JID:YJDEQ AID:7984 /FLA [m1+; v1.211; Prn:31/08/2015; 8:35] P.1 (1-44) Available online at www.sciencedirect.com ScienceDirect 1Q1 1 2 2 J. Differential Equations ••• (••••) •••–••• 3 www.elsevier.com/locate/jde 4 3 4 5 5 6 6 7 8 9 10 7 Stochastic variational inequalities on non-convex domains 11 9 10 11 12Q2 Rainer Buckdahn , Lucian Maticiuc , Étienne Pardoux , Aurel Răşcanu b,d 12 a 13Q3 14 15 8 b c 13 14 a Laboratoire de Mathématiques, CNRS-UMR 6205, Université de Bretagne Occidentale, 6, avenue Victor Le Gorgeu, 15 16 29238 Brest Cedex 3, France 16 17 17 18 b Faculty of Mathematics, “Alexandru Ioan Cuza” University, Carol I Blvd., no. 9, Iasi, 700506, Romania c LATP, Université de Provence, CMI, 39, rue F. Joliot-Curie, 13453 Marseille Cedex 13, France 19 d “Octav Mayer” Mathematics Institute of the Romanian Academy, Iasi branch, Carol I Blvd., no. 8, Iasi, 700506, 19 20 Romania 20 21 Received 5 December 2013; revised 2 May 2015 21 18 22 22 23 23 24 24 25 25 Abstract 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 26 The objective of this work is to prove in a first step the existence and the uniqueness of a solution of the following multivalued deterministic differential equation: dx(t) + ∂ − ϕ(x(t))(dt) dm(t), t > 0, x(0) = x0 , where m : R+ → Rd is a continuous function and ∂ − ϕ is the Fréchet subdifferential of a (ρ, γ )-semiconvex function ϕ; the domain of ϕ can be non-convex, but some regularities of the boundary are required. The continuity of the map m → x : C([0, T ]; Rd ) → C([0, T ]; Rd ) associating to the input function m the solution x of the above equation, as well as tightness criteria allows to pass from the above deterministic case to the following stochastic variational inequality driven by a multi-dimensional Brownian motion: ⎧ t t ⎪ ⎪ ⎪ ⎨ Xt + Kt = ξ + F (s, Xs )ds + G(s, Xs )dBs , t ≥ 0, ⎪ 0 0 ⎪ ⎪ ⎩ dKt (ω) ∈ ∂ − ϕ(Xt (ω))(dt). 42 43 44 45 46 47 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 E-mail addresses: [email protected] (R. Buckdahn), [email protected] (L. Maticiuc), [email protected] (É. Pardoux), [email protected] (A. Răşcanu). http://dx.doi.org/10.1016/j.jde.2015.08.023 0022-0396/© 2015 Published by Elsevier Inc. 43 44 45 46 47 JID:YJDEQ AID:7984 /FLA 1 [m1+; v1.211; Prn:31/08/2015; 8:35] P.2 (1-44) R. Buckdahn et al. / J. Differential Equations ••• (••••) •••–••• 2 © 2015 Published by Elsevier Inc. 1 2 2 3 4 5 3 MSC: 60H10; 60J60 4 Keywords: Skorohod problem; Stochastic variational inequalities; Fréchet subdifferential 5 6 6 7 7 8 9 8 1. Introduction 9 10 11 12 13 14 15 16 17 18 19 20 21 22 10 Given a multi-dimensional Brownian motion B = (Bt ) and a proper (ρ, γ )-semiconvex function ϕ (for the definition the reader is referred to Definition 11 from the next section) defined over a possibly non-convex domain Dom(ϕ) and a random variable ξ independent of B, which takes its values in the closure of Dom(ϕ), we are interested in the following multi-valued stochastic differential equations (also called stochastic variational inequality) driven by the Fréchet subdifferential operator ∂ − ϕ: ⎧ t t ⎪ ⎪ ⎨ X + K = ξ + F (s, X ) ds + G (s, X ) dB , t ≥ 0, t t s s s ⎪ 0 0 ⎪ ⎩ dKt (ω) ∈ ∂ − ϕ (Xt (ω)) (dt) . 25 26 27 28 29 30 31 32 33 34 35 36 39 42 43 44 45 46 47 14 15 16 19 (1) 20 21 22 23 ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ x (t) + k (t) = x0 + 24 25 26 27 t 28 f (s, x (s)) ds + m (t) , t ≥ 0, (2) 0 dk (t) ∈ ∂ − ϕ (x (t)) (dt) 30 32 dk (t) ∈ ∂ − ϕ (x (t)) (dt) (for the notation see Definition 11 and Remark 15). With the particular choice of f ≡ 0 and ϕ as convexity indicator function of a closed domain E ⊂ Rd , ϕ (x) = IE (x) := 29 31 0, + ∞, if x ∈ E, if x ∈ / E, 40 41 13 18 However, in order to study the above system, we shall first solve the following deterministic counterpart of the above equation. Given a continuous function m : R+ → Rd and an initial value x0 ∈ Dom(ϕ) we look for a pair of continuous functions (x, k) : R+ → R2d such that 37 38 12 17 23 24 11 33 34 35 36 37 38 39 40 equation (2) turns out to be just the Skorohod problem, i.e., a reflection problem, associated to the data x0 , m and E. For this reason we will refer to equation (1) as Skorohod equation. The existence of solutions for both the Skorohod equation (2) and for the stochastic equation (1), has been well studied by different authors for the case, where ϕ is a convex function. In this case ∂ − ϕ becomes a maximal monotone operator and the domain Dom(ϕ) in which the solution is kept is convex. By replacing ∂ − ϕ by a general maximal monotone operator A, E. Cépa 41 42 43 44 45 46 47 JID:YJDEQ AID:7984 /FLA [m1+; v1.211; Prn:31/08/2015; 8:35] P.3 (1-44) R. Buckdahn et al. / J. Differential Equations ••• (••••) •••–••• 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 3 generalized in [14] the above equation in the finite dimensional case, while A. Răşcanu [32] investigated the infinite dimensional case. Deterministic variational inequalities with regular inputs, i.e., deterministic equations of type (2), with convex ϕ and m = 0 have been well studied and the corresponding results have by now become classical. As concerns the non-convex framework, the reader is referred to A. Marino, M. Tosques [26], M. Degiovanni, A. Marino, M. Tosques [19], A. Marino, C. Saccon, M. Tosques [25] or R. Rossi, G. Savaré [36,37]. They used the concept of φ-convexity (see, e.g., [26, Definition 4.1]) and they provide the existence, uniqueness and continuous dependence on the initial data of the solutions for the evolution equation of type (2) in the case m = 0, f = 0 (or f (t, x (t)) = f (t) in [37]). We specify that our notion of (ρ, γ )-semiconvex function corresponds to the particular case of a φ-convex function of order r = 1 with φ (x, y, ϕ (x) , ϕ (y) , α) := ρ + γ |α|. This particular form was required by the presence of the singular input dm/dt . Related to our problem is the research on non-convex differential inclusions, see, e.g., F. Papalini [30], T. Cardinali, G. Colombo, F. Papalini, M. Tosques [10] and A. Cernea, V. Staicu [15]. In [15] it is proved the existence of a solution for the Cauchy problem 17 18 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 x (0) = x0 , 43 44 45 46 47 3 4 5 6 7 8 9 10 11 12 13 14 15 16 18 19 where ϕ is a φ-convex function of order r = 2, F is an upper semicontinuous and cyclically monotone multifunction and f is a Carathéodory function. The particular case of a reflection problem, i.e., with ϕ = IE , was extended to that of moving domains E (t), t ≥ 0, by considering the following problem (which solution is called sweeping process): 20 21 22 23 24 25 x (t) + NE(t) (x (t)) f (t, x (t)) , t ≥ 0, 28 where NE(t) (x (t)) = ∂ − IE(t) (x (t)) is the external normal cone to E (t) in x (t). This problem was introduced by J.J. Moreau (see [29]) for the case f ≡ 0 and convex sets E (t), t ≥ 0, and it has been intensively studied since then by several authors; see, e.g., C. Castaing [11], M.D.P. Monteiro Marques [28]. For the case of a sweeping process without the assumption of convexity on the sets E (t), t ≥ 0, we refer to [3,4,16,18]. The extension to the case f ≡ 0 was considered, e.g., in C. Castaing, M.D.P. Monteiro Marques [12] and J.F. Edmond, and L. Thibault [21] (see also the references therein). Another extension was made in [27] and [34] by considering the quasivariational sweeping process x (t) + NE(t,x(t)) (x (t)) 0, 26 27 x (0) = x0 , t ≥ 0, x (0) = x0 . 41 42 2 17 x ∈ −∂ − ϕ (x) + F (x) + f (t, x) , 19 20 1 29 30 31 32 33 34 35 36 37 38 39 40 41 The works mentioned above concern the case with vanishing driving force m = 0. Let us discuss now the case of equation (2) with singular input dm/dt . The associated reflection problem with singular input dm/dt has been investigated by A.V. Skorohod in [39] and [40] (for the particular case of E = [0, ∞)), by H. Tanaka in [41] (for a general convex domain E), and by P.-L. Lions and A.S. Sznitman in [24] and Y. Saisho in [38] for a non-convex domains. Generalizations from the reflection problem (with ∂ϕ = ∂IE ) to the case of ∂ϕ for a general convex function ϕ, and 42 43 44 45 46 47 JID:YJDEQ AID:7984 /FLA 4 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 [m1+; v1.211; Prn:31/08/2015; 8:35] P.4 (1-44) R. Buckdahn et al. / J. Differential Equations ••• (••••) •••–••• even to the case of a maximal monotone operator A, were discussed by A. Răşcanu in [32], V. Barbu and A. Răşcanu in [2] and by E. Cépa in [13] and [14]. Concerning the stochastic equations, we shall mention the papers [24] by P.-L. Lions and A.S. Sznitman and [38] by Y. Saisho, but also [20] by P. Dupuis and H. Ishii for stochastic differential equations with reflecting boundary conditions. On the other hand, A. Răşcanu [32], I. Asiminoaei and A. Răşcanu [1] as well as A. Bensoussan and A. Răşcanu [5] studied stochastic variational inequalities (1) in the convex case. More recently, A.M. Gassous, A. Răşcanu and E. Rotenstein obtained in [22] existence and uniqueness results for stochastic variational inequalities with oblique subgradients. More precisely, in their equation the direction of reflection at the boundary of the convex domain differs from the normal direction, an effect which is caused by the presence of a multiplicative Lipschitz matrix acting on the subdifferential operator. In the authors’ approach it turned out to be crucial to pass first by a study of the Skorohod problem with generalized reflection. The objective of the present work is twofold: We generalize both the (non-)convex reflection problem as well as convex variational inequalities to non-convex variational inequalities. Some studies in this direction have been made already by A. Răşcanu and E. Rotenstein in [33]: a non-convex setup for multivalued (deterministic) differential equations driven by oblique subgradients has been established and the uniqueness and the local existence of the solution has been proven. Our approach here in the present manuscript is heavily based on an a priori discussion of the generalized Skorohod problem (2) with f ≡ 0 and a (ρ, γ )-semiconvex ϕ. We give useful a priori estimates and prove the existence and the uniqueness of a solution (x, k) for the generalized Skorohod problem: 34 35 36 37 38 39 x (t) + k (t) = x0 + m (t) , dk (t) ∈ ∂ − ϕ (x (t)) (dt) , t ≥ 0, 42 43 44 45 46 47 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 25 (3) where x0 ∈ Dom (ϕ), the input m is a continuous function starting from zero, and ∂ − ϕ is the Fréchet subdifferential of a proper, lower semicontinuous and (ρ, γ )-semiconvex function ϕ. Here the set Dom (ϕ) is not necessarily convex, but however two assumptions are required: 26 27 28 29 30 31 32 1. Dom (ϕ) satisfies the uniform exterior ball condition (see Definition 1); 2. Dom (ϕ) satisfies the (γ , δ, σ )-shifted uniform interior ball condition, i.e. there are some suitable constants γ ≥ 0 and δ, σ > 0 such that, for all y ∈ Dom (ϕ), there are 2 some λy ∈ (0, 1] and vy ∈ Rd , vy ≤ 1 with λy − vy + λy γ ≥ σ and B x + vy , λy ⊂ Dom (ϕ) , 33 34 35 36 37 38 for all x ∈ Dom (ϕ) ∩ B (y, δ) . 40 41 2 24 32 33 1 39 40 We observe that this condition is fulfilled if, in particular, the domain Dom (ϕ) satisfies the uniform interior drop condition (see Definition 5). It is worth pointing out that the shifted uniform interior ball condition is comparable with assumption (5) of P.-L. Lions, A.S. Sznitman [24] (or Condition (B) from [38]) (see 20–21). the Remarks The application m → x : C [0, T ] ; Rd → C [0, T ] ; Rd , which associates to the input function m the solution x of (3), will be proven to be continuous. This allows to derive the existence of a solution to the associated stochastic equation with additive noise M = (Mt ): 41 42 43 44 45 46 47 JID:YJDEQ AID:7984 /FLA [m1+; v1.211; Prn:31/08/2015; 8:35] P.5 (1-44) R. Buckdahn et al. / J. Differential Equations ••• (••••) •••–••• 1 2 Xt (ω) + Kt (ω) = ξ (ω) + Mt (ω) , t ≥ 0, ω ∈ , dKt (ω) ∈ ∂ − ϕ (Xt (ω)) (dt) . 5 (4) 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 After having the existence, the uniqueness and properties for the equations (3) and (4), we will be able to extend the study to the more general equations (2) and (1), where f (respectively F ) is continuous, satisfies a one-sided Lipschitz condition with respect to the second variable and a boundedness assumption. The article is organized as it follows: The next section is devoted to a recall of such basic notions as those of as a semiconvex set, a (ρ, γ )-semiconvex function or a Fréchet subdifferential. Some notions, like for instance that of a (ρ, γ )-semiconvex function, are illustrated by an example. In Section 3 we give the definition of the solution to the generalized Skorohod problem (3), we prove the existence and the uniqueness of a solution (x, k) and we give some useful a priori estimations. Moreover, we extend equation (3) to the stochastic case (4). Section 4 is devoted to the proof of the both main results of Section 3. Finally, the Sections 5 and 6 study the extension of the results established in Section 3 to the equations (2) and (1). Appendix A is devoted to important auxiliary results such as applications of Fatou’s Lemma, some complements concerning tightness in C R+ ; Rd or a very useful forward stochastic inequality, which are used in our approach. 23 24 25 26 27 We introduce first some definitions and results concerning the notions of normal cone, uniform exterior ball conditions, semiconvex sets, (ρ, γ )-semiconvex functions and Fréchet subdifferential of a function. Here and everywhere below E will be a nonempty closed subset of Rd . Let NE (x) be the closed external normal cone of E at x ∈ Bd (E) i.e. dE (x + δu) d NE (x) := u ∈ R : lim = |u| , δ0 δ 30 where dE (z) := inf {|z − x| : x ∈ E} is the distance of a point z ∈ Rd to E. 33 34 35 where B (x, r) denotes the ball from Rd of center x and radius r 11 12 13 14 15 16 17 18 22 23 24 25 26 27 28 29 30 31 32 34 35 37 40 for all x ∈ Bd (E) 42 41 42 and 43 44 44 for all x ∈ Bd (E) and u ∈ NE (x) such that |u| = r0 it holds that dE (x + u) = r0 . 46 47 10 39 NE (x) = {0} 41 45 9 38 or equivalently if 40 43 8 36 B (x + u, r0 ) ∩ E = ∅, 38 39 7 33 Definition 1. Let r0 > 0. We say that E satisfies the r0 -uniform exterior ball condition (we write it r0 -UEBC for brevity) if 36 37 6 21 29 32 5 20 2. Preliminaries 28 31 4 19 21 22 2 3 19 20 1 45 46 We remark that for all v ∈ NE (x) with |v| ≤ r0 we also have dE (x + v) = |v|. 47 JID:YJDEQ AID:7984 /FLA 6 1 2 [m1+; v1.211; Prn:31/08/2015; 8:35] P.6 (1-44) R. Buckdahn et al. / J. Differential Equations ••• (••••) •••–••• Definition 2. Let γ ≥ 0. A set E is γ -semiconvex if for all x ∈ Bd (E) there exists x̂ ∈ Rd {0} such that 3 x̂, y − x ≤ γ x̂ |y − x|2 , 4 4 5 We have the following equivalence: 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 7 Lemma 3. (See [31, Lemma 6.47].) Let r0 > 0. The set E satisfies the r0 -UEBC if and only if E is 2r10 -semiconvex. 8 For a given z ∈ Rd we denote by E (z) the set of elements x ∈ E such that dE (z) = |z − x|. Obviously, E (z) is nonempty since E is nonempty and closed. Moreover, under the r0 -uniform exterior ball condition, it follows that the set E (z) is a singleton for all z such that dE (z) < r0 . In this case πE (z) will denote the unique element of E (z) and it is called the projection of z on E. We recall the following well-known property of the projection. 11 Lemma 4. Let the r0 -UEBC be satisfied, ε ∈ (0, r0 ) and U ε (E) := y ∈ Rd : dE (y) ≤ ε denoting the closed ε-neighborhood of E. Then: 32 1 NE (x) = x̂ : x̂, y − x ≤ x̂ |y − x|2 , ∀y ∈ E ; 2r0 • the projection πE restricted to U ε (E) is Lipschitz with Lipschitz constant Lε = r0 / (r0 − ε); and • the function d2E (·) is of class C 1 on U ε (E) with 35 36 37 38 39 40 and z − πE (z) ∈ NE (πE (z)) , ∀z ∈ U ε (E) . 43 15 16 17 18 19 20 23 24 25 26 27 28 29 31 32 34 36 Dx (v, r) := conv x, B (x + v, r) = x + t (u − x) : u ∈ B (x + v, r) , t ∈ [0, 1] is called (v, r)-drop of vertex x and running direction v. Remark that if |v| ≤ r, then Dx (v, r) = B (x + v, r). 35 37 38 39 40 41 Definition 5. The set E ⊂ Rd satisfies the uniform interior drop condition if there exist r0 , h0 > 0 such that for all x ∈ E there exists vx ∈ Rd with |vx | ≤ h0 and 42 43 44 Dx (vx , r0 ) ⊂ E 46 47 14 33 44 45 13 Let us introduce now the notion of drop of vertex x and running direction v. Let x, v ∈ Rd , r > 0. The set 41 42 12 30 1 2 ∇d (z) = z − πE (z) 2 E 33 34 10 22 9 21 • the closed external normal cone of E at x is given by 30 31 2 3 ∀y ∈ E. 5 6 1 45 46 (we also say that E satisfies the uniform interior (h0 , r0 )-drop condition). 47 JID:YJDEQ AID:7984 /FLA [m1+; v1.211; Prn:31/08/2015; 8:35] P.7 (1-44) R. Buckdahn et al. / J. Differential Equations ••• (••••) •••–••• 1 2 3 4 7 Remark 6. It is easy to see that if there exists r0 > 0 such that E c satisfies the r0 -UEBC, then E satisfies the uniform interior (h0 , r0 )-drop condition. Indeed let x ∈ Bd (E c ) = Bd (E) and ux ∈ NE c (x) with |ux | = r0 . Then 5 Dx (ux , r0 /2) ⊂ Dx (ux , r0 ) = B (x + ux , r0 ) ⊂ E. 10 11 12 13 14 15 16 17 18 It is easy to see that, for any x ∈ int (E), there exists a direction vx Dx (vx , r0 /2) ⊂ E. (i) (ii) 22 26 27 28 29 30 31 such that |vx | ≤ r0 and 34 35 36 37 38 39 44 45 13 14 15 16 17 18 21 23 24 2 Example 8. Let E be a set for which there exists a function φ ∈ Cb R d 25 such that E = x ∈ Rd : φ (x) ≤ 0 , (ii) Int (E) = x ∈ Rd : φ (x) < 0 , (iii) Bd (E) = x ∈ Rd : φ (x) = 0 and |∇φ (x)| = 1, ∀ x ∈ Bd (E) . (i) 26 27 28 29 30 31 32 Then the set E satisfies the uniform exterior ball condition and the uniform interior drop condition. Indeed, using the definition of E we see that, for x ∈ Bd (E), the gradient ∇φ (x) is a unit normal vector to the boundary, pointing towards the exterior of E. Therefore, for any x ∈ Bd (E), the normal cone is given by NE (x) = {c∇φ (x) : c ≥ 0} and NE c (x) = {−c∇φ (x) : c ≥ 0}. Since φ (y) ≤ 0 = φ (x), for all y ∈ E, x ∈ Bd (E), 33 34 35 36 37 38 39 40 1 ∇φ (x) , y − x = φ (y) − φ (x) − 41 ∇φ (x + λ (y − x)) − ∇φ (x) , y − x dλ 42 43 0 44 ≤ M |y − x|2 = M |∇φ (x)| |y − x|2 , 45 46 47 12 22 (this condition will be called (γ , δ, σ )-SUIBC). 41 43 11 20 (5) 40 42 9 19 2 λy − vy + λy γ ≥ σ, B x + vy , λy ⊂ E, ∀ x ∈ E ∩ B (y, δ) 32 33 8 10 Proposition 7. Let the set E be as above with Int (E) = ∅. If set E satisfies the uniform interior (h0 , r0 )-drop condition then E satisfies the shifted uniform interior ball condition, which means d that there exist γ ≥ 0 and δ, σ > 0, and for every y ∈ E there exist λy ∈ (0, 1] and vy ∈ R , vy ≤ 1 such that 21 25 ∈ Rd We state below that the drop condition implies a weaker condition, but is not equivalent with this (for the proof see Proposition 4.35 in [31]). 20 24 4 7 19 23 3 6 7 9 2 5 6 8 1 46 which means, using Definition 2 and Lemma 3, that E satisfies 1 2M -UEBC. 47 JID:YJDEQ AID:7984 /FLA 1 [m1+; v1.211; Prn:31/08/2015; 8:35] P.8 (1-44) R. Buckdahn et al. / J. Differential Equations ••• (••••) •••–••• 8 Since φ (y) ≥ 0 = φ (x), for all y ∈ E c , x ∈ Bd (E), 2 4 −∇φ (x) , y − x = −φ (y) + 5 ≤ M |y − x|2 = M |−∇φ (x)| |y − x|2 , 7 9 10 11 12 which yields that E c satisfies form interior drop condition. 17 18 19 20 21 22 23 24 25 28 29 32 37 38 39 40 41 42 43 44 45 46 47 9 11 12 Example 9. Let E ⊂ Rd be a closed convex set with nonempty interior. If there exists r0 > 0 such that (the r0 -interior of E) Er0 = ∅ and h0 = supz∈E dEr0 (z) < ∞ (in particular if E is a bounded closed convex set with nonempty interior), then E satisfies the uniform interior (h0 , r0 )-drop condition. r0 Moreover for every 0 < δ ≤ 2(1+h ∧ 1, E satisfies (γ , δ, σ )-SUIBC with λy = σ = δ. 0) 1 ŷ − y . Hence For the proof, let y ∈ E, ŷ the projection of y on the set Er0 and vy = 1+h 0 ŷ − y ≤ h0 , vy ≤ 1 and for all x ∈ E ∩ B (y, δ) 15 r0 B x + v y , δ ⊂ B y + vy , ⊂ conv y, B ŷ, r0 = Dy ŷ − y, r0 ⊂ E. 1 + h0 14 16 17 18 19 20 21 22 23 24 25 26 Let ϕ: Rd → (−∞, +∞] be a function with domain defined by Dom (ϕ) := v ∈ Rd : ϕ (v) < +∞ . 27 28 29 30 We recall now the definition of the Fréchet subdifferential (for this kind of subdifferential operator see, e.g., [26] and the monograph [35, cap. VIII]): 31 32 33 Definition 10. The Fréchet subdifferential ∂ − ϕ is defined by: 35 36 7 13 33 34 6 10 30 31 5 8 and consequently (see Remark 6) E satisfies the uni- 26 27 4 Eε := {x ∈ E : dE c (x) ≥ ε} . 14 16 1 2M -UEBC If E denotes a closed subset of Rd let Eε be the ε-interior of E, i.e. 13 15 3 ∇φ (x + λ (y − x)) − ∇φ (x) , y − x dλ 0 6 8 2 1 3 1 34 35 / Dom (ϕ) and a1 ) ∂ − ϕ (x) = ∅, if x ∈ a2 ) for x ∈ Dom (ϕ), ϕ (y) − ϕ (x) − x̂, y − x − d ∂ ϕ (x) = {x̂ ∈ R : lim inf ≥ 0}. y→x |y − x| Taking into account this definition we will say that ϕ is proper if the domain Dom (ϕ) = ∅ and has no isolated points. We set Dom ∂ − ϕ = x ∈ Rd : ∂ − ϕ (x) = ∅ , ∂ − ϕ = x, x̂ : x ∈ Dom ∂ − ϕ , x̂ ∈ ∂ − ϕ (x) . 36 37 38 39 40 41 42 43 44 45 46 47 JID:YJDEQ AID:7984 /FLA [m1+; v1.211; Prn:31/08/2015; 8:35] P.9 (1-44) R. Buckdahn et al. / J. Differential Equations ••• (••••) •••–••• 1 In the particular case of the indicator function of the closed set E, 2 3 4 ϕ (x) = IE (x) := 5 6 7 8 9 10 11 12 17 18 19 20 21 22 23 24 25 2 0, + ∞, if x ∈ E, if x ∈ / E, 3 4 5 6 7 x̂, y − x − d ∂ IE (x) = x̂ ∈ R : lim sup ≤0 . y→x, y∈E |y − x| 8 9 10 11 Moreover, in this particular case we deduce that, for any closed subset E of a Hilbert space, ∂ − IE (x) = NE (x) 14 16 1 the function ϕ is lower semicontinuous and the Fréchet subdifferential becomes 13 15 9 12 (6) Definition 11. Let ρ, γ ≥ 0. The function ϕ function if 16 → (−∞, +∞] is said to be (ρ, γ )-semiconvex 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 18 20 a1 ) Dom (ϕ) is γ -semiconvex, a2 ) Dom ∂ − ϕ = ∅, a3 ) For all x, x̂ ∈ ∂ − ϕ and y ∈ Rd : 21 22 23 x̂, y − x + ϕ (x) ≤ ϕ (y) + ρ + γ x̂ |y − x|2 . 24 25 26 Remark 12. Let E be a nonempty closed subset of Rd . We have: 28 29 17 19 26 27 14 15 (for the proof see Colombo and Goncharov [17]). : Rd 13 27 28 1. IE is (0, γ )-semiconvex iff E is γ -semiconvex (see (6) and Definitions 2 and 11; we also mention that in the definition of γ -semiconvexity we can take x ∈ E, but in this case x̂ should be taken 0). 2. IE is (0, γ )-semiconvex (or, see [26, Definition 4.1], φ-convex of order r = 1 with φ(x, y, ϕ (x) , ϕ (y) , α) = γ |α|) iff there exist δ, μ > 0 such that x → dE (x) + μ |x|2 is convex on B (y, δ), for any y ∈ E (see [31, Lemma 6.47]). 3. A convex function is also (ρ, γ )-semiconvex function, for any ρ, γ ≥ 0 (see Definition 11 and the definition of the subdifferential of a convex function). 4. If E is convex, then E is γ -semiconvex for any γ ≥ 0 (see the supporting hyperplane Theorem 4.1.6 from [7]). 5. If E has nonempty interior and is 0-semiconvex, then E is convex (see Definition 2 and [8, Exercise 2.27]). 6. If ϕ : Rd → (−∞, +∞] is a (ρ, γ )-semiconvex function, then there exist a, b ∈ R+ and c ∈ R such that ϕ (y) + a |y|2 + b |y|2 + c ≥ 0, for all y ∈ Rd . Indeed, by Definition 11, we have, for a fixed x0 , x̂0 ∈ ∂ − ϕ : a = ρ + γ x̂0 , b = 2a |x0 | + x̂0 and c = a |x0 |2 + x̂0 , x0 − ϕ (x0 ). 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 JID:YJDEQ AID:7984 /FLA 10 1 2 [m1+; v1.211; Prn:31/08/2015; 8:35] P.10 (1-44) R. Buckdahn et al. / J. Differential Equations ••• (••••) •••–••• Example 13. If the bounded set E satisfies the r0 -UEBC and g ∈ C 1 Rd (or g : Rd → R is a convex function), then ϕ : Rd → (−∞, +∞] given by 3 ϕ (x) := IE (x) + g (x) 4 is a lower semicontinuous and 2rL0 , 2r10 -semiconvex function, where |∇g (x)| ≤ L, for any x ∈ E (or |∂g (x)| ≤ L, for any x ∈ E). Moreover 6 5 7 8 5 9 |ϕ (x) − ϕ (y)| ≤ L |x − y| , ∀ x, y ∈ Dom (ϕ) = E. 11 13 14 15 16 11 In order to define the solution for the deterministic problem envisaged by our work it is necessary to introduce the bounded variation function space. Let T > 0, k : [0, T ] → Rd and D be the set of the partitions of the interval [0, T ]. Set S (k) = 19 n−1 22 23 kT := sup S (k), ∈D 25 (7) 26 27 28 BV([0, T ] ; R ) = {k : [0, T ] → R : kT < ∞}. d 31 d 32 38 ∗ C([0, T ] ; R ) = {k ∈ BV([0, T ] ; Rd ) : k(0) = 0} d 45 34 35 36 37 38 40 42 T y (t) , dk (t) . (y, k) → 0 46 47 33 41 42 44 31 39 given by the Riemann–Stieltjes integral 41 43 30 32 The space BV([0, T ] ; Rd ) equipped with the norm ||k||BV([0,T ];Rd ) := |k (0)| + kT is a Banach space. Moreover, we have the duality 39 40 25 29 30 37 24 26 where : 0 = t0 < t1 < · · · < tn = T . Write 29 36 16 21 and 24 35 15 20 23 34 14 19 21 33 13 18 |k(ti+1 ) − k(ti )| i=0 20 28 12 17 18 27 8 10 17 22 7 9 10 12 2 3 4 6 1 43 44 45 46 We will say that a function k ∈ BV loc (R+ ; Rd ) if, for every T > 0, k ∈ BV([0, T ] ; Rd ). 47 JID:YJDEQ AID:7984 /FLA [m1+; v1.211; Prn:31/08/2015; 8:35] P.11 (1-44) R. Buckdahn et al. / J. Differential Equations ••• (••••) •••–••• 1 11 3. Generalized Skorohod problem 1 2 3 4 2 The aim of this section is to prove the existence and uniqueness result for the following deterministic Cauchy type differential equation: 5 6 7 8 9 t > 0, 6 (8) 9 10 x0 ∈ Dom (ϕ), (ii) m ∈ C R+ ; Rd , m (0) = 0, (i) 12 13 11 (9) 14 and 15 ϕ : Rd → (−∞, +∞] is a proper lower semicontinuous and (ρ, γ ) -semiconvex function. 16 (10) 18 19 20 23 24 25 26 27 28 29 (jv) ∀ 0 ≤ s ≤ t, ∀y : R+ → Rd continuous: t t t y (r) − x (r) , dk (r) + ϕ (x (r)) dr ≤ ϕ (y (r)) dr s s 38 39 40 41 24 25 26 (11) s of the generalized Skorohod problem −In this case the pair (x, k) is said to be the solution ∂ ϕ; x0 , m (denoted by (x, k) = SP ∂ − ϕ; x0 , m ). If ϕ = IE then ∂ − ϕ = NE and we say that (x, k) is solution of the Skorohod problem (E; x0 , m) and we write (x, k) = SP (E; x0 , m). 46 47 29 31 32 34 35 36 37 38 39 Remark 15. The notation 40 − dk (t) ∈ ∂ ϕ (x (t)) (dt) 41 42 means that x, k : R+ → Rd are continuous functions satisfying conditions (11-j, jj, jv). 44 45 28 33 42 43 27 30 2 s 33 37 23 |y (r) − x (r)| (ρdr + γ d kr ) . + 32 36 20 22 t 31 35 19 21 (j ) x (t) ∈ Dom (ϕ), ∀ t ≥ 0 and ϕ (x (·)) ∈ L1loc (R+ ) , (jj) k ∈ BV loc R+ ; Rd , k (0) = 0, (jjj) x (t) + k (t) = x0 + m (t) , ∀ t ≥ 0, 30 34 17 18 Definition 14 (Generalized Skorohod problem). A pair (x, k) of continuous functions x, k : R+ → Rd , is a solution of equation (8) if 21 22 12 13 15 17 7 8 where 11 16 4 5 dx (t) + ∂ − ϕ (x (t)) (dt) dm (t) , x (0) = x0 , 10 14 3 43 44 and will The next result provides an equivalent condition for (11-jv) be used later in the proof of the continuity of the mapping (x0 , m) → (x, k) = SP ∂ − ϕ; x0 , m and for the main existence result in the stochastic case. 45 46 47 JID:YJDEQ AID:7984 /FLA 1 2 3 [m1+; v1.211; Prn:31/08/2015; 8:35] P.12 (1-44) R. Buckdahn et al. / J. Differential Equations ••• (••••) •••–••• 12 Lemma 16. We suppose that ϕ satisfies assumption (10) and let x, k : R+ → Rd be two continuous functions satisfying (11-j, jj). Then the pair (x, k) satisfies (11-jv) if and only if there exists a continuous increasing function A : R+ → R+ , such that 4 jv 5 6 7 8 s s 12 13 14 15 16 and let λ, η : R+ → [0, 1] and θ : R+ → Rd with |θ (r)| ≤ 1, for any r ∈ R+ , be some measurable functions (given by the Radon–Nikodym’s theorem) such that 18 dk (r) = θ (r) dQr , 22 24 dr = λ (r) dQr 17 21 and dAr = η (r) dQr . 22 t+ε t+ε t+ε z − x (r) , θ (r) dQr + ϕ (x (r)) λ (r) dQr ≤ ϕ (z) λ (r) dQr 25 27 t−ε 28 t−ε 27 28 t+ε |z − x (r)|2 η (r) dQr + 30 29 30 t−ε 31 31 32 32 and therefore 34 37 38 39 40 33 t+ε z, t+ε θ (r) dQr − t−ε t+ε x (r) , θ (r) dQr + t−ε ϕ (x (r)) λ (r) dQr ≤ ϕ (z) t−ε t−ε 35 λ (r) dQr 36 t−ε t+ε t+ε t+ε 2 |x (r)|2 η (r) dQr . + |z| η (r) dQr − 2z, x (r) η (r) dQr + t−ε 34 t+ε 37 38 (13) t−ε 41 42 43 44 45 39 40 41 1 Multiplying by and using the Lebesgue–Besicovitch differentiation theorem, Q ([t − ε, t + ε]) we deduce, passing to the limit in the seven above integrals, that there exists 1 ⊂ R+ with 1 dQr = 0, such that for all z ∈ Dom (ϕ) and r ∈ R+ 1 46 47 24 26 t−ε 29 36 20 23 26 35 19 Clearly d kr = |θ (r)| dQr . From (12) we deduce that, for all t ∈ R+ , ε > 0 and z ∈ Dom (ϕ) 25 33 11 Qr := r + kr + Ar 21 23 10 (12) Proof. We only need to prove that (12) ⇒ (11-jv). Denote 17 20 8 s 16 19 7 9 |y (r) − x (r)|2 dAr . + 12 18 6 t 11 15 3 5 s 10 14 2 4 ∀ 0 ≤ s ≤ t, ∀y : R+ → Rd continuous: t t t y (r) − x (r) , dk (r) + ϕ (x (r)) dr ≤ ϕ (y (r)) dr 9 13 1 42 43 44 45 46 z − x (r) , θ (r) + ϕ (x (r)) λ (r) ≤ ϕ (z) λ (r) + |z − x (r)|2 η (r) . 47 JID:YJDEQ AID:7984 /FLA [m1+; v1.211; Prn:31/08/2015; 8:35] P.13 (1-44) R. Buckdahn et al. / J. Differential Equations ••• (••••) •••–••• 1 13 Hence, from the definition of the Fréchet subdifferential we obtain 1 2 2 − θ (r) ∈ ∂ IDom(ϕ) (x (r)) , 3 ∀ r ∈ 2 \ 1 3 4 5 4 and 5 6 7 8 9 10 11 6 θ (r) ∈ ∂ − ϕ (x (r)) , ∀ r ∈ (R+ 2 ) \ 1 , λ (r) where 2 = {r ≥ 0 : λ (r) = 0} with 2 dr = 2 λ (r) dQr = 0. Since IDom(ϕ) is (0, γ )-semiconvex, 7 8 9 10 11 12 12 13 y (r) − x (r) , θ (r) ≤ γ |θ (r)| |y (r) − x (r)| , 2 14 15 16 17 18 19 13 ∀ r ∈ 2 \ 1 . 14 On the other hand, since ϕ is a (ρ, γ )-semiconvex function, we have for any continuous y : R+ → Rd , y (r) − x (r) , 20 θ (r) + ϕ (x (r)) ≤ ϕ (y (r)) + |y (r) − x (r)|2 λ (r) θ (r) ρ +γ , λ (r) 17 19 20 21 22 23 16 18 ∀ r ∈ (R+ 2 ) \ 1 . 21 15 22 Therefore (with the convention 0 · (+∞) = 0) we deduce that, for all r ∈ R+ 1 , 23 24 24 25 y (r) − x (r) , θ (r) + ϕ (x (r)) λ (r) ≤ ϕ (y (r)) λ (r) 25 26 + |y (r) − x (r)| (ρλ (r) + γ |θ (r)|) . 26 2 27 28 27 Integrating on [s, t] with respect to the measure dQr we infer that (11-jv) holds. 29 30 Lemma 17. If dk (t) ∈ ∂ − ϕ (x (t)) (dt) and d k̂ (t) ∈ ∂ − ϕ 2 28 29 x̂ (t) (dt), then for all 0 ≤ s ≤ t : 30 31 32 33 31 t 34 35 32 x (r) − x̂ (r)2 2ρdr + γ d kr + γ d k̂ r 33 34 s t 36 + 37 38 35 36 x (r) − x̂ (r) , dk (r) − d k̂ (r) ≥ 0. (14) 39 40 41 39 Proof. The conclusion follows from (11-jv) written for (x, k) with y = x̂ and for (x̂, k̂) with y = x. 2 42 43 44 45 46 47 37 38 s 40 41 42 Notation 18. Let x[s,t] := sup |xr | and xt := x[0,t] . 43 r∈[s,t] 44 Theorem 19 (Uniqueness). Let assumptions (9) and (10) be satisfied. If (x, k) = SP ∂ − ϕ; x0 , m and (x̂, k̂) = SP(∂ − ϕ; x̂0 , m̂) then for all t ≥ 0: 45 46 47 JID:YJDEQ AID:7984 /FLA [m1+; v1.211; Prn:31/08/2015; 8:35] P.14 (1-44) R. Buckdahn et al. / J. Differential Equations ••• (••••) •••–••• 14 x − x̂ 2 ≤ 2 x0 − x̂0 2 + m − m̂2 + 2 m − m̂ k − k̂t t t t 1 2 · exp(8ρt + 4γ kt + 4γ k̂ t ) . 3 4 5 1 (15) In particular the uniqueness of the problem SP ∂ − ϕ; x0 , m follows. 5 6 Proof. We clearly have 8 7 8 x (t) − m (t) − x̂ (t) + m̂ (t)2 = x0 − x̂0 2 9 10 t 11 +2 12 9 10 t m (r) − m̂ (r) , dk (r) − d k̂ (r) − 2 0 13 11 x (r) − x̂ (r) , dk (r) − d k̂ (r). 12 0 13 14 15 14 Using (14) it follows that 16 15 16 x (t) − x̂ (t)2 − m (t) − m̂ (t)2 ≤ x (t) − m (t) − x̂ (t) + m̂ (t)2 2 ≤ x0 − x̂0 + 2 m − m̂t k − k̂ t t 2 + 2 x (r) − x̂ (r) 2ρdr + γ d kr + γ d k̂ r , 1 2 17 18 19 20 21 22 17 18 19 20 21 22 0 23 24 23 which implies, via Gronwall’s inequality, the desired conclusion. 2 24 25 26 27 25 To derive the uniform boundedness and the continuity of the solution of the generalized Skorohod problem we need to introduce some additional assumptions: 28 |ϕ (x) − ϕ (y)| ≤ L + L |x − y| , ∀ x, y ∈ Dom (ϕ) 30 (16) 34 35 36 37 38 39 32 Dom (ϕ) satisfies the (γ , δ, σ ) -shifted uniform interior ball condition (17) (for the definition of (γ , δ, σ )-SUIBC, see definition (5)). We mention that assumption (16) is obviously satisfied by the function ϕ given in the Example 13. Using Proposition 7 we see that assumption (17) is fulfilled if we impose that 44 45 (18) 34 35 36 37 38 39 41 42 condition which can be more easily visualized. Note that the lower semicontinuity of ϕ and the assumption (16) clearly yield that the Dom (ϕ) is a closed set, and, from the assumption (17) it can be derived that 46 47 33 40 Dom (ϕ) satisfies the (h0 , r0 ) -drop condition, 42 43 29 31 and 40 41 27 30 32 33 26 28 29 31 3 4 6 7 2 43 44 45 46 Int (Dom (ϕ)) = ∅. 47 JID:YJDEQ AID:7984 /FLA [m1+; v1.211; Prn:31/08/2015; 8:35] P.15 (1-44) R. Buckdahn et al. / J. Differential Equations ••• (••••) •••–••• 1 2 3 4 5 6 7 15 Remark 20. Technical condition (5) from assumption (17) will provide an estimate for the total variation of k (see Lemma 29). On the other hand, assumption (5) from P.-L. Lions and A.S. Sznitman [24] (or [38, Condition (B)]) has the same role (see [24, Lemma 1.2]). In the particular case ϕ = IE , as in [24], it is essentially used in the representation of the bounded variation process k and in our case it is used in the subdifferential inequality (11-jv). Hence assumption (17) is required by the transition from the particular case of the indicator function to the case of a general convex l.s.c. function ϕ. 8 9 10 11 14 19 22 23 24 25 26 27 28 37 38 M := sup m < ∞ and CT ,M := sup CT ,m < ∞. m∈M m∈M 41 (c) 22 23 24 25 26 30 31 32 33 If moreover m̂ ∈ C [0, T ] ; Rd 36 37 39 |x (t) − x (s)| + kt − ks ≤ CT ,m · μm (t − s), 35 38 xT ≤ |x0 | + CT ,m , (21) ∀ 0 ≤ s ≤ t ≤ T. 40 41 42 (x̂, k̂) = SP(∂ − ϕ; x̂ , x̂0 ∈ Dom (ϕ) and 0 , m̂), then x − x̂T + k − k̂T ≤ A CT ,m , CT ,m̂ · x0 − x̂0 + m − m̂T , 46 47 21 34 (b) 45 14 29 (20) Theorem 23. Let assumptions (9), (10), (16) and (17) be satisfied. Then there exists a constant C, depending only on the constants from the assumptions, such that if (x, k) = SP ∂ − ϕ; x0 , m then 40 44 13 28 The main results of this section are the following two theorems whose proofs will be given in the next section: (a) kBV [0,T ];Rd = kT ≤ CT ,m , 43 11 27 Remark 22. It is easy to prove that, for any compact subset M ⊂ C [0, T ] ; Rd , 39 42 10 19 34 36 9 20 31 35 7 18 The function μ y : [0, T ] → [0, μ y (T )] is a strictly increasing continuous function and therefore the inverse function μ −1 y : [0, μ y (T )] → [0, T ] is well defined and is also a strictly increasing continuous function. Using this inverse function let C be a positive constant and 2 μ−1 m := 1/μ m δ exp[−C (1 + T + mT )] , (19) CT ,m := exp C (1 + T + mT + m ) . 30 33 6 17 where my (ε) is the modulus of continuity, given by my (ε) := sup |y (t) − y (s)| : |t − s| ≤ ε, t, s ∈ [0, T ] . 29 32 5 16 20 21 4 15 μ y (ε) = ε + my (ε) , 16 18 3 12 In order to prove some a priori estimates, let us introduce the following notation: for y ∈ C [0, T ] ; Rd and ε > 0 write 15 17 2 8 Remark 21. We notice that assumption (18) is similar to Condition (B’) from [38] (the uniform interior cone condition). But the running direction from the drop condition (18) is not required to be uniform with respect to the vertex, like in [38, Condition (B’)]. 12 13 1 43 44 (22) 45 46 where A is a continuous function. 47 JID:YJDEQ AID:7984 /FLA 16 1 2 [m1+; v1.211; Prn:31/08/2015; 8:35] P.16 (1-44) R. Buckdahn et al. / J. Differential Equations ••• (••••) •••–••• We can now derive the following continuity result of the mapping (x0 , m) → (x, k) = SP ∂ − ϕ; x0 , m . 3 4 5 Corollary 24. Let assumptions (9), (10), (16) and (17) be satisfied. If x0n , x0 ∈ Dom (ϕ), mn , m ∈ C R+ ; Rd , mn (0) = 0 and 7 (xn , kn ) = SP x0n → x0 , i) ii) 8 9 and there exist x, k ∈ C R+ ; R d CT ,M := sup CT ,ν < ∞. 23 ν∈M ν∈M 43 44 45 |xn (t) − xn (s)| + kn t − kn s ≤ CT ,M · μ M (t − s) and 24 27 28 30 31 33 34 35 36 xn − xl T + kn − kl T ≤ CT ,M · |x0n − x0l | + ||mn − ml ||T . Therefore there exist x, k, A ∈ C R+ ; R xn → x, d 37 38 39 such that 40 kn → k, in C([0, T ] ; R ), as n → ∞, d and, by Arzelà–Ascoli’s theorem, on a subsequence denoted also with kn , kn → A, in C([0, T ] ; Rd ), as n → ∞, 46 47 22 32 xn T + kn T ≤ a + CT ,M , 35 42 21 29 Let a > 0 be such that |x0n | ≤ a. By the estimates established in Theorem 23 we obtain: for all n, l ∈ N∗ and for all s, t ∈ [0, T ], s ≤ t , 34 41 19 26 μ M (ε) := sup μ ν (ε) 0, as ε 0. 33 40 18 25 Also 32 39 16 20 29 38 15 Proof. Let us fix arbitrary T > 0. The set M = {m, mn : n ∈ N∗ } is a compact subset of C [0, T ] ; Rd . If CT ,m is the constant defined by (19), then, using (20), it follows that 28 37 13 17 27 36 10 14 25 31 9 (a) xn − xT + kn − kT → 0, (b) (x, k) = SP ∂ − ϕ; x0 , m . 24 30 8 such that, for any T ≥ 0, 23 26 7 12 19 22 , sup kn T < ∞, ∀T ≥ 0, 18 21 5 6 n∈N∗ 17 20 0n , mn 4 11 14 16 ∂ − ϕ; x then 13 15 mn → m in C [0, T ] ; Rd , ∀T ≥ 0, iii) 10 12 2 3 6 11 1 41 42 43 44 45 46 where A is an increasing function starting from zero. 47 JID:YJDEQ AID:7984 /FLA [m1+; v1.211; Prn:31/08/2015; 8:35] P.17 (1-44) R. Buckdahn et al. / J. Differential Equations ••• (••••) •••–••• 1 2 17 Clearly, the pair (x, k) satisfies (11-j, jj, jjj) and (12), which means, using Lemma 16, that (x, k) = SP ∂ − ϕ; x0 , m . 2 3 4 5 7 8 9 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 2 3 Theorem 25. Let assumptions (9), (10), (16) and (17) be satisfied. Then the generalized Skorohod problem 6 10 1 4 5 6 x (t) + k (t) = x0 + m (t) , dk (t) ∈ ∂ − ϕ (x (t)) (dt) t ≥ 0, 7 8 9 has a unique solution (x, k), in the sense of Definition 14 (and we write (x, k) = SP ∂ − ϕ; x0 , m ). Before giving the proof of the main results, Theorems 23 and 25, let us examine the particular case of the indicator function of the closed set E (which yields the classical Skorohod problem). If E satisfies the r0 -UEBC, then, by Lemmas 3 and 4 and Definition 11, the set E is 1 1 2r0 -semiconvex and the indicator function IE (x) is a (0, 2r0 )-semiconvex function. Hence assumptions (10) and (16) are satisfied. We write the definition of the solution of the Skorohod problem in the case of the indicator function. Definition 26 (Skorohod problem). Let E ⊂ Rd be a set satisfying the r0 -UEBC. A pair (x, k) is a solution of the Skorohod problem if x, k : R+ → Rd are continuous functions and (j ) x (t) ∈ E, 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 d (jj) k ∈ BV loc R+ ; R , k (0) = 0, (jjj) x (t) + k (t) = x0 + m (t) , (jv) ∀ 0 ≤ s ≤ t ≤ T , ∀y ∈ C (R+ ; E) t t 1 y (r) − x (r) , dk (r) ≤ |y (r) − x (r)|2 d kr . 2r0 s 25 26 27 (23) 29 30 31 s 32 33 The following theorem is a consequence of the main existence Theorem 25. 34 be a continuous function such that m (0) = 0. If E Theorem 27. Let x0 ∈ E and m : R+ → satisfies the r0 -UEBC, for some r0 > 0, and the shifted uniform interior ball condition, then there exists a unique solution of the Skorohod problem, in the sense of Definition 26. Moreover, each one of the following conditions is equivalent with (23-jv): Rd ⎧ t ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ kt = 1x(s)∈Bd(E) d ks , ⎪ ⎪ ⎪ 0 ⎨ t jv ⎪ ⎪ ⎪ k (t) = nx(s) d ks , ⎪ ⎪ ⎪ ⎪ ⎪ 0 ⎪ ⎩ where nx(s) ∈ NE (x (s)) and |nx(s) | = 1, d ks -a.e., 28 35 36 37 38 39 40 41 42 43 (24) 44 45 46 47 JID:YJDEQ AID:7984 /FLA 1 2 3 [m1+; v1.211; Prn:31/08/2015; 8:35] P.18 (1-44) R. Buckdahn et al. / J. Differential Equations ••• (••••) •••–••• 18 and 1 jv 2 ∃ β > 0 such that ∀ y : R+ → E continuous, t t y (r) − x (r) , dk (r) ≤ β |y (r) − x (r)|2 d kr . 4 5 6 s 7 8 9 10 3 4 (25) s Proof. The uniqueness is ensured by Theorem 25. For a direct proof it is sufficient to use inequality (15) and the next one: if (x, k) = SP (E; x0 , m) and (x̂, k̂) = SP E; x̂0 , m̂ , then from (23) we get (see also Lemma 17) x (t) − x̂ (t) , dk (t) − d k̂ (t) + 14 16 17 18 19 20 23 24 25 t t s 28 31 32 33 34 35 36 t y (r) − x (r) , nx(r) 1x(r)∈Bd(E) d kr = 41 s ≤ 1 2r0 1 ≤ 2r0 nx(r) |y (r) − x (r)|2 1x(s)∈Bd(E) d kr t 14 15 16 17 18 19 20 21 23 24 26 27 30 |y (r) − x (r)| d kr . 31 s 32 Clearly (23-jv) =⇒ (25). Proof of (25) =⇒ (24): let [s, t] be an interval such that x (r) ∈ Int (E) for all r ∈ [s, t]. Then there exists δ = δs,t > 0 such that inf dBd(E) x (r) ≥ δ. r∈[s,t] Let λ ∈ [0, δ] and α ∈ C [0, T ] ; Rd such that αT ≤ 1. Setting y (r) = x (r) + λα (r) in (25) we obtain 33 34 35 36 37 38 39 40 41 42 t t α (r) , dk (r) ≤ βλ s 43 d kr . s 46 47 13 29 2 44 45 12 28 s 42 43 10 25 t 38 40 9 22 37 39 s 29 30 y (r) − x (r) , nx(r) d kr y (r) − x (r) , dk (r) = 26 27 2 1 x (t) − x̂ (t) (d kt + d k̂ t ) ≥ 0. 2r0 The existence is due to Theorem 25 (but, for a direct proof of the existence, with condition (23-jv) replaced by (24), we refer the reader to [24]). Proof of (24) =⇒ (23-jv): using Lemma 3 we see 21 22 8 11 12 15 6 7 11 13 5 44 45 46 Hence, passing to the limit, for λ → 0, and taking supαT ≤1 , we deduce the implication: 47 JID:YJDEQ AID:7984 /FLA [m1+; v1.211; Prn:31/08/2015; 8:35] P.19 (1-44) R. Buckdahn et al. / J. Differential Equations ••• (••••) •••–••• x (r) ∈ Int (E) , ∀r ∈ [s, t] =⇒ kt − ks = 0. 1 19 (26) 2 3 2 Let (r) be a measurable function such that | (r)| = 1, d kr -a.e. and 3 4 4 t 5 7 5 (r) d kr . k (t) = 6 6 7 0 8 9 8 Since (25) holds for all 0 ≤ s ≤ t , we deduce, using the Lebesgue–Besicovitch theorem, that 10 d kr -a.e., 11 12 14 12 for any y ∈ C ([0, T ] ; E). Therefore, from Lemma 4, we infer that 15 13 14 15 (r) ∈ NE (x (r)) , d kr -a.e. 16 (27) 17 18 18 19 4. Generalized Skorohod problem: proofs 20 21 22 23 24 25 26 21 In order to prove Theorem 25 let us first prove some auxiliary results. Let (x, k) = SP ∂ − ϕ; x0 , m and y ∈ C (R+ ; E), where E = Dom (ϕ). From (16) and (11–jv) we have, for all 0 ≤ s ≤ t, t s 28 t 29 33 29 |y (r) − x (r)| (ρdr + γ d kr ) . + 2 (28) s 32 Suppose that x (r) ∈ Int (Dom (ϕ)) for all r ∈ [s, t], and let 34 r∈[s,t] 36 39 t 41 43 44 45 46 47 λb s 35 36 d Write y (r) = x (r) + λbα (r) with α ∈ C R+ ; R , α[s,t] ≤ 1 and 0 < λ < 1. Hence the above −1 inequality becomes, for λ = (1 + γ ) (1 + b)2 40 42 31 33 0 < b ≤ inf dBd(E) (x (r)) . 35 38 30 32 34 37 24 27 s 31 23 26 |y (r) − x (r)| dr 30 22 25 t y (r) − x (r) , dk (r) ≤ L (t − s) + L 27 28 16 17 2 We have thus proved inequality (24), since we have (26) and (27). 19 20 9 10 β |y (r) − x (r)|2 − (r) , y (r) − x (r) ≥ 0, 11 13 1 37 38 39 40 2 α (r) , dk (r) ≤ (L + Lb) (t − s) + λ2 b ρ (t − s) + γ (kt − ks ) 41 42 43 ≤ L + Lb + λ2 b2 ρ (t − s) + λb (kt − ks ) . 1+b Taking the supremum over all α such that α[s,t] ≤ 1 we see that 44 45 46 47 JID:YJDEQ AID:7984 /FLA λb2 (kt − ks ) ≤ L + Lb + λ2 b2 ρ (t − s) . 1+b 1 2 3 4 5 6 7 [m1+; v1.211; Prn:31/08/2015; 8:35] P.20 (1-44) R. Buckdahn et al. / J. Differential Equations ••• (••••) •••–••• 20 Lemma 28. Let ϕ such that assumption (16) is satisfied and (x, k) = SP ∂ − ϕ; x0 , m . If x (r) ∈ Int (Dom (ϕ)), for all r ∈ [s, t], then there exists a positive constant C = C (L, ρ, γ , b) such that kt − ks ≤ C (t − s) 9 10 r∈[s,t] 13 16 17 18 Lemma 29. Let ϕ be a (ρ, γ )-semiconvex function and (x, k) = SP ∂ − ϕ; x0 , m . Assume that ϕ satisfies assumption (16) and set Dom (ϕ) satisfies assumption (17). If 0 ≤ s ≤ t and sup |x (r) − x (s)| ≤ δ, r∈[s,t] 20 24 25 26 27 1 3L + 4ρ |k (t) − k (s)| + (29) (t − s) . σ σ Proof. Let us fix arbitrarily α ∈ C R+ ; Rd such that α[s,t] ≤ 1. From assumptions (16)–(17), if |ϕ (y (r)) − ϕ (x (r))| ≤ 3L. 23 24 25 26 27 29 33 34 t α (r) , dk (r) ≤ − λx(s) 37 38 40 t s vx(s) , dk (r) + (3L + 4ρ) (t − s) t +γ s 41 42 43 s 44 47 19 39 From (28) we deduce that 41 46 18 36 38 45 17 35 and 37 43 16 32 |y (r) − x (r)| ≤ vx(s) + λx(s) ≤ 2 35 42 15 31 34 40 13 30 then y (r) ∈ E. Moreover 33 39 12 28 y (r) := x (r) + vx(s) + λx(s) α (r) , r ∈ [s, t] , 30 36 9 22 kt − ks ≤ 29 32 8 21 then there exists σ > 0 such that 28 31 7 20 21 23 6 14 More generally we have 19 22 5 11 0 < b ≤ inf dBd(E) (x (r)) . 12 15 4 10 where 11 14 2 3 Consequently, the following result is proved: 8 1 44 vx(s) + λx(s) 2 d kr . 45 46 47 JID:YJDEQ AID:7984 /FLA [m1+; v1.211; Prn:31/08/2015; 8:35] P.21 (1-44) R. Buckdahn et al. / J. Differential Equations ••• (••••) •••–••• 1 21 Taking the supremum over all α such that α[s,t] ≤ 1 we see, using also (5), that 2 2 σ (kt − ks ) ≤ |k (t) − k (s)| + (3L + 4ρ) (t − s) 3 4 5 6 7 8 11 12 13 2 5 Proof of Theorem 23. We denote by C, C , C generic constants independent of x0 , x̂0 , m, m̂ and T , but possibly depending on constants L, δ, σ , ρ, γ provided by the assumptions. |x (t) − x (s)| ≤ |m (t) − m (s)| + kt − ks . |x (t) − x (s) − m (t) + m (s)| = 2 22 m (r) − m (s) , dk (r) 2 25 t 26 x (s) − x (r) , dk (r) . +2 27 s 28 t 30 x (s) − x (r) , dk (r) ≤ L (t − s) + L 31 |x (s) − x (r)| dr s t 35 37 43 44 1 2 |α|2 ≤ |α − β|2 + |β|2 , we get 36 39 40 1 |x (t) − x (s)|2 ≤ |m (t) − m (s)|2 + 2mm (t − s) (kt − ks ) + C (t − s) 2 t + C |x (r) − x (s)|2 (dr + d kr ) , 45 s 46 47 34 38 Thus, using also the inequality 40 42 33 37 s 38 41 32 35 |x (s) − x (r)|2 (ρdr + γ d kr ) . + 36 27 29 t s 26 28 From (11-jv) written for y (r) ≡ x (s) and (16) we have 33 23 24 s 25 39 19 21 t 24 34 18 20 We clearly have 23 32 15 17 22 31 14 16 21 30 10 13 it follows that 19 29 8 12 |x (t) − x (s) − m (t) + m (s)| = |k (t) − k (s)| ≤ kt − ks , 18 20 7 11 Let 0 ≤ s ≤ t ≤ T . Since 15 17 6 9 Step 1. Some estimates of the modulus of continuity of the function x. 14 16 3 4 and the lemma follows. 9 10 1 41 42 43 44 45 46 and, by Gronwall’s inequality, 47 JID:YJDEQ AID:7984 /FLA [m1+; v1.211; Prn:31/08/2015; 8:35] P.22 (1-44) R. Buckdahn et al. / J. Differential Equations ••• (••••) •••–••• 22 |x (t) − x (s)|2 ≤ m2m (t − s) + mm (t − s) (kt − ks ) + (t − s) · exp C (1 + t − s + kt − ks ) , 1 2 1 (30) 3 4 3 for all 0 ≤ s ≤ t ≤ T . 4 5 6 7 5 Step 2. Estimates of the differences |x (t) − x (s)| and kt − ks under the assumption |x (t) − x (s)| ≤ δ. 8 9 10 12 13 14 21 16 Step 3. Adapted time partition and local estimates. 26 27 t0 = T0 = 0, T1 = inf t ∈ [t0 , T ] : dBd(E) (x (t)) ≤ δ/4 , 29 30 31 t1 = inf {t ∈ [T1 , T ] : |x (t) − x (T1 )| > δ/2} , T2 = inf t ∈ [t1 , T ] : dBd(E) (x (t)) ≤ δ/4 , 32 33 34 ········· 35 ti = inf {t ∈ [Ti , T ] : |x (t) − x (Ti )| > δ/2} Ti+1 = inf t ∈ [ti , T ] : dBd(E) (x (t)) ≤ δ/4 36 37 38 ········· 39 40 20 21 (31) 22 23 24 25 27 28 29 30 31 32 33 34 35 36 37 38 39 42 0 = T0 = t0 ≤ T1 < t1 ≤ T2 < · · · < ti ≤ Ti+1 < ti+1 ≤ · · · ≤ T . 43 44 Let ti ≤ r ≤ Ti+1 . Then x (r) ∈ Int (E) and dBd(E) (x (r)) ≥ δ/4. By Lemma 28 we get 46 47 19 41 44 45 18 40 Clearly 42 43 17 26 Let the sequence given by (the definition is suggested by [24]) 28 41 14 15 |x (t) − x (s)| + kt − ks ≤ μ m (t − s) · exp C (1 + T + mT ) . 23 25 13 since (t − s) + mm (t − s) = μm (t − s) ≤ T + 2 mT . Hence if 0 ≤ s ≤ t ≤ T and |x (t) − x (s)| ≤ δ then 22 24 12 |x (t) − x (s)|2 ≤ μ m (t − s) exp C (1 + T + mT ) , for all 0 ≤ s ≤ t ≤ T , 18 20 11 Using the estimate (30), it clearly follows that 17 19 7 9 kt − ks ≤ C |k (t) − k (s)| + C (t − s) = C |x (t) − x (s) − m (t) + m (s)| + C (t − s) μm (t − s) . ≤ C |x (t) − x (s)| + Cmm (t − s) + C (t − s) ≤ Cδ + Cμ 11 16 6 8 Let 0 ≤ s ≤ r ≤ t ≤ T such that |x (t) − x (s)| ≤ δ. From (29) we have 10 15 2 45 46 |k (t) − k (s)| ≤ kt − ks ≤ C (t − s) for ti ≤ s ≤ t ≤ Ti+1 . 47 JID:YJDEQ AID:7984 /FLA [m1+; v1.211; Prn:31/08/2015; 8:35] P.23 (1-44) R. Buckdahn et al. / J. Differential Equations ••• (••••) •••–••• 1 23 Also for ti ≤ s ≤ t ≤ Ti+1 : 1 2 2 |x (t) − x (s)| ≤ |k (t) − k (s)| + |m (t) − m (s)| ≤ C (t − s) + |m (t) − m (s)| 3 4 6 7 6 7 μm (t − s) . |x (t) − x (s)| + kt − ks ≤ Cμ 9 11 15 16 17 18 19 20 21 for all Ti ≤ s ≤ t ≤ ti , and consequently, for all Ti ≤ s ≤ t ≤ ti , inequality (31) holds. If Ti ≤ s ≤ ti ≤ t ≤ Ti+1 then |x (t) − x (s)| + kt − ks ≤ |x (t) − x (ti )| + kt − kti + |x (ti ) − x (s)| + kti − ks μm (t − ti ) + μ m (ti − s) · exp C (1 + T + mT ) ≤ Cμ ≤ μ m (t − s) × exp C (1 + T + mT ) . 22 23 9 11 |x (t) − x (s)| ≤ δ, 13 8 10 On each of the intervals [Ti , ti ], we have 12 14 5 and then 8 10 4 μm (t − s) ≤ Cμ 5 3 12 13 14 15 16 17 18 19 20 21 22 Consequently for all i ∈ N and Ti ≤ s ≤ t ≤ Ti+1 , inequality (31) holds. 24 23 24 25 Step 4. Getting inequalities (21). 25 26 μm (T ) → [0, T ] is well defined and is a strictly increasing continuous funcSince μ −1 m : 0,μ tion, from 26 ≤ |x (ti ) − x (Ti )| ≤ μm (ti − Ti ) × exp C (1 + T + mT ) ≤ μ m (Ti+1 − Ti ) · exp C (1 + T + mT ) , 29 27 28 29 δ 2 30 31 32 33 34 35 36 37 38 41 δ2 m Ti+1 − Ti ≥ μ −1 exp −2C + T + ) (1 T m 4 2 ≥ μ −1 > 0. m δ exp −2C (1 + T + mT ) 46 47 31 32 34 35 36 37 38 40 41 42 43 45 30 39 Hence the bounded increasing sequence (Ti )i≥0 has a finite number of terms, therefore there exists j ∈ N∗ such that T = Tj . Then 42 44 28 33 we deduce that 39 40 27 T = Tj = j 43 (Ti − Ti−1 ) ≥ j −1 m , i=1 2 μ−1 where m := 1/μ m δ exp −C (1 + T + mT ) (see definition (19)). 44 45 46 47 JID:YJDEQ AID:7984 /FLA 1 [m1+; v1.211; Prn:31/08/2015; 8:35] P.24 (1-44) R. Buckdahn et al. / J. Differential Equations ••• (••••) •••–••• 24 Let 0 ≤ s ≤ t ≤ T . We have 2 3 kt − ks = 4 j 1 k(t∧Ti )∨s − kt∧Ti−1 ∨s i=1 5 7 i=1 8 ≤ j μ m (t − s) · exp C (1 + T + mT ) ≤ T m μ m (t − s) · exp C (1 + T + mT ) 9 10 11 12 13 16 19 20 21 22 25 26 27 28 29 32 33 34 35 36 37 38 |x (t)| = |x0 + m (t) − k (t)| ≤ |x0 | + mt + kt ≤ |x0 | + mT + kT . Hence there exists a positive constant C = C (L, δ, σ, ρ, γ ) such that, under notations (19), kT ≤ CT ,m , and xT ≤ |x0 | + CT ,m , 41 ≤ CT ,m μ m (t − s) . 44 45 46 47 10 11 14 15 18 19 20 21 22 24 25 26 27 28 29 30 Step 5. Getting inequality (22). Since kT + k̂ T ≤ CT ,m + CT ,m̂ , from inequality (15) we have x − x̂ 2 ≤ 2 x0 − x̂0 2 + m − m̂2 + 2 m − m̂ k − k̂T T T T · exp 4γ (2t + kT + k̂ T ) 2 ≤ A2 CT ,m , CT ,m̂ x0 − x̂0 + m − m̂T , 31 32 33 34 35 36 37 38 39 (where A is a continuous function) and the conclusion follows since k − k̂ = x0 − x̂0 + m − m̂ − x − x̂ . 2 42 43 9 23 which is part of conclusion (21). In order to end the proof of (21) it is sufficient to remark that, for any 0 ≤ s ≤ t ≤ T , |x (t) − x (s)|2 ≤ m2m (t − s) + mm (t − s) CT ,m + (t − s) · exp C 1 + CT ,m 39 40 8 17 30 31 7 16 and 23 24 6 13 kT ≤ T m μ m (T ) · exp C (1 + T + mT ) ≤ exp C (1 + T + mT + m ) 15 18 4 12 and consequently 14 17 3 5 j ≤ μ m (t ∧ Ti ) ∨ s − (t ∧ Ti−1 ) ∨ s · exp C (1 + T + mT ) 6 2 40 41 42 Proof of the Theorem 25. Uniqueness was proved in Theorem 19. To prove existence, let mn ∈ C 1 R+ ; Rd with mn (0) = 0 be such that mn − mT → 0 for all T ≥ 0. Since mn ∈ C 1 R+ ; Rd , we deduce, using the results from the papers [19] or [37], that there exists a unique solution (xn , kn ) of the SP ∂ − ϕ; x0 , mn , and by Corollary 24 we see that there exist x, k ∈ C R+ ; Rd such that for all T ≥ 0 43 44 45 46 47 JID:YJDEQ AID:7984 /FLA [m1+; v1.211; Prn:31/08/2015; 8:35] P.25 (1-44) R. Buckdahn et al. / J. Differential Equations ••• (••••) •••–••• 25 xn − xT + kn − kT → 0, as n → ∞, and (x, k) = SP ∂ − ϕ; x0 , m , 1 2 1 2 3 4 3 which completes the proof. 2 4 5 6 5 5. Generalized Skorohod equations 6 7 8 9 7 Consider the next (non-convex) variational inequality with singular input (which will be called generalized Skorohod differential equation): 10 12 13 14 11 t ≥ 0, (32) 17 16 (for the notation we recall Remark 15). We introduce the following supplementary assumptions: 17 18 f (·, x) : R+ → R is measurable, ∀x ∈ R , d 19 20 and there exists 22 23 μ ∈ L1loc (R+ ), (i) 24 x → f d 26 27 28 (33) 21 22 (t, x) : Rd → Rd 23 is continuous, 24 25 (34) 28 0 29 where 30 f # (t) := sup |f (t, x)| : x ∈ Dom (ϕ) . 31 32 34 35 36 37 38 Proposition 30 (Generalized Skorohod equation). Let ϕ : Rd → (−∞, ∞] and f : R+ × Rd → Rd be such that assumptions (9), (10), (16), (17) and (33), (34) are satisfied. Then the generalized Skorohod equation (32) has a unique solution. 43 |x (t) − x̂ (t) |2 + 2 34 35 36 37 38 41 42 x (r) − x̂ (r) , dk (r) − d k̂ (r) 43 44 0 t 45 47 33 40 t 44 46 32 39 Proof. Let (x, k) and (x̂, k̂) be two solutions. Then 41 42 31 (35) Clearly, assumption (34-iii) is satisfied if, as example, f (t, x) = f (t) or if Dom (ϕ) is bounded. 39 40 26 27 29 33 19 20 such that a.e. t ≥ 0: (ii) x − y, f (t, x) − f (t, y) ≤ μ (t) |x − y|2 , ∀x, y ∈ Rd , T f # (s) ds < ∞, ∀T ≥ 0, (iii) 25 30 13 15 dk (t) ∈ ∂ − ϕ (x (t)) (dt) 18 21 12 14 15 16 9 10 ⎧ t ⎪ ⎪ ⎨ x (t) + k (t) = x + f (s, x (s)) ds + m (t) , 0 ⎪ 0 ⎪ ⎩ dk (t) ∈ ∂ − ϕ (x (t)) (dt) 11 8 =2 0 x (r) − x̂ (r) , f (r, x (r)) − f r, x̂ (r) dr ≤ 2 t 0 45 μ+ (r) |x (r) − x̂ (r) |2 dr, 46 47 JID:YJDEQ AID:7984 /FLA 1 [m1+; v1.211; Prn:31/08/2015; 8:35] P.26 (1-44) R. Buckdahn et al. / J. Differential Equations ••• (••••) •••–••• 26 and using Lemma 17 it follows that 1 2 2 x (t) − x̂ (t)2 ≤ 2 3 4 5 t x (r) − x̂ (r)2 dAr , 3 4 5 0 6 7 6 where 7 8 t 9 At = 2ρt + γ kt + γ k̂ t + 10 11 12 13 14 15 16 17 18 19 20 21 24 27 ⎧ xn (t) = x0 , for t < 0, ⎪ ⎪ ⎪ t ⎪ ⎨ xn (t) + kn (t) = x0 + f s, xn (s − 1/n) ds + m (t) , ⎪ ⎪ ⎪ 0 ⎪ ⎩ − dkn (t) ∈ ∂ ϕ (xn (t)) (dt) . For any i ∈ N, for t ∈ i i+1 n, n 32 35 38 39 42 43 18 for t ≥ 0, (36) 19 20 21 25 f s, xn (s − 1/n) ds + m (t) − m (i/n) , therefore by iteration over the intervals (xn , kn ) = SP ∂ − ϕ; x0 , mn , with t mn (t) = i i+1 n, n 26 27 28 i/n 29 there exists (via Theorem 25) a unique pair 30 31 32 33 f s, xn (s − 1/n) ds + m (t) . 0 34 35 36 37 Let T > 0. If M denotes the set M := mn : n ∈ N∗ , then M is a relatively compact subset of C subset of C [0, T ] ; Rd . Indeed [0, T ] ; Rd 38 39 40 since it is a bounded and equicontinuous 41 42 43 44 T 45 47 17 44 46 15 24 xn (t) + kn (t) − kn (i/n) = xn (i/n) + 40 41 14 23 t 36 37 13 16 , we can write 33 34 12 22 29 31 11 28 30 10 Applying a Gronwall’s type inequality, we see that x = x̂. Concerning the existence, we shall obtain the solution (x, k) as the limit in C [0, T ] ; Rd × C [0, T ] ; Rd of the sequence (xn , kn )n∈N∗ defined by an approximate Skorohod equation 25 26 9 μ+ (r) dr. 0 22 23 8 mn T ≤ 45 f # (s) ds + mT 0 46 47 JID:YJDEQ AID:7984 /FLA [m1+; v1.211; Prn:31/08/2015; 8:35] P.27 (1-44) R. Buckdahn et al. / J. Differential Equations ••• (••••) •••–••• 1 27 and, for s < t , 1 2 2 t 3 |mn (t) − mn (s)| ≤ 4 5 f (r) dr + |m (t) − m (s)| . 4 5 s 6 7 3 # 6 7 Then by Theorem 23 and Remark 22, 8 8 9 xn T + kn T ≤ |x0 | + CT ,M 10 11 12 16 17 18 19 20 24 : n ∈ N∗ } is a relatively compact subset of Hence, by Arzelà–Ascoli’s theorem, the set {xn C [0, T ] ; Rd . Let x ∈ C [0, T ] ; Rd be such that, along a sequence still denoted by {xn : n ∈ N∗ }, 24 26 f (s, x(s)) ds + m (t) , as n → ∞, mn (t) → 29 30 and 31 31 t 32 kn (t) → k (t) = x0 + 39 40 41 32 f (s, x(s)) ds + m (t) − x (t) , as n → ∞. 0 35 38 44 47 34 36 Using Corollary 24 we infer that 37 ⎛ (x, k) = SP ⎝∂ − ϕ; x0 , · ⎞ f (s, x(s)) ds + m⎠ 0 38 39 40 41 42 i.e. (x, k) is a solution of problem (32). The uniqueness of the solution implies that the whole sequence (xn , kn ) is convergent to that solution (x, k). The proof is completed now. 2 45 46 33 35 42 43 27 28 0 29 37 20 25 28 36 19 23 t 27 34 18 22 Then, uniformly with respect to t ∈ [0, T ], 26 33 17 21 xn − xT → 0, as n → ∞. 25 30 14 16 m∈M 22 13 15 where μ M (ε) := ε + sup mm . 21 23 10 12 |xn (t) − xn (s)| + kn t − kn s ≤ CT ,M μ M (t − s), 14 9 11 and for all 0 ≤ s ≤ t: 13 15 (37) 43 44 45 Remark 31. As it can be seen in the above proof, assumption (34-iii) is essential in order to obtain inequality (37), i.e. the boundedness of the sequence (xn, kn )n defined by (36). 46 47 JID:YJDEQ AID:7984 /FLA 1 [m1+; v1.211; Prn:31/08/2015; 8:35] P.28 (1-44) R. Buckdahn et al. / J. Differential Equations ••• (••••) •••–••• 28 Remark 32. If we replace assumptions (16), (17) and (34-iii) by the hypotheses 2 5 2 Int (Dom (ϕ)) = ∅ 3 4 1 3 4 and 5 T 6 6 fR# (s) ds 7 8 < ∞, ∀R, T > 0, 7 8 0 9 10 9 where 10 fR# (t) := sup |f (t, x)| : |x| ≤ R , 11 12 13 14 15 16 17 18 19 20 21 22 23 24 11 12 then, following the calculus from the convex case (see, e.g., Remark 4.15 and Proposition 4.16 from [31]), we deduce 1 r0 r0 |x (t) − u0 |2 + kt + 2 2 2 t 27 28 29 30 18 1 ≤ x − u0 2t + C0 + C0 mT 4 t t + 2 + 2 μ (r) x − u0 r dr + 2 μ+ (r) x − u0 2r (ρdr + γ d kr ), 19 20 21 22 (38) 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 23 24 0 25 where u0 ∈ Rd and r0 ∈ [0, 1) are such that B (u0 , r0 ) ⊂ Int (Dom (ϕ)). In the convex case, namely γ = 0, this inequality yields the boundedness (21-a, b), but in the non-convex case (γ = 0) we cannot obtain (21-a, b). Of course, if there exists R > 0 such that Dom (ϕ) ⊂ B (0, R), then xT ≤ R and from (38) we obtain kT ≤ C, if γ is such that 31 32 15 17 25 26 14 16 |f (r, x (r))| dr 0 0 13 0≤γ < 27 28 29 30 31 r0 . 2 (r0 + R + |u0 |) 32 33 If in the above proposition we take ϕ = IE we get, via Theorem 27, 34 35 → Rd be a continuous function such Corollary 33 (Skorohod equation). Let x0 ∈ E and m : R+ that m (0) = 0. If f satisfies assumptions (33)–(34) and E satisfies the r0 -UEBC (for some r0 > 0) and the shifted uniform interior ball condition, then there exists a unique pair (x, k) such that: (j ) x, k ∈ C (R+ ; E) , k (0) = 0, (jj) k ∈ BV loc R+ ; Rd , t (jjj) x (t) + k (t) = x0 + 0 f (s, x(s)) ds + m (t) , t (jv) kt = 0 1x(s)∈Bd(E) d ks , t (v) k (t) = 0 nx(s) d ks , where nx(s) ∈ NE (x (s)) and nx(s) = 1, d ks -a.e. 26 36 37 38 39 40 41 42 43 (39) 44 45 46 47 JID:YJDEQ AID:7984 /FLA [m1+; v1.211; Prn:31/08/2015; 8:35] P.29 (1-44) R. Buckdahn et al. / J. Differential Equations ••• (••••) •••–••• 1 29 6. Non-convex stochastic variational inequalities 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 2 In the last section of the paper we will study the following multivalued stochastic differential equation (also called stochastic variational inequality) considered on a non-convex domain: ⎧ t t ⎪ ⎪ ⎨ X + K = ξ + F (s, X ) ds + G (s, X ) dB , t t s s s ⎪ 0 0 ⎪ ⎩ dKt (ω) ∈ ∂ − ϕ (Xt (ω)) (dt) , 22 23 24 25 26 27 5 6 t ≥ 0, 7 (40) 0 ξ ∈ L , F0 , P; Dom (ϕ) and M is a progressively measurable and continuous stochastic process (p.m.c.s.p. for short) with M0 = 0, then there exists a unique pair (X, K) of p.m.c.s.p., solution of the problem Xt (ω) + Kt (ω) = ξ (ω) + Mt (ω) , t ≥ 0, ω ∈ , dKt (ω) ∈ ∂ − ϕ (Xt (ω)) (dt) (in this case we shall write (X· (ω) , K· (ω)) = SP ∂ − ϕ; ξ (ω) , M· (ω) , P-a.s.). (X· (ω) , K· (ω)) = SP ∂ − ϕ; ξ (ω) , M· (ω) 32 47 19 20 21 22 23 24 25 26 27 29 30 31 35 37 39 40 is continuous for each 0 ≤ t ≤ T , the stochastic process X is progressively measurable. Hence the conclusion follows. 2 41 42 43 The next assumptions will be needed throughout this section: 45 46 18 38 (ξ, M) → X : Dom (ϕ) × C([0, t] ; Rd ) → C([0, t] ; Rd ) 43 44 17 36 Since (ω, t) → Mt (ω) is progressively measurable and the mapping 40 42 15 34 (X· (ω) , K· (ω)) ∈ C(R+ ; Rd ) × C(R+ ; Rd ). 38 41 14 33 36 39 13 32 has a unique solution 34 37 12 28 Proof. Let ω be arbitrary but fixed. By Theorem 25, the Skorohod problem 31 35 10 16 30 33 9 Corollary 34. Let (, F, P, Ft , Bt )t≥0 be given. If 28 29 8 11 19 21 4 where ϕ is (ρ, γ )-semiconvex function and {Bt : t ≥ 0} is an Rk -valued Brownian motion with respect to a stochastic basis (which is supposed to be complete and right-continuous) , F, P, {Ft }t≥0 . First we derive directly from Theorem 25 the existence result in the additive noise case. 18 20 3 44 45 (A1 ) (Carathéodory conditions.)The functions F (·, ·, ·) : × R+ × Rd → Rd and G (·, ·, ·) : d d×k d × R+ × R → R are P, R -Carathéodory functions, i.e. 46 47 JID:YJDEQ AID:7984 /FLA F (·, ·, x) and G (·, ·, x) are p.m.s.p., ∀ x ∈ Rd , F (ω, t, ·) and G (ω, t, ·) are continuous function dP ⊗ dt-a.e. 1 2 3 4 [m1+; v1.211; Prn:31/08/2015; 8:35] P.30 (1-44) R. Buckdahn et al. / J. Differential Equations ••• (••••) •••–••• 30 T 6 10 13 16 (i) 18 (ii) 19 21 24 11 12 13 x − y, F (t, x) − F (t, y) ≤ μ (t) |x − y|2 , |G(t, x) − G(t, y)| ≤ (t) |x − y|, ∀ x, y ∀ x, y ∈ Rd , ∈ Rd . 29 30 0 31 (jv) 32 33 34 35 20 21 ∀ 0 ≤ s ≤ t, ∀y : R+ → Rd continuous t t t y (r) − Xr , dKr + ϕ (Xr ) dr ≤ ϕ (y (r)) dr s s t 38 which means that 41 42 27 28 29 30 31 (44) 32 33 34 36 2 s 39 24 35 s |y (r) − Xr | (ρdr + γ d Kr ) , + 37 23 26 0 36 37 38 39 40 (X· (ω) , K· (ω)) = SP ∂ − ϕ; ξ (ω) , M· (ω) , 41 P-a.s., 42 43 where 44 t 45 47 18 25 Xt ∈ Dom (ϕ), ∀ t ≥ 0, ϕ (X· ) ∈ L1loc (R+ ) , (jj) K· ∈ BV loc R+ ; Rd , K0 = 0, t t (jjj) Xt + Kt = ξ + F (s, Xs ) ds + G (s, Xs ) dBs , ∀t ≥ 0, (j ) 28 46 16 22 27 44 15 19 Definition 35. Let (, F, P, Ft , Bt )t≥0 be given. A pair (X, K) : × R+ → Rd × Rd of continuous Ft -p.m.c.s.p. is a strong solution of the stochastic Skorohod equation (40) if P-a.s., 26 43 14 17 (43) We define now the notions of strong and weak solutions for the stochastic Skorohod equation (40). 25 40 7 10 22 23 6 8 (A3 ) (Monotonicity and Lipschitz conditions.) There exist μ ∈ L1loc (R+ ) and ∈ L2loc (R+ ) with ≥ 0, such that dP ⊗ dt-a.e. 17 20 0 F # (t) := sup |F (t, x)| : x ∈ Dom (ϕ) , G# (t) := sup |G(t, x)| : x ∈ Dom (ϕ) 12 15 (42) 9 where 11 14 5 |G# (s) |2 ds < ∞, P -a.s., and 0 8 4 T F # (s) ds < ∞ 7 2 3 (A2 ) (Boundedness conditions.) For all T ≥ 0: 5 9 1 (41) Mt = t F (s, Xs ) ds + 0 45 G (s, Xs ) dBs . 0 46 47 JID:YJDEQ AID:7984 /FLA [m1+; v1.211; Prn:31/08/2015; 8:35] P.31 (1-44) R. Buckdahn et al. / J. Differential Equations ••• (••••) •••–••• 1 2 3 31 Definition 36. Let F (ω, t, x) := f (t, x), G (ω, t, x) := g (t, x) and ξ (ω) := x0 (be independent of ω). If there exist a stochastic basis (, F, P, Ft )t≥0 , an Rk -valued Ft -Brownian motion {Bt : t ≥ 0} and a pair (X· , K· ) : × R+ → Rd × Rd of p.m.c.s.p. such that (X· (ω) , K· (ω)) = SP ∂ − ϕ; x0 , M· (ω) , 4 5 t Mt = 10 15 16 17 18 19 20 21 22 23 24 25 − dKt ∈ ∂ ϕ (Xt ) (dt) − d K̂t ∈ ∂ ϕ(X̂t ) (dt) , by Lemma 17, for p ≥ 1 and λ > 0 Xt − X̂t , (F (t, Xt ) dt − dKt ) − (F (t, X̂t )dt − d K̂t ) 1 + mp + 9pλ |G (t, Xt ) − G(t, X̂t )|2 dt ≤ |Xt − X̂t |2 dVt , 2 32 33 t 36 41 42 μ (s) ds + Vt = 1 2 mp + 9pλ 2 (s) ds + 2ρds + γ d Ks + γ d K̂ s . 0 p E 1 ∧ e−V (X − X̂)T ≤ Cp,λ E 1 ∧ |ξ − ξ̂ |p , 47 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 36 37 38 40 41 42 43 and the uniqueness follows. 2 45 46 14 39 Therefore, by Corollary 51 (from Appendix A), we get 43 44 13 35 39 40 12 34 where 35 38 and 10 11 Proof. Let (X, K) and (X̂, K̂) be two solutions corresponding to ξ and respectively ξ̂ . Since 31 37 0 Proposition 37 (Pathwise uniqueness). Let (, F, P, Ft , Bt )t≥0 be given and assumptions (9), (10) and (16) be satisfied. The functions F and G are such that assumptions (A1 )–(A3 ) are satisfied. Then the stochastic Skorohod equation (40) has at most one strong solution. 30 34 9 g (s, Xs ) dBs , Since the stochastic process K is uniquely determined from (X, B) through equation (44-jjj), we can also say that X is a strong solution (and respectively (, F, P, Ft , Bt , Xt )t≥0 is a weak solution). We first give a uniqueness result for strong solutions. 27 29 f (s, Xs ) ds + then the collection (, F, P, Ft , Bt , Xt , Kt )t≥0 is called a weak solution of the stochastic Skorohod equation (40). 26 28 8 t 0 11 14 5 7 9 13 3 6 where 8 12 2 4 P-a.s., 6 7 1 44 45 Remark also that in the case of additive noise (i.e. G does not depend upon X) we have existence of a strong solution. 46 47 JID:YJDEQ AID:7984 /FLA 1 2 3 [m1+; v1.211; Prn:31/08/2015; 8:35] P.32 (1-44) R. Buckdahn et al. / J. Differential Equations ••• (••••) •••–••• 32 Lemma 38. Let (, F, P, Ft , Bt )t≥0 be given and assumptions (9), (10), (16) and (17) be satisfied. The function F is such that assumptions (A1 )–(A3 ) are satisfied. If 4 8 6 and M is a p.m.c.s.p. with M0 = 0, then there exists a unique pair (X, K) of p.m.c.s.p., solution of the problem 9 (X· (ω) , K· (ω)) = SP ∂ ϕ; ξ (ω) , M· (ω) , 10 11 12 13 − 16 10 P-a.s., 11 13 ⎪ ⎪ ⎩ 17 18 t Xt (ω) + Kt (ω) = ξ (ω) + 14 F (ω, s, Xs (ω)) ds + Mt (ω) , 15 t ≥ 0, 16 0 17 dKt (ω) ∈ ∂ − ϕ (Xt (ω)) (dt) , 18 19 19 P-a.s. 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 21 Proof. Applying Corollary 34 to the approximating problem 22 ⎧ t ⎪ ⎪ ⎨ X n (ω) + K n (ω) = ξ (ω) + F (ω, s, X n t t s−1/n (ω))ds + Mt (ω) , ⎪ ⎪ 0 ⎩ dKtn (ω) ∈ ∂ − ϕ Xtn (ω) (dt) , 23 24 t ≥ 0, 25 26 27 28 (X n , K n ) we conclude that there exists a unique solution of p.m.c.s.p. The solution (X, K) is obtained as the limit of the sequence (X n , K n ), exactly as in the proof of Proposition 30. 2 29 In order to study the general stochastic Skorohod equation (40) we shall consider only the case when F , G and ξ are independent of ω and, to highlight this, the coefficients will be denoted by f and g respectively. Let us consider equation 32 36 37 38 39 40 41 44 47 31 33 34 35 37 t ≥ 0, 38 (45) 39 40 41 42 where f : R+ × Rd → Rd and g : R+ × Rd → Rd×k . We recall the definition of f # , g # given as in (35). 45 46 30 36 ⎧ t t ⎪ ⎪ ⎨ X + K = x + f (s, X ) ds + g (s, X ) dB , t t 0 s s s ⎪ 0 0 ⎪ ⎩ dKt (ω) ∈ ∂ − ϕ (Xt (ω)) (dt) , 42 43 8 12 ⎧ ⎪ ⎪ ⎨ 15 7 9 i.e. 14 20 3 5 6 7 2 4 ξ ∈ L , F0 , P; Dom (ϕ) 0 5 1 43 44 45 Theorem 39. Let assumptions (9), (10), (16) and (17) be satisfied. The functions f and g are suppose to be B1 , Rd -Carathéodory functions satisfying moreover the boundedness conditions 46 47 JID:YJDEQ AID:7984 /FLA [m1+; v1.211; Prn:31/08/2015; 8:35] P.33 (1-44) R. Buckdahn et al. / J. Differential Equations ••• (••••) •••–••• 33 T |f # (s) |2 + |g # (s) |4 ds < ∞, ∀T ≥ 0. 1 2 3 1 2 3 0 4 5 4 If x0 ∈ Dom (ϕ) then equation (45) has a weak solution (, F, P, Ft , Xt , Kt , Bt )t≥0 . 5 6 7 8 9 10 6 Remark 40. Usually, when G is Lipschitz, a fixed point argument is used (based on Banach contraction theorem). But, in our case this argument doesn’t work even for the drift part F ≡ 0, as it can be seen from inequality (22), we have different order of the estimates in the left and in the right side of the inequality. 11 12 7 8 9 10 11 Proof. 12 13 13 14 Step 1. Approximating sequence. 14 15 Let , F, P, FtB , Bt t≥0 be a stochastic basis. Applying Lemma 38, we deduce that there exists a unique pair (X n , K n ) : × R+ → Rd × Rd of FtB -p.m.c.s.p. such that 15 16 17 18 ⎧ ⎪ ⎪ ⎨ 19 20 21 ⎪ ⎪ ⎩ 22 23 t Xtn + Ktn = x0 + t n f (s, Xs−1/n )ds + 0 dKtn (ω) ∈ ∂ − ϕ Xtn (ω) (dt) . (46) 0 22 23 25 29 35 36 37 38 41 42 0 0 27 28 29 $ E n sup Mt+θ 0≤θ≤ε 31 ⎡⎛ ⎤ ⎞4 % t+ε 2⎥ 4 2 t+ε ⎢ − Mtn ≤ C ⎣⎝ f # (s) ds ⎠ + t g # (s) ds ⎦ ⎡ ⎢ ≤ εC ⎣supt∈[0,T ] t 32 33 34 35 ⎤ ⎞2 ⎛ t+ε # 2 ⎝ f (s) ds ⎠ + sup 36 t+ε # 4 ⎥ g (s) ds ⎦ 37 t∈[0,T ] t 38 t 39 d using Proposition 46, we deduce that the family of laws of {M n : n ≥ 1} is tight on C R+ ; R . Therefore by Theorem 45 for all T ≥ 0 % $ 43 44 lim 45 N∞ 46 47 26 30 39 40 t n n f s, Xs−1/n ds + g s, Xs−1/n dBs . Since 32 34 t Mtn := 28 33 21 24 27 31 18 20 t ≥ 0, Denote 26 30 17 19 n g(s, Xs−1/n )dBs , 24 25 16 sup P M n T ≥ N = 0, n≥1 40 41 42 43 44 45 46 and, for all a > 0 and T > 0, 47 JID:YJDEQ AID:7984 /FLA [m1+; v1.211; Prn:31/08/2015; 8:35] P.34 (1-44) R. Buckdahn et al. / J. Differential Equations ••• (••••) •••–••• 34 $ 1 % lim sup P {mM n (ε) ≥ a} 2 ε0 = 0. (47) n≥1 3 4 4 Recalling the definition 5 μ M n = ε + mM n (ε) , 6 6 7 7 where m is the modulus of continuity, we see that we can replace in (47) mM n by μ M n . 8 9 10 9 10 Step 2. Tightness. 11 12 13 14 11 Let T ≥ 0 be arbitrary. We now show that the family of laws of the random variables is tight on C [0, T ] ; R2d+1 . From (21-c) we deduce that (X n , K n , K n ) 15 17 19 where G : C [0, T ] ; R 22 23 26 27 28 32 33 34 43 44 45 22 23 24 25 26 27 28 29 30 35 L(X̄, K̄, V̄ , B̄) = L(X, K, V , B) 32 33 34 36 37 38 39 and 40 P-a.s. (X̄ n , K̄ n , V̄ n , B̄ n ) −−−→ (X̄, K̄, V̄ , B̄), as n → ∞, in C([0, T ] ; R2d+1+k ). 41 n n n n From Proposition 49 we deduce that B̄ n , {FtX̄ ,K̄ ,V̄ ,B̄ } , n ≥ 1, and B̄, {FtX̄,K̄,V̄ ,B̄ } are Brownian motions. 43 46 47 21 , , L(X̄ n , K̄ n , V̄ n , B̄ n ) = L X n , K n , -K n - , B n 38 42 in law, as n → ∞ 20 31 37 41 on C [0, T ] ; R2d+1+k and applying the Skorohod theorem, we can choose a probability space (, F, P) and some random quadruples (X̄n , K̄ n , V̄ n , B̄ n ), (X̄, K̄, V̄ , B̄) defined on (, F, P) such that 36 40 19 , , X n , K n , -K n - , B → (X, K, V , B) 35 39 18 From (20) we see that G is bounded on compact subset of C [0, T ] ; Rd and therefore by Propo sition 47, {U n ; n ∈ N∗ } is tight on C [0, T ] ; Rd . Using the Prohorov theorem we see that there exists a subsequence (still denoted with n) such that 30 14 17 → R+ and 13 16 29 31 d 12 15 G (x) := CT ,x = exp C (1 + T + xT + Bx ) , 2 −C(1+T +xT ) μ−1 Bx := 1/μ e δ . x 21 25 = n 20 24 Un mU n (ε) ≤ G M μ M n (ε), a.s., 16 18 2 3 5 8 1 42 44 45 46 Step 3. Passing to the limit. 47 JID:YJDEQ AID:7984 /FLA [m1+; v1.211; Prn:31/08/2015; 8:35] P.35 (1-44) R. Buckdahn et al. / J. Differential Equations ••• (••••) •••–••• 1 2 35 Since we also have (X n , K n , K n , B) → (X̄, K̄, V̄ , B̄), in law, then by Corollary 43 we deduce that for all 0 ≤ s ≤ t , P-a.s. 3 5 6 Moreover, since for all 0 ≤ s < t, 4 (48) 7 8 t 9 10 11 ϕ Xrn dr ≤ s t t t 13 + 14 y (r) − Xrn , dKrn ϕ (y (r)) dr − s 12 t 19 20 ϕ X̄r dr ≤ t y (r) − X̄r , d K̄r ϕ (y (r)) dr − s + 26 d K̄r ∈ ∂ − ϕ X̄r (dr) . 28 30 t St (Y, B) := x0 + t 31 g (s, Ys ) dBs , t ≥ 0. f (s, Ys ) ds + 0 34 0 n n n n n n n Since for every t ≥ 0, 36 37 38 39 40 Xtn + Ktn − St (X n , B n ) = 0, a.s., 42 33 35 , , L(X̄ , K̄ , V̄ , B̄ , St (X̄ , B̄ )) = L X , K , -K n - , B n , St (X n , B n ) n 32 34 By Proposition 48 it follows 41 41 42 43 then by Corollary 43 we have 44 44 X̄tn + K̄tn − St (X̄ n , B̄ n ) = 0, a.s., 46 47 27 29 Let 33 45 23 25 32 43 22 (49) 24 Hence, based on (48) and (52) and Lemma 16 we have 31 40 20 21 y (r) − X̄r 2 ρdr + γ d V̄r . s 28 39 19 s t 27 38 18 25 37 14 17 t 24 36 13 16 23 35 12 15 22 30 11 s , , y (r) − X n 2 ρdr + γ d -K n - , a.s., r r s 21 29 10 then by Corollary 44 we infer that 18 26 9 s 15 17 5 6 n ∈ N∗ 8 16 2 3 X̄0 = x0 , K̄0 = 0, X̄t ∈ Dom (ϕ), , , , , -K̄ - − -K̄ - ≤ V̄t − V̄s and 0 = V̄0 ≤ V̄s ≤ V̄t t s 4 7 1 45 46 and consequently, letting n → ∞, 47 JID:YJDEQ AID:7984 /FLA [m1+; v1.211; Prn:31/08/2015; 8:35] P.36 (1-44) R. Buckdahn et al. / J. Differential Equations ••• (••••) •••–••• 36 X̄t + K̄t − St (X̄, B̄) = 0, a.s. 1 1 2 3 2 Hence we obtain that, P-a.s., 3 4 4 t 5 X̄t + K̄t = x0 + 6 7 8 9 10 f s, X̄s ds + 0 t g s, X̄s d B̄s , ∀ t ∈ [0, T ] , 8 t≥0 is a weak solution. 2 11 12 13 14 15 18 19 9 10 11 Since the stochastic process K is uniquely determined by (X, B) via equation (45), then a weak solution for the stochastic differential equation is a sextuplet (, F, P, {Ft }t≥0 , X, B). We know that weak existence and pathwise uniqueness implies strong existence (see Theorem 3.55 in [31] or Theorem 1.1 in [23]). Hence we deduce from Theorem 39 and Proposition 37: 16 17 6 7 0 ¯ F̄, P̄, FtB̄,X̄ , X̄t , K̄t , B̄t and consequently , 5 12 13 14 15 16 Theorem 41. Let assumptions (9), (10), (16) and (17) be satisfied. The functions f and g are suppose to be B1 , Rd -Carathéodory functions satisfying moreover assumption (A3 ) and boundedness conditions 20 17 18 19 20 22 T |f # (s) |2 + |g # (s) |4 ds < ∞, ∀T ≥ 0. 23 0 23 21 24 25 If x0 ∈ Dom (ϕ) then equation (45) has a unique strong solution (Xt , Kt )t≥0 . 26 27 30 37 40 33 A.1. Applications of Fatou’s Lemma 34 35 The next result is a well known consequence of weak convergence of probability measures (for its proof see, e.g. [31, Proposition 1.22]). law Xn −−→ X, as n → ∞, 47 39 40 42 43 and there exists a continuous function α : X → R such that 45 46 37 41 (i) 43 44 36 38 Proposition 42. Let (X, ρ) be a separable metric space. Let ϕ : X → (−∞, ∞] be a lower semicontinuous function. If X and Xn are X-valued random variables, for n ∈ N∗ , such that 41 42 30 32 38 39 29 31 Appendix A 35 36 25 28 The work of A.R. and R.B. was supported by grant “Deterministic and stochastic systems with state constraints”, code 241/05.10.2011 and the work of L.M. by grant POSDRU/89/1.5/S/49944. 33 34 24 27 31 32 22 26 Acknowledgments 28 29 21 44 45 (ii) α (x) ≤ ϕ (x) , ∀ x ∈ X, (iii) {α (Xn ) : n ∈ N∗ } is a uniformly integrable family, 46 47 JID:YJDEQ AID:7984 /FLA [m1+; v1.211; Prn:31/08/2015; 8:35] P.37 (1-44) R. Buckdahn et al. / J. Differential Equations ••• (••••) •••–••• 1 37 then the expectations Eϕ (X) and Eϕ (Xn ) exist for all n ∈ N, and 2 1 2 −∞ < Eϕ (X) ≤ lim inf Eϕ (Xn ) . 3 3 n→+∞ 4 5 6 7 8 9 4 For 0 ≤ s < t ≤ T , we denote by X[s,t] (similar to (7)) the total variation of X· on [s, t], that is n−1 Xt (ω) − Xt (ω) : n ∈ N∗ , s = t0 < t1 < · · · < tn = t X[s,t] (ω) = sup i i+1 i=0 10 11 12 We also use XT := X[0,T ] . Applying successively Proposition 42 for 16 17 14 15 16 17 18 where s = t0 < t1 < . . . < tN = t is an arbitrary partition of [s.t], and respectively 20 19 20 ϕ (x) = (x (s) − x (t))+ , 21 21 22 26 27 22 we get the next result: 23 d Corollary 43. Let s, t be arbitrary fixed such that 0 ≤ s ≤ t ≤ T . If g : C [0, T ] ; R → R+ n n ∗ is a continuous function and X, V , X , V , n ∈ N , are random variables with values in d C [0, T ] ; R , such that law X n , V n −−→ (X, V ) , as n → ∞, 28 29 34 35 32 (a) If Xtn ∈ F a.s., then Xt ∈ F , a.s., whenever F is closed subset of Rd ; (b) If X n [s,t] ≤ g (V n ) a.s., then X[s,t] ≤ g (V ), a.s.; (c) If d = 1 and Xsn ≤ Xtn a.s., then Xs ≤ Xt , a.s. 44 45 46 47 34 35 37 N : s = r0 < r1 < . . . < rN = t, ri+1 − ri = 40 43 33 36 Now let us consider the partition 39 42 27 31 38 41 26 30 then the following implications hold true: 36 37 25 29 32 33 24 28 30 31 9 12 i=0 18 25 8 13 15 24 7 11 ϕ (x) = dF (x (t)) , /+ .N−1 |x (ti+1 ) − x (ti )| − g (y) , ϕ (x, y) = 14 23 6 10 13 19 5 and the function g : C [0, T ] ; Rd 0 N−1 t −s N → [0, 1], defined by + i=0 39 40 41 g (x, k, v) := ∧1 i=0 |k (ri+1 ) − k (ri )| − v (t) + v (s) ⎡ t ⎤+ N−1 x (ri ) , k (ri+1 ) − k (ri ) − mx (1/N ) (v (t) − v (s))⎦ ∧ 1. + ⎣ ϕ (x (r)) dr − s 38 42 43 44 45 46 47 JID:YJDEQ AID:7984 /FLA 1 [m1+; v1.211; Prn:31/08/2015; 8:35] P.38 (1-44) R. Buckdahn et al. / J. Differential Equations ••• (••••) •••–••• 38 Applying again the generalization of the Fatou’s Lemma (Proposition 42), it can be proved: 2 3 4 Corollary 44. Let (X, K, V ), random variables, such that (X n , K n , V n ), 6 n n X ,K ,V n 7 9 and for all 0 ≤ s < t, and × C ([0, T ] ; R)-valued 5 6 n→∞ 7 −−−−→ (X, K, V ) 8 9 , n, , n, -K - − -K - ≤ V n − V n a.s. t s t s 11 If ϕ : Rd 10 11 → (−∞, +∞] is a lower semicontinuous function and 13 t 14 15 16 ϕ Xrn dr ≤ s t 12 13 Xrn , dKrn , a.s. for all n ∈ N∗ , 18 19 Kt − Ks ≤ Vt − Vs , a.s. 20 20 21 and 22 t 23 25 22 t s 23 Xr , dKr , a.s. ϕ (Xr ) dr ≤ 24 24 25 s 26 27 28 29 30 31 32 33 34 35 36 37 38 26 A.2. Complements on tightness Theorem 45. The family {X n : n ∈ N∗ } is tight in C(R+ ; Rd ) if and only if, for every T ≥ 0, % $ (j ) lim sup P(n) X n ≥ N = 0, N∞ $ 40 42 43 44 45 46 47 27 If Xtn : t ≥ 0 , n ∈ N∗ , is a family of continuous stochastic processes then the following result is a consequence of the Arzelà–Ascoli theorem (see, e.g., Theorem 7.3 in [6]). We recall the notations: X n T := sup Xtn : t ∈ [0, T ] , mXn (ε; [0, T ]) := sup Xtn − Xsn : t, s ∈ [0, T ] , |t − s| ≤ ε . 39 41 15 17 then 19 21 14 16 s 17 18 3 law n ∈ N∗ , 10 12 2 4 5 8 n ∈ N, be C 2 [0, T ] ; Rd 1 (jj) 0 n≥1 ε0 n≥1 N∞ 30 31 32 33 34 35 36 37 38 40 ∀a > 0. 41 42 Moreover, tightness yields that for all T > 0 $ lim 29 39 % lim sup P(n) (mXn (ε; [0, T ]) ≥ a) = 0, 28 43 % sup P(n) X n T ≥ N = 0. n≥1 44 45 46 47 JID:YJDEQ AID:7984 /FLA [m1+; v1.211; Prn:31/08/2015; 8:35] P.39 (1-44) R. Buckdahn et al. / J. Differential Equations ••• (••••) •••–••• 1 2 3 4 5 6 7 Without using the above theorem, it can be proved the following criterion for tightness which is well adapted to our needs. The proof can be found in E. Pardoux and A. Răşcanu [31] (Proposition 1.53) and we will give the sketch of the proof. 1 Proposition 46. Let Xtn : t ≥ 0 , n ∈ N∗ , be a family of Rd -valued continuous stochastic processes defined on probability space (, F, P). Suppose that for every T ≥ 0, there exist α > 0 and b ∈ C (R+ ) with b(0) = 0, such that 4 8 (j ) 11 12 13 (jj) lim sup P({X0n ≥ N }) = 0, N→∞ n∈N∗ $ % n α E 1 ∧ sup Xt+s − Xtn ≤ ε · b(ε), ∀ε > 0, n ≥ 1, t ∈ [0, T ] . 0≤s≤ε 14 15 16 17 18 Then the family : n ∈ N∗ } is tight in C(R+ 25 26 27 1 36 sup 39 40 (i − 1)T . and ti = Nk 45 46 47 22 23 24 26 27 sup |z (ti + s) − z (ti )| ≤ γk , ∀k ∈ N∗ 28 29 30 31 is compact in C([0, T ]; Rd ). From Markov’s inequality and (jj) 32 33 34 P Xn ∈ / Kε Nk ≤ P({X0n > M}) + P({ sup Xtni +s − Xtni > γk }) k∈N∗ i=1 0≤s≤εk Nk Nk × εk × b(εk ) ε εk × b(εk ) ε < + = ≤ ε. + 2 γkα 2 γkα ∗ ∗ k∈N i=1 k∈N 35 36 37 38 39 40 41 The proof is complete now. 2 43 44 13 25 41 42 12 21 2 1≤i≤Nk 0<s≤εk 37 38 11 18 34 35 10 17 Kε = z ∈ C([0, T ]; Rd ) : |z (0)| ≤ M, 30 33 9 20 T Let γk = (k−1)/α and εk 0 be such that b(εk ) ≤ k . Let Nk = 4 T εk 2 Applying Theorem Arzelá–Ascoli we see that the set 29 32 7 19 1 ε 28 31 6 16 ε sup P({X0n ≥ M}) < . 2 n∈N∗ 21 24 5 15 ; Rd ). Proof. We fix ε, T > 0. From (j ), there exists M = Mε ≥ 1 such that 20 23 3 14 {X n 19 22 2 8 2 1 9 10 39 42 43 Proposition 47. Let g : R+ → R+ be a continuous function satisfying g(0) = 0 and G : C R+ ; Rd → R+ be a mapping which is bounded on compact subsets of C R+ ; Rd . Let X n , Y n , n ∈ N∗ , be random variables with values in C R+ ; Rd . If {Y n : n ∈ N∗ } is tight and for all n ∈ N∗ 44 45 46 47 JID:YJDEQ AID:7984 /FLA 1 2 [m1+; v1.211; Prn:31/08/2015; 8:35] P.40 (1-44) R. Buckdahn et al. / J. Differential Equations ••• (••••) •••–••• 40 (i) X0n ≤ G (Y n ) , a.s. (ii) mXn (ε; [0, T ]) ≤ G (Y n ) g (mY n (ε; [0, T ])) , a.s., ∀ ε, T > 0, 3 4 5 6 7 4 Proof. Let δ > 0 be arbitrary. Then there exists a compact set Kδ ⊂ C [0, ∞[ ; Rd such that for all n ∈ N∗ 5 P Yn ∈ / Kδ < δ . 8 9 Define Nδ = sup G (x). Then 12 x∈Kδ 11 12 P X n > Nδ < δ. 13 14 13 14 0 15 15 Let a > 0 be arbitrary. There exists ε0 > 0 such that 17 19 23 28 29 30 31 32 33 34 35 36 19 21 P (mXn (ε; [0, T ]) ≥ a) ≤ P g (mY n (ε; [0, T ])) ≥ a Nδ , Y n ∈ Kδ / Kδ ) ≤ δ + P (Y n ∈ and the result follows. 41 42 43 44 47 24 25 28 A.3. Itô’s stochastic integral 29 In this subsection we consider {Bt : t ≥ 0} to be a k-dimensional Brownian motion on a stochastic basis (which is supposed to be complete and right-continuous) , F, P, {Ft }t≥0 . Let Sd [0, T ] be the space of p.m.c.s.p. X : × [0, T ] → Rd and d (0, T ) the space of p.m.c.s.p. X : × [0, T ] → Rd such that 30 31 32 33 34 35 T |Xt |2 dt < ∞, P-a.s. 0 36 37 38 39 Write Sd (and d ) for space of p.m.c.s.p. X : × [0, T ] → Rd such that the restriction of X to [0, T ] belongs to Sd (respectively to d ). If X ∈ Sd×k and B is an Rk -Brownian motion, then the stochastic process {(Xt , Bt ) : t ≥ 0} can be seen as a random variable with values in the space C(R+ , Rd×k ) × C(R+ , Rk ). The law of this random variable will be denoted L (X, B). 45 46 23 27 39 40 22 26 2 37 38 18 20 25 27 17 Consequently for all n ∈ N∗ , 24 26 16 a sup g (mx (ε; [0, T ])) < , ∀ 0 < ε < ε0 . N δ x∈Kδ 18 22 7 10 11 21 6 9 10 20 2 3 then {X n : n ∈ N∗ } is tight. 8 16 1 40 41 42 43 44 45 Proposition 48. (See Corollary 2.13 in [31].) Let X, X̂ ∈ Sd [0, T ], B, B̂ be two Rk -Brownian motions and g : R+ × Rd → Rd×k be a function such that 46 47 JID:YJDEQ AID:7984 /FLA [m1+; v1.211; Prn:31/08/2015; 8:35] P.41 (1-44) R. Buckdahn et al. / J. Differential Equations ••• (••••) •••–••• 41 g (·, y) is measurable ∀ y ∈ Rd , y → g (t, y) is continuous dt-a.e. 1 2 1 2 3 4 3 If 4 5 5 L (X, B) = L(X̂, B̂) on C(R+ , Rd+k ), 6 6 7 8 7 then 8 9 L X, B, 10 11 12 · g (s, Xs ) dBs = L X̂, B̂, 0 · 9 g(s, X̂s )d B̂s on C(R+ , Rd+k+d ). 10 11 12 0 13 14 13 We present now a continuity property of the mapping 14 15 15 T 16 (X, B) −→ 17 18 16 Xs dBs . 17 18 0 19 20 21 22 19 −→ Rk FtB,X −→ Rd×k Given B : × R+ and X : × R+ be two stochastic processes, let be the natural filtration generated jointly by B and X. For the proof of the next proposition see Proposition 2.4 in [9] or Proposition 2.14 in [31]. 23 24 25 26 27 28 29 30 33 Proposition 49. Let : × R+ stochastic processes such that → Rk and X, X n , X̃ n : × R+ → Rd×k be continuous 29 30 31 n n Then B n , {FtB ,X } , n ≥ 1, and B, {FtB,X } are Brownian motions and as n → ∞ t t sup Xsn dBsn −→ Xs dBs −→ 0 t∈[0,T ] 37 0 32 33 34 35 in probability. (50) 36 37 0 38 38 A.4. A forward stochastic inequality 39 40 40 Let X, X̂ ∈ Sd be two semimartingales defined by 41 42 42 t 43 Xt = X0 + Kt + 44 45 t Gs dBs , t ≥ 0, 0 46 47 25 28 t∈[0,T ] 36 24 27 -Brownian motion ∀ n ≥ 1; (i) B̃ n is Ft (ii) L(B̃ n , X̃ n ) = L (B n , X n ) on C(R+ , Rk × Rd×k ), for all n ≥ 1; 2 T (iii) 0 Xsn − Xs ds + sup Btn − Bt → 0, in probability, as n → ∞, for all T > 0. 35 41 22 26 B̃ n ,X̃ n 34 39 21 23 B, B n , B̃ n 31 32 20 X̂t = X̂0 + K̂t + 43 Ĝs dBs , t ≥ 0, 0 (51) 44 45 46 where 47 JID:YJDEQ AID:7984 /FLA 1 2 3 [m1+; v1.211; Prn:31/08/2015; 8:35] P.42 (1-44) R. Buckdahn et al. / J. Differential Equations ••• (••••) •••–••• 42 ♦ K, K̂ ∈ Sd ; ♦ K· (ω), K̂· (ω) ∈ BV loc R+ ; Rd , K0 (ω) = K̂0 (ω) = 0, P-a.s.; ♦ G, Ĝ ∈ d×k . 1 2 3 4 5 6 7 4 Assume that there exist p ≥ 1 and λ ≥ 0 and V a bounded variation p.m.c.s.p., with V0 = 0, such that, as measures on R+ , 8 Xt − X̂t , dKt − d K̂t + 9 1 2 mp + 9pλ |Gt − Ĝt |2 dt ≤ |Xt − X̂t |2 dVt . 12 15 16 e−pVt |X |p t − X̂t EFt p/2 ≤ Cp,λ p/2 , 1 + δe−2Vt |Xt − X̂t |2 1 + δ||e−V (X − X̂)||2[t,s] In particular for δ = 0 25 E ||e −V p (X − X̂)||[t,s] ≤ Cp,λ e −pVt |Xt − X̂t | , p P-a.s., 24 25 26 ∀r ≥ 0, 29 32 33 p EFt 1 ∧ ||e−V (X − X̂)||[t,s] ≤ Cp,λ 1 ∧ |e−Vt (Xt − X̂t )|p , 36 39 42 43 44 45 46 47 31 32 33 34 35 36 for all 0 ≤ t ≤ s. 37 References 39 40 41 28 30 Corollary 51. If assumption (52) is satisfied with λ > 1 and p ≥ 1, then there exists a positive constant Cp,λ depending only on (p, λ) such that P-a.s. 35 38 27 29 we obtain: 34 37 21 23 1 r (1 ∧ r) ≤ 1/2 ≤ 1 ∧ r, 2 1 + r2 28 20 22 As a consequence of the above theorem, since 27 31 16 18 for all 0 ≤ t ≤ s. 26 30 15 19 Ft 21 24 12 17 20 23 11 14 P-a.s. 19 22 9 13 p ||e−V (X − X̂)||[t,s] 17 18 7 10 Theorem 50. (See Corollary 6.74 in [31].) Let p ≥ 1. If the assumption (52) is satisfied with λ > 1, then there exists a positive constant Cp,λ such that for all δ ≥ 0, 0 ≤ t ≤ s: 13 14 6 8 (52) 10 11 5 38 40 [1] Ioan Asiminoaei, Aurel Răşcanu, Approximation and simulation of stochastic variational inequalities – splitting up method, Numer. Funct. Anal. Optim. 18 (3–4) (1997) 251–282. [2] Viorel Barbu, Aurel Răşcanu, Parabolic variational inequalities with singular inputs, Differential Integral Equations 10 (1) (1997) 67–83. [3] Houcine Benabdellah, Existence of solutions to the nonconvex sweeping process, J. Differential Equations 164 (2000) 286–295. [4] Houcine Benabdellah, Charles Castaing, Anna Salvadori, Aicha Syam, Nonconvex sweeping processes, J. Appl. Anal. 2 (1996) 217–240. 41 42 43 44 45 46 47 JID:YJDEQ AID:7984 /FLA [m1+; v1.211; Prn:31/08/2015; 8:35] P.43 (1-44) R. Buckdahn et al. / J. Differential Equations ••• (••••) •••–••• 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 43 [5] Alain Bensoussan, Aurel Răşcanu, Stochastic variational inequalities in infinite-dimensional spaces, Numer. Funct. Anal. Optim. 18 (1–2) (1997) 19–54. [6] Patrick Billingsley, Convergence of Probability Measures, Wiley Series in Probability and Mathematical Statistics, John Wiley & Sons Inc., New York, 1999. [7] Jonathan M. Borwein, Adrian S. Lewis, Convex Analysis and Nonlinear Optimization. Theory and Examples, second edition, CMS Books in Mathematics, Springer, New York, 2006. [8] Stephen Boyd, Lieven Vandenberghe, Convex Optimization, Cambridge University Press, 2004. [9] Rainer Buckdahn, Aurel Răşcanu, On the existence of stochastic optimal control of distributed state system, Nonlinear Anal. 52 (4) (2003) 1153–1184. [10] Tiziana Cardinali, Giovanni Colombo, Francesca Papalini, Mario Tosques, On a class of evolution equations without convexity, Nonlinear Anal. 28 (2) (1997) 217–234. [11] Charles Castaing, Sur une nouvelle classe d’équation d’évolution dans les espaces de Hilbert, Sém. d’Anal. Convexe Montpellier 13 (10) (1983), 28 pp. [12] Charles Castaing, Manuel D.P. Monteiro Marques, Evolution problems associated with nonconvex closed moving sets with bounded variation, Port. Math. 53 (1996) 73–87. [13] Emmanuel Cépa, Équations différentielles stochastiques multivoques, in: Séminaire de Probabilités, XXIX, in: Lecture Notes in Math., vol. 1613, Springer, Berlin, 1995, pp. 86–107. [14] Emmanuel Cépa, Problème de Skorohod multivoque, Ann. Probab. 26 (2) (1998) 500–532. [15] Aurelian Cernea, Vasile Staicu, Existence of solutions to a class of evolution inclusions, Nonlinear Anal. 50 (2002) 1025–1034. [16] Giovanni Colombo, Vladimir V. Goncharov, The sweeping processes without convexity, Set-Valued Var. Anal. 7 (1999) 357–374. [17] Giovanni Colombo, Vladimir Goncharov, Variational inequalities and regularity properties of closed sets in Hilbert spaces, J. Convex Anal. 8 (1) (2001) 197–221. [18] Giovanni Colombo, Manuel D.P. Monteiro Marques, Sweeping by a continuous prox-regular set, J. Differential Equations 187 (2003) 46–62. [19] Marco Degiovanni, Antonio Marino, Mario Tosques, Evolution equations with lack of convexity, Nonlinear Anal. 9 (2) (1985) 1401–1443. [20] Paul Dupuis, Hitoshi Ishii, SDEs with oblique reflection on nonsmooth domains, Ann. Probab. 21 (1) (1993) 554–580. [21] Jean Fenel Edmond, Lionel Thibault, BV solutions of nonconvex sweeping process differential inclusion with perturbation, J. Differential Equations 226 (2006) 135–179. [22] Anouar M. Gassous, Aurel Răşcanu, Eduard Rotenstein, Stochastic variational inequalities with oblique subgradients, Stochastic Process. Appl. 122 (2012) 2668–2700. [23] Nobuyuki Ikeda, Shinzo Watanabe, Stochastic Differential Equations and Diffusion Processes, North-Holland, Amsterdam, 1981. [24] Pierre-Louis Lions, Alain-Sol Sznitman, Stochastic differential equations with reflecting boundary conditions, Comm. Pure Appl. Math. 37 (4) (1984) 511–537. [25] Antonio Marino, Claudio Saccon, Mario Tosques, Curves of maximal slope and parabolic variational inequalities on nonconvex constraints, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4) 16 (2) (1989) 281–330. [26] Antonio Marino, Mario Tosques, Some variational problems with lack of convexity and some partial differential inequalities, in: A. Cellina (Ed.), Methods of Nonconvex Analysis, Proceedings from CIME, Varenna 1989, Springer, Berlin, 1990. [27] Alexander Mielke, Riccarda Rossi, Existence and uniqueness results for a class of rate-independent hysteresis problems, Math. Models Methods Appl. Sci. 17 (2007) 81–123. [28] Manuel D.P. Monteiro Marques, Differential Inclusions in Nonsmooth Mechanical Problems—Shocks and Dry Friction, Birkhäuser, Boston, 1993. [29] Jean Jacques Moreau, Evolution problem associated with a moving convex set in a Hilbert space, J. Differential Equations 26 (1977) 347–374. [30] Francesca Papalini, Nonlinear evolution equations without convexity, J. Math. Anal. Appl. 193 (1995) 406–418. [31] Etienne Pardoux, Aurel Răşcanu, Stochastic Differential Equations, Backward SDEs, Partial Differential Equations, Stochastic Modelling and Applied Probability, vol. 69, Springer, 2014. [32] Aurel Răşcanu, Deterministic and stochastic differential equations in Hilbert spaces involving multivalued maximal monotone operators, Panamer. Math. J. 6 (3) (1996) 83–119. [33] Aurel Răşcanu, Eduard Rotenstein, A non-convex setup for multivalued differential equations driven by oblique subgradients, Nonlinear Anal. 111 (2014) 82–104. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 JID:YJDEQ AID:7984 /FLA 44 1 2 3 4 5 6 7 8 9 10 11 12 13 14 [m1+; v1.211; Prn:31/08/2015; 8:35] P.44 (1-44) R. Buckdahn et al. / J. Differential Equations ••• (••••) •••–••• [34] Thomas Roche, Uniqueness of a quasivariational sweeping process on functions of bounded variation, Ann. Sc. Norm. Super. Pisa Cl. Sci. XI (2) (2012) 363–394. [35] R. Tyrrell Rockafellar, Roger J.-B. Wets, Variational Analysis, Grundlehren der Mathematischen Wissenschaften, Springer, Berlin, 1997. [36] Riccarda Rossi, Giuseppe Savaré, Existence and approximation results for gradient flows, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. IX Ser. Mat. Appl. 15 (3–4) (2004) 183–196. [37] Riccarda Rossi, Giuseppe Savaré, Gradient flows of non convex functionals in Hilbert spaces and applications, ESAIM Control Optim. Calc. Var. 12 (3) (2006) 564–614. [38] Yasumasa Saisho, Stochastic differential equations for multidimensional domain with reflecting boundary, Probab. Theory Related Fields 74 (3) (1987) 455–477. [39] Anatoliy V. Skorokhod, Stochastic equations for diffusion processes in a bounded region, Theory Probab. Appl. 6 (3) (1961) 264–274. [40] Anatoliy V. Skorokhod, Stochastic equations for diffusion processes in a bounded region. II, Theory Probab. Appl. 7 (1) (1962) 3–23. [41] Hiroshi Tanaka, Stochastic differential equations with reflecting boundary conditions in convex regions, Hiroshima Math. J. 9 (1) (1979) 163–177. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 15 16 16 17 17 18 18 19 19 20 20 21 21 22 22 23 23 24 24 25 25 26 26 27 27 28 28 29 29 30 30 31 31 32 32 33 33 34 34 35 35 36 36 37 37 38 38 39 39 40 40 41 41 42 42 43 43 44 44 45 45 46 46 47 47
© Copyright 2026 Paperzz