie dans les domaines de la lumière et de l'éclairage.
8.
De donner des directives pour l'application des principes et des méthodes d'élaboration de normes internationales et
nationales dans les domaines de la lumière et de l'éclairage.
9.
De préparer et publier des normes, rapports et autres textes, concernant toutes matières relatives à la science, la
technologie et l'art dans les domaines de la lumière et de l'éclairage.
10. De maintenir une liaison et une collaboration technique avec les autres organisations internationales concernées par des
sujets relatifs à la science, la technologie, la normalisation et l'art dans les domaines de la lumière et de l'éclairage.
Les travaux de la CIE sont effectués par 7 Divisions, ayant chacune environ 20 Comités Techniques. Les sujets d'études
s'étendent des questions fondamentales, à tous les types d'applications de l'éclairage. Les normes et les rapports techniques
élaborés par ces Divisions Internationales de la CIE sont reconnus dans le monde entier.
Tous les quatre ans, une Session plénière passe en revue le travail des Divisions et des Comités Techniques, en fait rapport
et établit les projets de travaux pour l'avenir. La CIE est reconnue comme la plus haute autorité en ce qui concerne tous les
aspects de la lumière et de l'éclairage. Elle occupe comme telle une position importante parmi les organisations
internationales.
DIE INTERNATIONALE BELEUCHTUNGSKOMMISSION
Die Internationale Beleuchtungskommission (CIE) ist eine Organisation, die sich der internationalen Zusammenarbeit und
dem Austausch von Informationen zwischen ihren Mitgliedsländern bezüglich der Kunst und Wissenschaft der Lichttechnik
widmet. Die Mitgliedschaft besteht aus den Nationalen Komitees in 39 Ländern und einem geographischen Gebiet und aus 9
assoziierten Mitgliedern.
Die Ziele der CIE sind :
11. Ein internationaler Mittelpunkt für Diskussionen aller Fragen auf dem Gebiet der Wissenschaft, Technik und Kunst der
Lichttechnik und für den Informationsaustausch auf diesen Gebieten zwischen den einzelnen Ländern zu sein.
12. Grundnormen und Verfahren der Meßtechnik auf dem Gebiet der Lichttechnik zu entwickeln.
13. Richtlinien für die Anwendung von Prinzipien und Vorgängen in der Entwicklung internationaler und nationaler Normen
auf dem Gebiet der Lichttechnik zu erstellen.
14. Normen, Berichte und andere Publikationen zu erstellen und zu veröffentlichen, die alle Fragen auf dem Gebiet der
Wissenschaft, Technik und Kunst der Lichttechnik betreffen.
15. Liaison und technische Zusammenarbeit mit anderen internationalen Organisationen zu unterhalten, die mit Fragen der
Wissenschaft, Technik, Normung und Kunst auf dem Gebiet der Lichttechnik zu tun haben.
Die Arbeit der CIE wird in 7 Divisionen, jede mit etwa 20 Technischen Komitees, geleistet. Diese Arbeit betrifft Gebiete mit
grundlegendem Inhalt bis zu allen Arten der Lichtanwendung. Die Normen und Technischen Berichte, die von diesen
international zusammengesetzten Divisionen ausgearbeitet werden, sind von der ganzen Welt anerkannt.
Tagungen werden alle vier Jahre abgehalten, in der die Arbeiten der Divisionen überprüft und berichtet und neue Pläne für die
Zukunft ausgearbeitet werden. Die CIE wird als höchste Autorität für alle Aspekte des Lichtes und der Beleuchtung
angesehen. Auf diese Weise unterhält sie eine bedeutende Stellung unter den internationalen Organisationen.
Published by the
 CIE 2001
COMMISSION INTERNATIONALE DE L'ECLAIRAGE
CIE Central Bureau
Kegelgasse 27, A-1030 Vienna, AUSTRIA
Tel: +43(01)714 31 87 0, Fax: +43(01)713 08 38 18
e-mail: [email protected]
WWW: http://www.cie.co.at/cie/
ISBN 3 901 906 xx x
IMPROVEMENT TO
INDUSTRIAL COLOURDIFFERENCE
EVALUATION
CIE 14x - 2001
UDC:
159.937.51
535.66
612.843.31
Descriptor: Perception of colour
Colours of objects
Colour vision
CIE 14x - 2001
This Technical Report has been prepared by CIE Technical Committee 1-47 of Division 1
“Vision and Colour” and has been approved by the Board of Administration of the Commission
Internationale de l'Eclairage for study and application. The document reports on current
knowledge and experience within the specific field of light and lighting described, and is
intended to be used by the CIE membership and other interested parties. It should be noted,
however, that the status of this document is advisory and not mandatory. The latest CIE
proceedings or CIE NEWS should be consulted regarding possible subsequent amendments.
Ce rapport technique a été préparé par le Comité Technique CIE 1-47 de la Division 1 “Vision
et Couleur” et a été approuvé par le Bureau d'Administration de la Commission Internationale
de l'Eclairage, pour étude et application. Le document traite des connaissances courantes et
de l'expérience dans le domaine spécifique indiqué de la lumière et de l'éclairage, et il est
établi pour l'usage des membres de la CIE et autres groupements intéressés. Il faut
cependant noter que ce document est indicatif et non obligatoire. Pour connaître d'éventuels
amendements, consulter les plus récents comptes rendus de la CIE ou le CIE NEWS.
Dieser Technische Bericht ist vom CIE Technischen Komitee 1-47 der Division 1 “Sehen und
Farbe” ausgearbeitet und vom Vorstand der Commission Internationale de l'Eclairage gebilligt
worden. Das Dokument berichtet über den derzeitigen Stand des Wissens und Erfahrung in
dem behandelten Gebiet von Licht und Beleuchtung; es ist zur Verwendung durch CIEMitglieder und durch andere Interessierte bestimmt. Es sollte jedoch beachtet werden, daß
das Dokument eine Empfehlung und keine Vorschrift ist. Die neuesten CIE-Tagungsberichte
oder das CIE NEWS sollten im Hinblick auf mögliche spätere Änderungen zu Rate gezogen
werden.
Any mention of organisations or products does not imply endorsement by the CIE. Whilst
every care has been taken in the compilation of any lists, up to the time of going to press,
these may not be comprehensive.
Toute mention d'organisme ou de produit n'implique pas une préférence de la CIE. Malgré le
soin apporté à la compilation de tous les documents jusqu'à la mise sous presse, ce travail ne
saurait être exhaustif.
Die Erwähnung von Organisationen oder Erzeugnissen bedeutet keine Billigung durch die
CIE. Obgleich große Sorgfalt bei der Erstellung von Verzeichnissen bis zum Zeitpunkt der
Drucklegung angewendet wurde, ist es möglich, daß diese nicht vollständig sind.
 CIE 2001
II
CIE 14x - 2001
The following members of TC 1-47 Hue and Lightness-Dependent Correction to Industrial
Colour-Difference Evaluation took part in the preparation of this technical report. TC 1-47
comes under CIE Division 1 Colour and Vision.
Members:
D. H. Alman (chairman)
US
R. S. Berns
US
H. Komatsubara
JP
W. Li
CH
M. R. Luo
GB
M. Melgosa
ES
J. H. Nobbs
GB
B. Rigg
GB
A. R. Robertson
CA
K. Witt
DE
Adviser:
G. Cui
GB
III
CIE 14x - 2001
Table of contents
SUMMARY
V
RÉSUMÉ
V
ZUSAMMENFASSUNG
V
1. INTRODUCTION
1
2. RECOMMENDED PRACTICE FOR INDUSTRIAL COLOUR-DIFFERENCE EVALUATION 1
2.1 Scope
2
2.2 Reference conditions
2
2.2.1 Note.
2.3 Modification of the a* (red-green opponent) axis
2.3.1 Note
2.4 Total colour-difference
2.4.1 Note
2.5 Colour-difference components
2
2
3
3
3
4
2.5.1 Note
4
2.5.2 Note
4
2.6 Weighting functions
4
2.6.1 Note
5
2.6.2 Note
5
2.7 Rotation function
5
2.8 Parametric factors
5
2.8.1 Note
5
2.9 Nomenclature
6
2.10 Development
6
2.11 Future work
6
3. REFERENCES
7
4. APPENDIX: WORKED EXAMPLES
9
IV
CIE 14x - 2001
IMPROVEMENT TO INDUSTRIAL COLOUR-DIFFERENCE EVALUATION
SUMMARY
Recommended practice for industrial colour-difference evaluation is presented. The
recommended model is an extension of the CIE 1976 (L*a*b*) colour-difference model with
corrections for variation in colour-difference perception dependent on lightness, chroma, hue
and chroma-hue interaction. The corrections for the chroma dependence of chroma and hue
differences in the CIE94 model have been retained and supplemented by several additional
corrections based on new experimental data and analysis. Reference conditions define
material and viewing environment characteristics to which the colour-difference model applies.
Factors are introduced to correct for the parametric effects of various conditions of use.
EVALUATION AMELIOREE DES DIFFERENCES DE COULEUR
RÉSUMÉ
Le document recommande une méthode pour l'évaluation des différences de couleur. Le
modèle est destiné à l'industrie et repose sur la formule de différence de couleur CIE 1976
(L*a*b*) à la-quelle on ajoute des corrections tenant compte des effets de la clarté, du
chroma, de la tonalité et de l'interactions tonalité-chroma sur la perception des différences de
couleur. On retient les corrections du modèle CIE94 pour l’effet du chroma sur les différences
de chroma et de tonalité, complétées de corrections additionnelles établies par l’analyse de
nouvelles données expérimentales. Des conditions de base définissent les caractéristiques
des matériaux et les modalités d'observation pour les-quelles le modèle s'applique. Des
paramètres du modèle corrigent les effets résultant de conditions d'emploi différentes.
VERBESSERTE INDUSTRIELLE FARBABSTANDSBEWERTUNG
ZUSAMMENFASSUNG
Empfehlungen zur Praxis der industriellen Farbabstandsbewertung werden gegeben. Das
empfohlene Modell stellt eine Erweiterung des L*,a*,b*-Farbenraums CIE 1976 dar mit
Korrekturen für Abweichungen in der Farbunterschiedsempfindung von berechneten
Formelwerten bezogen auf die Beiträge der Helligkeit, der Buntheit, des Bunttones und der
Wechselwirkung zwischen Buntheit und Buntton. Bezugsbedingungen legen Material und
Gestaltung der Sehaufgabe fest, für die das Farbabstandsmodell gilt. Faktoren sind
eingeführt, um parametrische Effekte bei verschiedenen Gebrauchsbedingungen zu
korrigieren.
V
CIE 14x - 2001
VI
CIE 14x - 2001
1. INTRODUCTION
CIE has carried out a long-term program of periodic improvement of colour-difference
evaluation and coordination of colour-difference research. In 1976 CIELAB and CIELUV were
chosen as uniform colour spaces with associated colour-difference components and total
colour-difference equations (CIE, 1986). At that time colour-difference research had
emphasized development of uniform colour spaces representing equality of visual colourdifference distances. CIELAB and CIELUV were selected from many uniform colour spaces
then in use to promote standardization in colour-using industries. One of these spaces
(CIELUV) provides a chromaticity diagram, which was judged to be advantageous for some
colour industries. Recognizing that further improvement was desirable, a set of guidelines for
coordinated research in colour differences was reported (Robertson, 1978).
Colour materials industries (textiles, paint, plastics, etc.) tended to adopt CIELAB and
found significant evidence of non-uniformity of this colour space. McLaren introduced and
McDonald further developed the idea of empirically correcting an approximate uniform colour
space to improve the association between visual and numerical colour difference (McLaren
1972, McDonald 1980a, 1980b, 1980c). The corrections generally are related to the location of
a colour-difference pair in the colour space and the direction of difference between the colourdifference pair. This has led to the development of many CIELAB-based colour-difference
models with a variety of empirical corrections fitted to specific sets of visual colour-difference
data. Among these the CMC model has been widely adopted by the textile industry (Clarke
1984).
CIE TC1-28 Parameters Affecting Colour-Difference Evaluation recognized that the
variation among uniform-colour-space models and empirically corrected CIELAB models was
largely due to the influence of experimental observation and material variables on the visual
colour-difference perception experiments (CIE, 1993). These additional experimental variables
have parametric effects that influence the visual colour-difference results. TC1-28 introduced
a set of reference conditions for colour-difference experiments. Experiment conditions other
than the reference conditions could have parametric effects on the results, which could be
characterized by parametric factors to correct for the effects.
CIE TC1-29 Industrial Colour-Difference Evaluation developed a CIE94 total colourdifference model based on the CIELAB space (CIE, 1995). Correction for non-uniformity of
CIELAB space was incorporated through sensitivity functions that could correct the lightness,
chroma and hue differences for non-uniformity of CIELAB. TC1-29 took a conservative
approach to these sensitivity functions by including only corrections for those non-uniformity
effects that could be reliably estimated from several visual colour-difference experimental data
sets. Parametric factors and reference conditions were incorporated in the CIE94 colourdifference evaluation report. Again recognizing the need for further improvement, new
guidelines for coordinated colour-difference research were reported (CIE, 1995, Witt, 1996).
Several researchers responded with new experiments on hue-dependence of colour
difference culminating in a topical symposium (CIE, 1997). A new CIE technical committee
was proposed with the goal to improve colour-difference evaluation by including a hue effect
correction using these new and existing data. CIE TC1-47 Hue and Lightness-Dependent
Correction to Industrial Colour-Difference Evaluation was formed to carry out a working
program to improve industrial colour-difference evaluation through empirical corrections to a
CIELAB approximate uniform colour space.
2. RECOMMENDED PRACTICE FOR INDUSTRIAL COLOUR-DIFFERENCE EVALUATION
Improvements to the calculation of total colour difference for industrial colour-difference
evaluation are made through corrections for the effects of lightness dependence, chroma
dependence, hue dependence, and hue-chroma interaction on perceived colour difference. A
set of reference conditions is defined under which the recommended model is expected to
perform well. When conditions of use deviate appreciably from the reference conditions the
introduction of parametric factors may be used to correct for the effects of experimental or
material variables.
1
CIE 14x - 2001
The method described in this report is recommended as a replacement for total
colour-difference calculations using the CIE 1976 L*a*b* formula, the CIE 1976 L*u*v* formula,
and the CIE 1994 formula. A period of use, testing and reporting by the user community will
precede a determination on whether to make the new method a CIE standard.
2.1 Scope
The recommended colour-difference model is intended to represent a numerical scale of
colour difference between pairs of colour samples defined by their tristimulus values. The
calculated colour difference is associated with the perceived visual magnitude of colour
difference between pairs of samples. The data on which the model is based were primarily
taken from experiments on object colours with colour differences from threshold through the
range of colour differences observed in the manufacture of coloured materials. Large colour
differences of the size observed between samples in colour order systems were not
considered. The model is expected to perform best under conditions corresponding to a set of
reference conditions, which describe common experimental and material conditions for the
available data. As the conditions of use increasingly deviate from the reference conditions
users should expect decreasing association with visual colour-difference estimates. The effect
of deviations from the reference conditions may be corrected through parametric factors when
sufficient information is available to estimate the effect of an experimental variable.
2.2 Reference conditions
Reference conditions describe a set of experimental and material variables that are typical of
the conditions used in developing visual colour-difference data sets for object colours. The
reference conditions may not have been universally employed in all data sets used by CIE
TC1-47 in developing and testing the recommended model but they represent common levels
of the experimental variables. The reference conditions are:
Illumination: source simulating the spectral relative irradiance of CIE Standard Illuminant
D65.
Illuminance: 1000 lx.
Observer: normal colour vision.
Background field:
uniform, neutral gray with L* = 50.
Viewing mode: object.
Sample size: greater than 4 degrees subtended visual angle.
Sample separation: minimum sample separation achieved by placing the sample pair in
direct edge contact.
Sample colour-difference magnitude: 0 to 5 CIELAB units.
Sample structure: homogeneous colour without visually apparent pattern or nonuniformity.
2.2.1 Note.
Deviations from the reference conditions can affect the performance of the colour-difference
model. Changes in viewing and illuminating conditions affect the validity of CIELAB as a colour
space and further necessitate the definition of parametric factors. Changes in the source
correlated colour temperature from 6500 K affect the accuracy of the chromatic adaptation
transformation embedded in CIELAB, i. e. X/Xn, Y/Yn, and Z/Zn. Illuminance levels much lower
than 1000 lux result in reduced discrimination. With an increase in the angle subtended by the
colour-difference pair, the influence of background lightness on colour discrimination
decreases.
2.3 Modification of the a* (red-green opponent) axis
The CIE 1976 (L*a*b*) colour space (CIE, 1986) is retained as an approximate uniform colour
space representing perceptual colour magnitudes in terms of opponent colour scales with a
2
CIE 14x - 2001
localized modification to the a* (red-green opponent) axis. This modification was made to
improve agreement with visual colour-difference-perception for neutral colours. The
modification increases the magnitudes of a’ values compared to a* values for colours at low
chroma. At higher chroma the modified a’ value approaches the conventional a* value.
Quantities L’ and b’ are defined as equal to L* and b* respectively. Primed quantities in this
report refer to quantities derived from L’, a’, b’ coordinates.
L’ = L *
a’ = a * (1 + G )
b’ = b *
(2.1)
0,5
 
7
 
C
*
ab

 
G = 0,5 1 − 
  C * ab 7 + 257  
 
 
(2.2)
In Equation 2.2 the CIE 1976 a*, b* chroma value is the mean of the CIE 1976 a*, b*
chroma values for each sample of a colour-difference pair. In this report quantities with a bar
over the symbol indicate the arithmetic mean of the values for the colour-difference pair
samples.
Modified chroma (C’ ) and hue angle (h’ ) are calculated using the a’, b’ coordinate
values when they are used in colour-difference calculations. Hue-angle values are in degree
units.
(
)
(2.3)
 b’ 
h’ = tan −1  
 a’ 
(2.4)
C ’ = a’2 + b’2
0,5
2.3.1 Note
The L’, a’, b’ values are used only for the calculation of colour difference and should not be
used as an alternative uniform colour space. When reporting CIE 1976 colour space
coordinates use L*, a*, b* values. When reporting perceptual correlates of lightness, chroma
and hue use CIE 1976 lightness, CIE 1976 a, b chroma and CIE 1976 a, b hue angle
calculated without the a’ modification.
2.4 Total colour-difference
A perceived visual colour-difference magnitude,
(00, through an overall sensitivity factor, kE.
9
, is related to the total colour difference,
∆V = k E−1∆E 00
(2.5)
The total colour-difference between two colour samples with lightness, chroma and
hue differences, /¶, &¶, +¶, with weighting functions, SL, SC, SH, parametric factors, kL, kC,
kH and rotation function RT is determined by Equation 2.6.
∆E 00
 ∆L’
= 
 k L S L

2
 ∆C ’

 + 
 k CSC

2
 ∆H ’

 + 
 k HSH

2
 ∆C ’

 + RT 
 k C SC

 ∆H ’

 k H S H



0,5
(2.6)
2.4.1 Note
The use of an overall sensitivity factor, kE, and parametric factors, kL, kC, kH, to weight a
CIELAB /, &ab, +ab colour difference was introduced by CIE TC1-28 Parameters
Affecting Colour-difference Evaluation (CIE, 1993).
The overall sensitivity factor, kE, may be used to account for variation in overall
perceptual sensitivity under a given set of experimental conditions. In general industrial
3
CIE 14x - 2001
practice this is not necessary. The total colour difference is usually used as the correlate of
perceived colour difference.
The overall sensitivity is not intended to be used as a commercial colour-difference
tolerance factor. The setting of an allowable commercial colour tolerance is a separate issue
from the adjustment for variation in overall visual sensitivity to colour differences.
2.5 Colour-difference components
The CIEDE2000 lightness, chroma and hue rectangular colour-difference components
between two colour samples are computed by Equations 2.7 through 2.9. Equation 2.9 is a
direct calculation of hue difference that does not require a conditional statement for sign
(Sève, 1991). Subscripts s and b refer to standard and batch of a colour-difference pair.
∆L’ = L’b −L’s
(2.7)
∆C ’ = C ’b −C ’s
(2.8)
 ∆h’ 
∆H ’ = 2(C ’b C ’s )0,5 sin

 2 
(2.9)
∆h’ = h’b −h’s
where
(2.10)
2.5.1 Note
Take care calculating the hue-angle difference in Equation 2.10 if the colour-difference pair
has samples in different quadrants. For example, a colour-difference pair has hue angles of 30
(standard) and 300 (batch) degrees. The simple difference, 270, gives an incorrect sign in
Equation 2.9. To determine the hue-angle difference correctly, calculate the absolute
difference of the hue angles. If the absolute difference is larger than 180 then add 360 to the
smaller hue angle before taking the difference.
2.5.2 Note
Users must explicitly report the colour-difference components. There are three alternatives;
1, report the CIE1976 colour-difference component ∆L*, ∆C*, ∆H* values; 2, report
CIEDE2000 colour-difference component ∆L’, ∆C’ ∆H’ values; or 3, report the weighted
CIEDE2000 colour-difference components as the CIEDE2000 colour-difference components
divided by the product of their parametric factors and weighting functions.
2.6 Weighting functions
Weighting functions, SL, SC, SH adjust the total colour-difference equation for variation in
perceived colour-difference magnitude with variation in the location of the colour-difference
pair in L’, a’, b’ coordinates. The weighting functions account for variation in visual colourdifference sensitivity with lightness, chroma, and hue angle. Equations 2.11 through 2.14
represent best estimates obtained by fitting visual colour-difference perception data sets.
SL = 1 +
(
0,015 L’−50
(
)
)
2
20 + L’−50 2 


(2.11)
0,5
S C = 1 + 0,045C ’
(2.12)
SH = 1 + 0,015C’T
(2.13)
(
)
( )
(
)
(
T = 1 − 0,17 cos h’−30 + 0,24 cos 2h’ + 0,32 cos 3h’+6 − 0,20 cos 4h’−63
4
)
(2.14)
CIE 14x - 2001
2.6.1 Note
Take care calculating the mean hue-angle if the colour-difference pair has samples in different
quadrants. For example, a colour-difference pair has hue angles of 30 and 300 degrees. The
simple mean, 165, is incorrect. To determine the mean correctly, calculate the absolute
difference of the hue angles. If the absolute difference is larger than 180 then add 360 to the
smaller hue angle before taking the mean.
2.6.2 Note
The L’ , C ’ , h’ values for calculation of weighting functions are taken as the arithmetic mean
of the corresponding values of the colour-difference pair. There are two consequences of this
definition. First, total colour-difference is reversible, that is, the total colour-difference between
a pair is the same whether the first or second sample is used as the standard for calculation of
colour-difference components. Second, the locus of points of equal total colour-difference from
a standard is not an exact ellipsoid and is not exactly centered on the standard.
2.7 Rotation function
Visual colour-difference perception data show an interaction between chroma difference and
hue difference in the blue region. The interaction results in a significant tilt of the major axis of
the colour-difference ellipse. The ellipse tilt is in the counter-clockwise direction and away from
the direction of constant hue angle. To account for this effect, a rotation function is applied to
weighted hue and chroma differences. The rotation function has a significant effect only for
the blue high chroma region of the a’, b’ plane.
RT = − sin(2∆Θ )RC
(2.15)
  h’−275  2 
∆Θ = 30 exp  − 
 
  25  
(2.16)
 C ’7
RC = 2 7
7
 C ’ +25




0,5
(2.17)
Mean hue angle and delta theta are in degree units.
2.8 Parametric factors
Parametric factors, kL, kC, kH, are correction terms for variation in perceived colour-difference
component sensitivity with variation in experimental conditions. Under the reference
conditions the parametric factors have assigned values of unity and do not affect the total
colour difference.
kL= kC= kH =1 for reference conditions
(2.18)
The parametric factors provide a method to correct for deviation in experimental
conditions from the defined reference conditions. Users are cautioned against indiscriminate
use of these parametric factors without thorough experimental validation. Industry groups may
define parametric factors to correspond to typical experimental conditions for that industry.
2.8.1 Note
In the textile industry it is common practice to set the lightness parametric factor to 2.
kL=2
kC= kH =1
(2.19)
However, the experimental conditions leading to this parametric correction to lightnessdifference sensitivity are not yet well understood.
5
CIE 14x - 2001
2.9 Nomenclature
The complete colour-difference model for industrial colour-difference evaluation is termed the
&¶
+¶ ) colour-difference model with symbol,
(00, and abbreviation
CIE 2000 ( /¶
CIEDE2000.
When parametric factors other than one are used, the factors should be explicitly
stated in brackets, (kL: kC: kH), after the symbol or abbreviation. For example, CIEDE2000 (2:
1: 1) with symbol
(00 (2: 1: 1) might be used in a textile application. Alternatively the
parametric factors may be explicitly defined in documentation accompanying the application of
the model.
2.10 Development
CIE TC1-47 developed CIEDE2000 through a three-stage working program. In the first stage
existing colour-difference perception data sets were compiled into a database for use in
building and testing colour-difference models. The data sets included several large studies of
object colour-difference perception under conditions more or less similar to the reference
conditions (Luo, 1986, Berns, 1991, Kim, 1997, Witt, 1999). The database is available to
colour-difference researchers on the internet at http://cie.kee.hu/newcie.
In the second stage of the working program, members of TC1-47 investigated the
non-uniformity of the CIELAB space and developed empirical corrections to improve
agreement between perceived visual colour difference and numerical colour difference. In
some cases these investigations used additional existing or newly developed visual
experimental data to more precisely characterize specific non-uniformity effects. The chromadependent corrections to chroma difference and hue difference developed by TC1-29 in
CIE94 were retained. Berns developed a correction for hue-dependence of hue difference
(Berns, 2000) based on several data sets (Witt 1983, 1987; Luo, 1986; Berns 1991; Qiao,
1998). A continuous function of hue angle with three maxima and three minima is the best fit
for the data. Nobbs investigated the lightness dependence of lightness difference and found
that for most data sets the lightness weighting function is a minimum near a lightness value of
50 and slopes upwards toward both lower and higher lightness values (Nobbs, 1999). Nobbs
and co-workers then carried out new experimental investigations of lightness difference
sensitivity under several parametric observation and material conditions to develop a lightness
correction as a function of lightness (Nobbs, 2000, Chou, 2000). Luo and colleagues
investigated two localized non-uniformities: the rotation of the major axis of colour-difference
ellipses in the blue region from the direction of constant hue angle and non-uniformity of
ellipses for neutral colours. Their investigations led to development of a rotation function that
involves an interaction of hue and chroma differences and a rescaling of the red-green
opponent axis (Luo, 2000a, Luo, 2000c). All of the corrections were combined into a complete
total colour-difference model and this was tested using the TC1-47 database. Performance of
CIEDE2000 was compared to colour-difference models including CIELAB, CIE94 and CMC.
Luo has reported on these comparisons and the development of the CIEDE2000 equations
(Luo, 2000c).
In the final stage of the working program tests of statistical significance were used to
verify the performance improvements in CIEDE2000 (Alman, 2000, Luo, 2000b, Rigg, 2000).
The lightness, chroma and hue weighting functions, the rotation term, and the red-green
opponent axis rescaling corrections were significant at the 99% confidence level for the
combined visual experimental data. The hue angle-dependent correction was significant at the
95% confidence level for a subset of the visual data in which hue difference was the major
component of the total colour difference. A second significance test compared CIEDE2000,
CIELAB, CIE94 and CMC performance and found that CIEDE2000 was a significant
improvement at the 99% confidence level.
2.11 Future work
CIE has published “CIE Guidelines for Coordinated Future Work on Industrial ColourDifference Evaluation” (CIE, 1995, Witt, 1996). These guidelines recommend development
objectives, reference conditions, test colours and data reporting formats to be used in
6
CIE 14x - 2001
coordinating colour-difference research programs with the CIE program in industrial colourdifference evaluation standardization.
A new objective is to test the performance of the CIEDE2000 industrial colourdifference evaluation model. There is no CIE colour-difference reporter at this time.
Researchers who wish to contribute reports pertaining to the objectives of the CIE program in
industrial colour-difference evaluation should send them to the CIE Central Bureau
(Kegelgasse 27, A - 1030 Vienna, Austria).
TC1-47 believes it likely that significant future improvement of industrial colourdifference evaluation will require a colour space with improved uniformity compared to
CIELAB. CIE has established a new technical committee, TC1-55 Uniform Colour Space for
Industrial Colour-Difference Evaluation, to carry out this work.
3. REFERENCES
Alman, DH (2000). Performance Comparison for Full and Reduced Color-Difference Models,
unpublished CIE TC1-47 report.
Berns, RS - Alman, DH - Reniff, L - Snyder, GD - Balonon-Rosen, MR (1991). Visual
Determination of Suprathreshold Color-Difference Tolerances Using Probit Analysis, Color
Res Appl, 16, 297-316.
Berns, RS (2000). Derivation of a hue-angle dependent, hue-difference weighting function for
CIEDE2000, submitted to the AIC Color 01 Rochester conference.
Chou, W - Lin, H - Luo, MR - Westland, S - Rigg, B - Nobbs, J (2000). The Performance of
Lightness Difference Formulae, submitted to J Soc Dyers Col.
CIE 15.2 - 1986. Colorimetry.
CIE 101 - 1993. Parametric Effects in Colour-Difference Evaluation.
CIE 116 - 1995. Industrial Colour-Difference Evaluation.
CIE. 118/7 - 1995, CIE Collection in Colour and Vision. CIE Guidelines for Co-Ordinated
Future Work on Industrial Colour-Difference Evaluation (Witt, K)
CIE 124/3 - 1997. CIE Collection in Colour and Vision: Next step in industrial colour difference
evaluation, Report on a colour-difference research meeting (Alessi, P).
Clarke, FJJ - McDonald, R - Rigg, B (1984). Modification to the JPC79 colour-difference
formula, J Soc Dyers Col. 100, 128-132 and 281-282.
Kim, DH - Nobbs, J (1997). New weighting functions for the weighted CIELAB colour
difference formula, Proc Colour 97 Kyoto, 1, 446-449.
Luo, MR - Rigg, B (1986). Chromaticity-Discrimination Ellipses for Surface Colours, Color Res
Appl, 11, 25-42.
Luo, MR - Cui, G - Rigg, B (2000a). Derivation of a Rotation Function for the New CIE Colour
Difference Formula, unpublished CIE TC1-47 report.
Luo, MR - Cui, G - Rigg, B (2000b). Performance of the CIE2000 Colour Difference Equation Statistical Significance of the New Terms, unpublished CIE TC1-47 report.
Luo, MR - Cui, G - Rigg, B (2000c). The Development of the CIE 2000 Colour Difference
Formula: CIEDE2000, submitted to Color Res Appl.
McDonald, R (1980a). Industrial pass/fail colour matching. Part I - Preparation of visual colour
matching data, J Soc Dyers Col, 96, 372-376.
McDonald, R (1980b). Industrial pass/fail colour matching. Part II - Methods of fitting tolerance
ellipsoids, J Soc Dyers Col, 96, 418-433.
McDonald, R (1980c). Industrial pass/fail colour matching. Part III - Development of a pass/fail
formula for use with instrumental measurement of colour difference, J Soc Dyers Col , 96,
486-496.
7
CIE 14x - 2001
McLaren, K (1972). Multiple linear regression: A new technique for improving colour difference
formulae, Soesterberg, Colour Metrics, AIC/Holland, 296-307.
Nobbs, JH (1999). Lightness difference weighting term SL, unpublished CIE TC1-47 report.
Nobbs, JH (2000). Private communication.
Qiao, Y - Berns, RS - Reniff, L - Montag, E (1998). Visual determination of hue suprathreshold
color-difference tolerances, Color Res Appl, 23, 302-313.
Rigg, B - Cui, G - Luo, MR (2000). Statistical Significance Tests of the New T Function,
unpublished CIE TC1-47 report.
Robertson, AR (1978). CIE guidelines for coordinated research on color-difference evaluation,
Color Res Appl, 3, 149-151.
Sève, R (1991). New Formula for the Computation of CIE 1976 Hue Difference, Color Res
Appl, 16, 217-218.
Witt, K - Döring, G (1983). Parametric variations in threshold color-difference ellipsoid for
green painted samples, Color Res Appl, 8, 153-163.
Witt, K (1987). Three-dimensional threshold color-difference perceptibility in painted samples:
variability of observers in four CIE color regions, Color Res Appl, 12, 128-134.
Witt, K (1996). CIE Guidelines for Coordinated Future Work on Industrial Colour-Difference
Evaluation, Color Res Appl, 20, 399-403.
Witt, K (1999). Geometric Relations between Scales of Small Colour Differences, Color Res
Appl, 24, 78-92.
8
CIE 14x - 2001
4. APPENDIX: WORKED EXAMPLES
Tables 4.1 and 4.2 provide data for confirmation of software implementation of CIEDE2000.
Most data are given to 0,0001 resolution to check the numerical accuracy of the calculations.
This does not imply that colour-difference calculations should be reported to 0,0001 resolution.
Consideration of the uncertainty of colour measurement suggests that 0,1 or 0,01 resolution is
appropriate for colour-difference reports.
The data for these tables are taken from Luo, 2000c pending permission of John
Wiley and Sons.
Table 4.1 Colour-difference pair data. Note: Illuminant D65, 1964 standard observer,
X0 = 94,811; Y0 = 100,000; Z0 = 107,304.
Pair
1
2
3
4
5
6
7
8
9
10
X
Y
Z
L’
a’
b’
C’
h’
19,4100
28,4100
11,5766
60,2574 -34,0678
36,2677
49,7590
133,21
19,5525
28,6400
10,5791
60,4626 -34,2333
39,4387
52,2238
130,96
22,4800
31,6000
38,4800
63,0109 -32,6195
-5,8663
33,1428
190,20
22,5833
31,3700
36,7901
62,8187 -31,2542
-4,0864
31,5202
187,45
28,9950
29,5800
35,7500
61,2901
5,5669
-5,3901
7,7488
315,92
28,7704
29,7400
35,6045
61,4292
3,3643
-4,9620
5,9950
304,14
4,1400
8,5400
8,0300
35,0831 -44,3939
3,7933
44,5557
175,12
4,4129
8,5100
8,6453
35,0232 -40,3237
1,5901
40,3550
177,74
4,9600
3,7200
19,5900
22,7233
20,1424 -46,6940
50,8532
293,33
4,6651
3,8100
17,7848
23,0331
15,0118 -42,5619
45,1317
289,43
15,6000
9,2500
5,0200
36,4612
47,9197
18,3852
51,3256
20,99
15,9148
9,1500
4,3872
36,2715
50,5717
21,2231
54,8444
22,77
73,0000
78,0500
81,8000
90,8027
-3,1244
1,4410
3,4407
155,24
73,9351
78,8200
84,5156
91,1528
-2,4651
0,0447
2,4655
178,96
73,9950
78,3200
85,3060
90,9257
-0,8108
-0,9208
1,2269
228,63
69,1762
73,4000
79,7130
88,6381
-1,3477
-0,7239
1,5298
208,24
0,7040
0,7500
0,9720
6,7747
-0,4362
-2,4247
2,4636
259,80
0,613873 0,650000 0,851025
5,8714
-0,1477
-2,2286
2,2335
266,21
0,3250
2,0776
0,1192
-1,1350
1,1412
275,99
0,093262 0,100000 0,145292
0,9033
-0,0954
-0,5514
0,5595
260,18
0,2200
0,2300
9
CIE 14x - 2001
Table 4.2 CIEDE2000 total colour difference and intermediate calculated values for the colourdifference pair data of table 4.1. Note: kL = kC = kH = 1.
Pair
G
T
SL
SC
SH
RT
∆E00
1
0,0017
1,3010
1,1427
3,2946
1,9951
0,0000
1,2644
2
0,0490
0,9402
1,1831
2,4549
1,4560
0,0000
1,2630
3
0,4966
0,6952
1,1586
1,3092
1,0717
-0,0032
1,8731
4
0,0063
1,0168
1,2148
2,9105
1,6476
0,0000
1,8645
5
0,0026
0,3636
1,4014
3,1597
1,2617
-1,2537
2,0373
6
0,0013
0,9239
1,1943
3,3888
1,7357
0,0000
1,4146
7
0,4999
1,1546
1,6110
1,1329
1,0511
0,0000
1,4440
8
0,5000
1,3916
1,5930
1,0620
1,0288
0,0000
1,5381
9
0,4999
0,9556
1,6517
1,1057
1,0337
-0,0004
0,6378
10
0,5000
0,7827
1,7246
1,0383
1,0100
0,0000
0,9082
10
CIE 14x - 2001
CIE PUBLICATIONS
Recommendations
Standards
2.2 Colours of light signals, 2nd ed., 1975.
17.4 International lighting vocabulary, 4th ed. (Joint
publication IEC/CIE), 1987.
23
International recommendations for motorway
lighting, 1973.
39.2 Recommendations for surface colours for
visual signalling, 2nd ed., 1983.
ISO 10526/CIE S005 CIE standard illuminants for
colorimetry, 1999.
ISO/CIE 10527
Colorimetric observers, 1991
(S002, 1986).
CIE S003-1996
Spatial distribution of Daylight —
CIE standard overcast sky and clear sky, 1996.
CIE DS004.4-1998
Colours of light signals (Draft
standard), 1998.
ISO 16508/CIE S006 Road traffic light — 200 mm
roundel signals photometric properties, 1999.
ISO 17166/CIE S007 Erythema reference action
spectrum and standard erythema dose, 1998.
DS008.2-2000 Lighting of indoor work places, 2000.
DS009.1-2000 Photobiological safety of lamps and
lamp systems, 2000.
Technical Committee Reports
1
Guide lines for minimising urban sky glow near
astronomical observatories (Joint publication
IAU/CIE), 1980.
13.3 Method of measuring and specifying colour
rendering of light sources, 1995.
15.2 Colorimetry, 2nd ed., 1986.
16
Daylight, 1972.
18.2 The basis of physical photometry, 2nd
ed., 1983.
19.21 An analytic model for describing the influence
of
lighting
parameters
upon
visual
performance, 2nd ed., Vol.1.: Technical
foundations, 1981.
19.22 An analytic model for describing the influence
of
lighting
parameters
upon
visual
performance, 2nd ed., Vol.2.: Summary and
application guidelines, 1981.
22
Standardization of luminance distribution on
clear skies, 1972.
29.2 Guide on interior lighting, 2nd ed., 1986.
30.2 Calculation and measurement of luminance
and illuminance in road lighting, 2nd ed., 1982.
31
Glare and uniformity in road lighting
installations, 1976.
32
Lighting in situations requiring special
treatment (in road lighting), 1977.
33
Depreciation
of
installation
and
their
maintenance (in road lighting), 1977.
34
Road lighting lantern and installation data:
photometrics,
classification
and
performance, 1977.
38
Radiometric and photometric characteristics of
materials and their measurement, 1977.
40
Calculations for interior lighting: Basic
method, 1978.
41
Light as a true visual quantity: Principles of
measurement, 1978.
42
Lighting for tennis, 1978.
43
Photometry of floodlights, 1979.
44
Absolute
methods
for
reflection
measurements, 1979.
45
Lighting for ice sports, 1979.
46
A review of publications on properties and
reflection values of material reflection
standards, 1979.
47
Road lighting for wet conditions, 1979.
48
Light signals for road traffic control, 1980.
49
Guide on the emergency lighting of building
interiors, 1981.
51.2 A method for assessing the quality of daylight
simulators for colorimetry, 1981.
52
Calculations for interior lighting: Applied
method, 1982.
53
Methods of characterising the performance of
radiometers and photometers, 1982.
54
55
57
58
59
60
61
62
63
64
65
66
67
69
70
72
73
74
75
76
77
78
79
80
81
82
83
Retroreflection:
Definition
and
measurement, 1982.
Discomfort glare in the interior working
environment, 1983.
Lighting for football, 1983.
Lighting for sports halls, 1983.
Polarisation: Definitions and nomenclature,
instrument polarisation, 1984.
Vision and the visual display unit work
station, 1984.
Tunnel entrance lighting: A survey of
fundamentals for determining the luminance in
the threshold zone, 1984.
Lighting for swimming pools, 1984.
The spectroradiometric measurement of light
sources, 1984.
Determination of the spectral responsivity of
optical radiation detectors, 1984.
Electrically calibrated thermal detectors of
optical radiation (absolute radiometers), 1985.
Road surfaces and lighting (joint technical
report CIE/PIARC), 1984.
Guide for the photometric specification and
measurement
of
sports
lighting
installations, 1986.
Methods of characterising illuminance meters
and
luminance
meters:
Performance,
characteristics and specifications, 1987.
The measurement of absolute luminous
intensity distributions, 1987.
Guide to the properties and uses of
retroreflectors at night, 1987.
Visual aspects of road markings (joint technical
report CIE/PIARC; French translation: Aspects
visuels des marquages routiers is available
from PIARC), 1988.
Roadsigns, 1988.
Spectral luminous efficiency functions based
upon brightness matching for monochromatic
point sources, 2° and 10° fields, 1988.
Intercomparison on measurement of (total)
spectral radiance factor of luminescent
specimens, 1988.
Electric light sources: State of the art 1987, 1988.
Brightness-luminance
relations:
Classified
bibliography, 1988.
A guide for the design of road traffic
lights, 1988.
Special metamerism index: Change in
observer, 1989.
Mesopic photometry: History, special problems
and practical solutions, 1989.
CIE History 1913 - 1988, 1990.
Guide for the lighting of sports events for
colour television and film systems, 1989.
11
CIE 14x - 2001
84
85
86
87
88
89
90
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
12
Measurement of luminous flux, 1989.
Solar spectral irradiance, 1989.
CIE 1988 2° spectral luminous efficiency
function for photopic vision, 1990.
Colorimetry of self-luminous displays - A
bibliography, 1990.
Guide for the lighting of road tunnels and
underpasses, 1990.
Technical Collection 1990:
89/1 Results of a CIE detector response
intercomparison
89/2 Photobiological effects of sunlamps
89/3 On the deterioration of exhibited
museum objects by optical radiation
89/4 Guide for the measurement of
underground mine lighting.
Sunscreen testing (UV.B), 1991.
Road lighting as an accident countermeasure,
1992.
Guide for floodlighting, 1993.
Contrast and visibility, 1992.
Electric light sources - State of the art, 1992.
Maintenance of indoor electric lighting
systems, 1992.
Personal dosimetry of UV radiation, 1992.
Lighting education (1983-1989), 1992.
Fundamentals of the visual task of night
driving, 1992.
Parametric
effects
in
colour-difference
evaluation, 1993.
Recommended file format for electronic
transfer of luminaire photometric data, 1993.
Technical Collection 1993:
103/1 Colour appearance analysis
103/2 Industrial lighting and safety at work
103/3 Reference action spectra for ultraviolet
induced erythema and pigmentation of
different human skin types
103/4 Biologically effective emissions and
hazard potential of desk-top luminaires
incorporating tungsten halogen lamps
103/5 The economics of interior lighting
maintenance
103/6 Clarification of maintained illuminance
and associated terms.
Daytime running lights (DRL), 1993.
Spectroradiometry of pulsed optical radiation
sources, 1993.
CIE
Collection
in
Photobiology
and
Photochemistry, 1993:
106/1 Determining ultraviolet action spectra
106/2 Photokeratitis
106/3 Photoconjunctivitis
106/4 A reference action spectrum for
ultraviolet induced erythema in human
skin
106/5 Photobiological effects in plant growth
106/6 Malignant melanoma and fluorescent
lighting
106/7 On the quantification of environmental
exposures: limitations of the concept of
risk-to-benefit ratio
106/8 Terminology for
photosynthetically
active radiation for plants.
Review of the official recommendations of the
CIE for the colours of signal lights, 1994.
Guide to recommended practice of daylight
measurement, 1994.
A method of predicting corresponding colours
under different chromatic and illuminance
adaptation, 1994.
Spatial distribution of daylight - Luminance
distributions of various reference skies, 1994.
Variable message signs, 1994.
Glare evaluation system for use within outdoor
sports- and area lighting, 1994.
113 Maintained night-time visibility of retroreflective
road signs, 1995.
114 CIE Collection in photometry and radiometry,
1994:
114/1 Survey of reference materials for
testing
the
performance
of
spectrophotometers and colorimeters
114/2 International
intercomparison
on
transmittance measurement - Report of
results and conclusions
114/3 Intercomparison of luminous flux
measurements on HPMV lamps
114/4 Distribution temperature and ratio
temperature
114/5 Terminology relating to non-selective
detectors
114/6 Photometry of thermally sensitive
lamps.
115 Recommendations for the lighting of roads for
motor and pedestrian traffic, 1995.
116 Industrial colour-difference evaluation, 1995.
117 Discomfort glare in interior lighting, 1995.
118 CIE Collection in colour and vision, 1995:
118/1 Evaluation
of
the
attribute
of
appearance called gloss
118/2 Models of heterochromatic brightness
matching
118/3 Brightness-luminance relations
118/4 CIE
guidelines
for
co-ordinated
research on evaluation of colour
appearance models for reflection print
and self-luminous display image
comparisons
118/5 Testing colour appearance models:
Guidelines for co-ordinated research
118/6 Report on color difference literature
118/7 CIE guidelines for co-ordinated future
work on industrial colour-difference
evaluation.
121 Photometry and goniophotometry of luminaires,
1996.
122 The
relationship
between
digital
and
colorimetric data for computer-controlled CRT
displays, 1996.
123 Low Vision - Lighting needs for the partially
sighted, 1997.
124 CIE Collection in Colour and Vision, 1997:
124/1 CIE TC 1-31 Report: Colour notations
and colour order systems
124/2 CIE TC 1-18 Chairman's Report: On
the course of the disability glare
function
and
its
attribution
to
components of ocular scatter
124/3 Next step in industrial colour difference
evaluation, Report on a colour
difference research meeting.
125 Standard erythemal dose — A review, 1997.
126 Guidelines for minimizing sky glow, 1997.
127 Measurement of LEDs, 1997.
128 Guide to the lighting for open-cast mines,
1998.
129 Guide for lighting exterior work areas, 1998.
130 Practical methods for the measurement of
reflectance and transmittance, 1998.
131 The CIE 1997 interim colour appearance model
(simple version), CIECAM97s, 1998.
132 Design methods for lighting of roads, 1999.
134 CIE
Collection
in
Photobiology
and
Photochemistry, 1999.
134/1 CIE TC 6-26 Report: Standardization of
the terms UV-A1, UV-A2 and UV-B
134/2 CIE TC 6-30 Report: UV protection of
the eye
134/3 CIE TC 6-38 Report: Recommendation
on photobiological safety of lamps. A
review of standards
CIE 14x - 2001
135 CIE Collection 1999: Vision and colour,
physical measurement of light and radiation.
135/1 Disability Glare
135/2 Colour rendering, closing remarks
135/3 Virtual metamers for assessing the
quality of simulators of CIE illuminant
D50 (Supplement 1-1999 to CIE 511981)
135/4 Some recent developments in colourdifference evaluation
135/5 Visual
adaptation
to
complex
luminance distribution
135/6 45°/0° Spectral reflectance factors of
pressed polytetrafluoroethylene (PTFE)
Proceedings of the Sessions:
1921
1924
1927
1928
1931
1935
1939
1948
1951
1955
1959 4-7
Paris
Genèva
Bellagio
Saranac
Cambridge
Berlin
Scheweningen
Paris
Stockholm
Zürich
Bruxelles (Vol. A,B,C,D)
140
power (Reprint of NIST Technical Note
1413)
Guide to the lighting of urban areas, 2000.
The conspicuity of traffic signs in complex
background, 2000.
CIE Collection 2000: Photobiology and
Photochemistry.
138/1 Blue-light photochemical retinal hazard
138/2 Action spectrum for photocarcinogenesis (non-melanoma skin cancers)
138/3 Standardized
protocols
for
photocarcinogenesis safety testing
138/4 A proposed global UV index.
Road lighting calculations, 2000
1963
1967
1971
1975
1979
1983
1987
1991
1995
1999
11
14
21
36
50
56
71
91
119-120
133
136
137
138
Vienna (Vol. A,B,C,D)
Washington (Vol. A,B)
Barcelona (Vol. A,B,C)
London
Kyoto
Amsterdam
Venice, Vol.1-2
Melbourne, Vol.1-2
New Delhi, Vol. 1-2
Warsaw, Vol. 1-2
Discs and other publications
D001 Disc version of CIE Colorimetric Data (S001
and S002 Tables), 1988.
D002 Disc version of CIE Colorimetric and Colour
Rendering Data (Publ. 13.2 and 15.2 Tables),
1991.
D003 CIE Roster.
D004 CIE publications.
D005 A method for assessing the quality of D65
daylight simulators for colorimetry (based on
CIE 51-1981) 1994.
D006 Automatic
quality
control
of
daylight
measurement - Software for IDMP stations
(computer program to CIE 1081994),
1994.
D007 A computer program implementing the "Method
of predicting corresponding colours under
different chromatic and
illuminance
adaptation"
(described in CIE 109-1994), 1994.
D008 Computer program
to calculate
CRIs
(according to CIE 13.3-1995), 1995.
x001 Aktuelle Themen der Außenbeleuchtung (SLG
- CIE Div. 5 Symposium Proceedings, Fribourg,
1 Feb. 1989).
x003 Daylight and solar radiation measurement (CIE
- WMO Symposium Proceedings, Berlin 9-11
Oct. 1989).
x004 Symposium
on
light
and
radiation
measurement '81, Hajdúszoboszoló (CIEHungarian NC).
x005 Proceedings of the CIE Seminar '92 on
Computer programs for light and lighting.
x006 Japan CIE Session at PRAKASH 91.
x007 Proceedings of the CIE Symposium '93 on
Advanced Colorimetry.
x008 Urban sky glow - a worry for astronomy
(Proceedings of a Symposium of CIE TC 4-21),
1994.
x009 Proceedings of the CIE Symposium '94 on
Advances in Photometry.
x010 Proceedings of the CIE Expert Symposium '96
Colour Standards for Image Technology.
x011 Special volume, 23rd Session, New Dehli ’95,
Late papers.
x012 NPL — CIE-UK Visual Scales Conference.
x013 Proceedings of the CIE LED Symposium ’97 on
Standard Methods for Specifying and
Measuring LED Characteristics, 1998.
x014 Proceedings of the CIE Expert Symposium ’97
on Colour Standards for Imaging Technology,
1998.
x015 Proceedings of the First CIE Symposium on
Lighting Quality, 1998.
x016 Proceedings of the CIE/ICNIRP Conference on
Measurements of Optical Radiation Hazards,
1998.
x017 Special volume, 24th Session, Warsaw ’99,
Late papers
x018 Proceedings of the CIE Symposium ’99 “75
Years of CIE Photometry”
13
CIE 14x - 2001
CIE publications on CD-ROM
A CD-ROM with all current CIE Technical Reports and Standards is available from IHS,
Information Handling Services, 15 Inverness Way East, M/S B203 Englewood, Colorado 80112-5776 USA.
CIE-Journal
Vol.1 - Vol.8
1982 - 1989.
CIE NEWS
No. 1 - No. 56
For latest information on CIE publications see the CIE Home Page on the World Wide Web:
http://www.cie.co.at/
14
1986 - 2000.