First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, 119992 Moscow, Russia CONTENT • Introduction • 5-level scheme - Monte-Carlo for leading particles - Transport equations for hadrons - Transport equations for electrons and gamma quanta - The LPM showers - The primary photons - Monte-Carlo for low energy particles in the real atmosphere - Responses of scintillator detectors • The basic formula for estimation of energy • The relativistic equation for a group of muons • Results for the giant inclined shower detected at the Yakutsk array • Conclusion ENERGY SCALE SPACE SCALE Transport equations for hadrons: Pk ( E , x) Pk ( E , x) / k ( E ) Bk Pk ( E , x) /( E x) x m dE P ( E , x)W i 1 i ik ( E , E ) / i ( E ), here k=1,2,....m – number of hadron types; Pk ( E , x)dEdx - number of hadrons k in bin E÷E+dE and depth bin x÷x+dx; λk(E) – interaction length; Bk – decay constant; Wik(E′,E) – energy spectra of hadrons of type k produced by hadrons of type i. The integral form: Pk ( E , x) Pb ( E , xb ) exp( ( x xb ) / ( E ) ( B / E ) ln( x / xb )) x d exp( ( x ) / ( E ) ( B /E ) ln( x / )) f ( E , ), xb here f ( E, ) m E0 dE P ( E , )W i 1 i ik ( E , E ) / i ( E ) E E0 – energy of the primary particle; Pb (E,xb) – boundary condition; xb – point of interaction of the primary particle. The decay products of neutral pions are regarded as a source function Sγ(E,x) of gamma quanta which give origins of electron-photon cascades in the atmosphere: E0 S ( E , x) 2 P 0 ( E , x)E )dE / E E S e ( E , x) 0. Here P ( E , x)dE – a number of neutral pions decayed at depth x+ dx with energies E΄+dE΄ 0 The basic cascade equations for electrons and photons can be written as follows: P / t e P P / E S e PWb dE ГW p dE Г / t S PWb dE ' where Г(E,t), P(E,t) – the energy spectra of photons and electrons at the depth t; β – the ionization losses; μe, μγ – the absorption coefficients; Wb, Wp – the bremsstrahlung and the pair production cross-sections; Se, Sγ – the source terms for electrons and photons. The integral form: t P( E , t ) P[ E (t t 0 ), t 0 ] exp( e [ E (t )]d ) t t t0 t0 d exp( e [ E (t t )]dt [ S e [ E (t ), ] Ae Be ] Г ( E , t ) Г ( E , t 0 ) exp( ( E )(t t 0 )] t d exp[ ( E )(t )][ S ( E , ) dE P( E , )Wb ( E , E )], t0 where Ae P( E , )Wb [ E , E (t )]dE , Be Г ( E , )W p [ E , E (t )]dE At last the solution of equations can be found by the method of subsequent approximations. It is possible to take into account the Compton effect and other physical processes. Source functions for low energy electrons and gamma quanta x S ( E , t ) dE P( E , t )Wb ( E , E ) E E0 S e ( E , t ) dE ( P( E , t )Wb ( E , E ) ( E , t )W p ( E , E )) E x=min(E0;E/ε) Balance of energy by 1 - the primary photon; 2 - electrons; 3 photons and 4 - under threshold in e-ph shower; 5 - sum of 1,2,3; 6 - total sum 1,0 6 17 E0=10 eV Ethr=0.00005 GeV 0,9 0,8 1 =30 o 5 0,7 3 E/E0 0,6 0,5 4 0,4 2 0,3 0,2 0,1 0,0 0 200 400 600 X, g/cm 800 2 1000 1200 Balance of energy by 1 - the primary photon; 2 - electrons; 3 photons and 4 - under threshold in e-ph shower; 5 - sum of 1,2,3; 6 - total sum 1,0 6 18 E0=10 eV Ethr=0.00005 GeV 0,9 0,8 1 =30 o 5 0,7 3 E/E0 0,6 0,5 0,4 2 0,3 0,2 4 0,1 0,0 0 200 400 600 X, g/cm 800 2 1000 1200 Balance of energy by 1 - the primary photon; 2 - electrons; 3 photons and 4 - under threshold in e-ph shower; 5 - sum of 1,2,3; 6 - total sum 1,0 6 20 E0=10 eV Ethr=0.00005 GeV 0,9 0,8 1 =30 o 5 0,7 E/E0 0,6 3 0,5 0,4 2 0,3 0,2 4 0,1 0,0 0 200 400 600 X, g/cm 800 2 1000 1200 Balance of energy by 1 - the primary photon; 2 - electrons; 3 photons and 4 - under threshold in e-ph shower; 5 - sum of 1,2,3; 6 - total sum 1,0 6 20 0,9 E0=3*10 eV Ethr=0.00005 GeV 0,8 =30 0,7 5 O 1 3 E/E0 0,6 0,5 0,4 2 0,3 0,2 4 0,1 0,0 0 200 400 600 X, g/cm 800 2 1000 1200 Balance of energy by 1 - the primary photon; 2 - electrons; 3 photons and 4 - under threshold in e-ph shower; 5 - sum of 1,2,3; 6 - total sum 1,0 17 6 E0=10 eV Ethr=0.001 GeV 0,9 0,8 1 =30 o 5 0,7 4 E/E0 0,6 3 0,5 2 0,4 0,3 0,2 0,1 0,0 0 200 400 600 X, g/cm 800 2 1000 1200 Balance of energy by 1 - the primary photon; 2 - electrons; 3 photons and 4 - under threshold in e-ph shower; 5 - sum of 1,2,3; 6 - total sum 1,0 18 6 E0=10 eV Ethr=0.001 GeV 0,9 0,8 1 =30 o 5 0,7 E/E0 0,6 3 0,5 2 0,4 4 0,3 0,2 0,1 0,0 0 200 400 600 X, g/cm 800 2 1000 1200 Balance of energy by 1 - the primary photon; 2 - electrons; 3 photons and 4 - under threshold in e-ph shower; 5 - sum of 1,2,3; 6 - total sum 1,0 20 6 E0=10 eV Ethr=0.001 GeV 0,9 0,8 1 =30 o 5 0,7 E/E0 0,6 3 0,5 2 0,4 0,3 4 0,2 0,1 0,0 0 200 400 600 X, g/cm 800 2 1000 1200 Balance of energy by 1 - the primary photon; 2 - electrons; 3 photons and 4 - under threshold in e-ph shower; 5 - sum of 1,2,3; 6 - total sum 1,0 20 6 E0=3*10 eV Ethr=0.001 GeV 0,9 0,8 1 =30 o 5 0,7 E/E0 0,6 3 0,5 2 0,4 0,3 4 0,2 0,1 0,0 0 200 400 600 X, g/cm 800 2 1000 1200 Balance of energy by 1 - the primary photon; 2 - electrons; 3 photons and 4 - under threshold in e-ph shower; 5 - sum of 1,2,3; 6 - total sum 1,0 6 19 E0=10 eV Ethr=0.00005 GeV 0,9 0,8 1 =30 o 5 0,7 E/E0 0,6 0,5 3 0,4 2 0,3 4 0,2 0,1 0,0 0 200 400 600 X, g/cm 800 2 1000 1200 Balance of energy by 1 - the primary photon; 2 - electrons; 3 photons and 4 - under threshold in e-ph shower; 5 - sum of 1,2,3; 6 - total sum 1,0 19 6 E0=10 eV Ethr=0.001 GeV 0,9 0,8 1 =30 o 5 0,7 E/E0 0,6 0,5 3 0,4 2 0,3 4 0,2 0,1 0,0 0 200 400 600 X, g/cm 800 2 1000 1200 Balance of energy by 1 - the primary photon; 2 - electrons; 3 photons and 4 - under threshold in e-ph shower; 5 - sum of 1,2,3; 6 - total sum 1,0 6 19 E0=10 eV Ethr=0.01 GeV 0,9 0,8 1 =30 5 o 0,7 3 E/E0 0,6 0,5 2 0,4 0,3 0,2 4 0,1 0,0 0 200 400 600 X, g/cm 800 2 1000 1200 Balance of energy by 1 - the primary photon; 2 - electrons; 3 photons and 4 - under threshold in e-ph shower; 5 - sum of 1,2,3; 6 - total sum 1,0 6 19 E0=10 eV Ethr=0.5 GeV 0,9 0,8 1 =30 o 5 4 0,7 3 E/E0 0,6 0,5 2 0,4 0,3 0,2 0,1 0,0 0 200 400 600 X, g/cm 800 2 1000 1200 Balance of energy by 1 - the primary photon; 2 - electrons; 3 photons and 4 - under threshold in e-ph shower; 5 - sum of 1,2,3; 6 - total sum 1,0 6 19 E0=10 eV Ethr=10 GeV 0,9 0,8 1 =30 o 5 4 0,7 3 E/E0 0,6 0,5 2 0,4 0,3 0,2 0,1 0,0 0 200 400 800 600 X, g/cm 2 1000 1200 Balance of energy by 1 - the primary photon; 2 - electrons; 3 photons and 4 - under threshold in e-ph shower; 5 - sum of 1,2,3; 6 - total sum 1,0 6 0,9 19 E0=10 eV Ethr=0.001 GeV 0,8 =60 0,7 5 o 4 1 E/E0 0,6 3 0,5 0,4 2 0,3 0,2 0,1 0,0 0 200 400 600 800 1000 X, g/cm 1200 2 1400 1600 1800 2000 Balance of energy by 1 - the primary photon; 2 - electrons; 3 photons and 4 - under threshold in e-ph shower; 5 - sum of 1,2,3; 6 - total sum 1,0 6 0,9 19 E0=10 eV Ethr=0.00005 GeV 0,8 =60 0,7 5 o 4 1 E/E0 0,6 3 0,5 0,4 2 0,3 0,2 0,1 0,0 0 200 400 600 800 1000 X, g/cm 1200 2 1400 1600 1800 2000 Energy by under threshold: 1 - by electrons; 2 - by photons; 3 - by pair; 4 - sum of 1, 2, 3 0,65 4 17 0,55 E0=10 eV Ethr=0.001 GeV 0,50 =30 0,60 O 0,45 E/E0 0,40 0,35 1 0,30 0,25 0,20 2 0,15 3 0,10 0,05 0,00 0 200 400 600 X, g/cm 800 2 1000 1200 Energy by under threshold: 1 - by electrons; 2 - by photons; 3 - by pair; 4 - sum of 1, 2, 3 0,50 4 18 0,45 E0=10 eV Ethr=0.001 GeV 0,40 =30 O 0,35 E/E0 0,30 1 0,25 0,20 0,15 2 3 0,10 0,05 0,00 0 200 400 600 X, g/cm 800 2 1000 1200 Energy by under threshold: 1 - by electrons; 2 - by photons; 3 - by pair; 4 - sum of 1, 2, 3 1,0 19 E0=10 eV Ethr=0.001 GeV 0,8 =60 4 O E/E0 0,6 1 0,4 2 0,2 3 0,0 0 200 400 600 800 1000 X, g/cm 1200 2 1400 1600 1800 2000 Energy by under threshold: 1 - by electrons; 2 - by photons; 3 - by pair; 4 - sum of 1, 2, 3 0,25 4 20 E0=10 eV Ethr=0.001 GeV 0,20 =30 O 0,15 E/E0 1 0,10 2 3 0,05 0,00 0 200 400 600 X, g/cm 800 2 1000 1200 Energy by under threshold: 1 - by electrons; 2 - by photons; 3 - by pair; 4 - sum of 1, 2, 3 0,25 20 E0=3*10 eV Ethr=0.001 GeV 0,20 =30 4 O E/E0 0,15 1 0,10 2 3 0,05 0,00 0 200 400 600 X, g/cm 800 2 1000 1200 Energy by under threshold: 1 - by electrons; 2 - by photons; 3 - by pair; 4 - sum of 1, 2, 3 0,35 4 18 E0=10 eV Ethr=0.00005 GeV 0,30 =30 O 0,25 E/E0 0,20 1 0,15 0,10 2 3 0,05 0,00 0 200 400 600 X, g/cm 800 2 1000 1200 Energy by under threshold: 1 - by electrons; 2 - by photons; 3 - by pair; 4 - sum of 1, 2, 3 0,25 19 E0=10 eV Ethr=0.001 GeV 0,20 =30 4 O E/E0 0,15 1 0,10 2 0,05 3 0,00 0 200 400 600 X, g/cm 800 2 1000 1200 Energy by under threshold: 1 - by electrons; 2 - by photons; 3 - by pair; 4 - sum of 1, 2, 3 1,0 19 E0=10 eV Ethr=0.01 GeV 0,8 =30 O E/E0 0,6 4 0,4 1 0,2 2 3 0,0 0 200 400 600 X, g/cm 800 2 1000 1200 Energy by under threshold: 1 - by electrons; 2 - by photons; 3 - by pair; 4 - sum of 1, 2, 3 1,0 19 E0=10 eV Ethr=0.5 GeV 0,8 =30 O 4 E/E0 0,6 0,4 1 2 0,2 3 0,0 0 200 400 600 X, g/cm 800 2 1000 1200 Energy by under threshold: 1 - by electrons; 2 - by photons; 3 - by pair; 4 - sum of 1, 2, 3 1,0 19 E0=10 eV Ethr=10 GeV 0,8 =30 4 O E/E0 0,6 1 0,4 2 3 0,2 0,0 0 200 400 600 X, g/cm 800 2 1000 1200 Energy by under threshold: 1 - by electrons; 2 - by photons; 3 - by pair; 4 - sum of 1, 2, 3 1,0 19 E0=10 eV Ethr=0.00005 GeV 0,8 =60 4 O E/E0 0,6 1 0,4 2 3 0,2 0,0 0 200 400 600 800 1000 X, g/cm 1200 2 1400 1600 1800 2000 Energy by under threshold: 1 - by electrons; 2 - by photons; 3 - by pair; 4 - sum of 1, 2, 3 1,0 4 18 E0=10 eV Ethr=10 GeV 0,8 =0 O E/E0 0,6 1 0,4 2 0,2 3 0,0 0 200 400 600 X, g/cm 800 2 1000 1200 Energy by under threshold: 1 - by electrons; 2 - by photons; 3 - by pair; 4 - sum of 1, 2, 3 0,8 4 19 E0=10 eV Ethr=10 GeV =0 E/E0 0,6 O 1 0,4 2 0,2 3 0,0 0 200 400 600 X, g/cm 800 2 1000 1200 Energy by under threshold: 1 - by electrons; 2 - by photons; 3 - by pair; 4 - sum of 1, 2, 3 0,8 4 20 E0=10 eV Ethr=10 GeV E/E0 0,6 =0 O 0,4 1 2 0,2 3 0,0 0 200 400 600 X, g/cm 800 2 1000 1200 B-H SHOWERS 12 10 11 10 10 10 9 10 20 E0=10 Ev 8 10 7 N(X) 10 6 10 5 10 4 10 3 10 2 10 1 10 0 10 0 200 400 600 X, g/cm 2 800 1000 Cascade curves: - NKG; - LPM; lines - individual LPM curves 12 10 11 20 10 E0=10 eV cos=1. 10 10 9 10 8 10 7 10 6 N(X) 10 5 10 4 10 3 10 2 10 1 10 0 10 -1 10 -2 10 0 200 400 600 X, g/cm 2 800 1000 Cascade curves: ______ - NKG; ______ - LPM 11 10 20 E0=10 eV cos=1. 10 10 9 10 8 10 7 10 N(X) 6 10 5 10 4 10 3 10 2 10 1 10 0 10 -1 10 0 200 400 600 X, g/cm 2 800 1000 Cascade curves: - NKG; - LPM; lines - individual LPM curves 12 10 11 10 10 10 9 10 8 10 7 10 N(X) 6 10 5 10 20 E0=10 eV cos=0.6 4 10 3 10 2 10 1 10 0 10 -1 10 0 200 400 600 800 1000 X, g/cm 2 1200 1400 1600 1800 Cascade curves: ______ - NKG; ______ - LPM 12 10 11 10 10 10 9 10 8 10 7 N(X) 10 6 10 20 E0=10 eV cos=0.6 5 10 4 10 3 10 2 10 1 10 0 10 0 200 400 600 800 1000 2 X, g/CM 1200 1400 1600 1800 Cascade curves: ______ - NKG; ______ - LPM 12 10 11 10 10 10 9 10 8 10 7 N(X) 10 6 10 20 5 10 E0=10 eV cos=0.5 4 10 3 10 2 10 1 10 0 10 0 500 1000 X, g/cm 1500 2 2000 Cascade curves: _____ - NKG; ______ - LPM 11 10 10 N(X) 10 20 E0=10 eV cos=0.5 9 10 8 10 500 1000 X, g/cm 1500 2 Muon density in gamma-induced showers: ______ - BH; ______ - LPM; ■ – Plyasheshnikov, Aharonian; - our individual points 2 LogN(1000) (1/m ) -1 10 -2 10 -3 10 1E18 1E19 LogE0 (eV) 1E20 Muon density in gamma-induced showers: 1 - AGASA; 2 - Homola et al.; 3 - BH; 4 - Plyasheshnikov, Aharonian; 5, 6 - our calculations; 7 - LPM For the grid of energies Emin≤ Ei ≤ Eth (Emin=1 MeV, Eth=10 GeV) and starting points of cascades 0≤Xk≤X0 (X0=1020 g∙cm-2) simulations of ~ 2·108 cascades in the atmosphere with help of CORSIKA code and responses (signals) of the scintillator detectors using GEANT 4 code SIGNγ(Rj,Ei,Xk) SIGNγ(Rj,Ei,Xk) 10m≤Rj≤2000m have been calculated Responses of scintillator detectors at distance Rj from the shower core (signals S(Rj)) x0 Eth xb Emin S ( R j ) d dE (S ( E, )SIGN ( R j , E, ) Se ( E, )SIGNe ( R j , E, )) Eth=10 GeV Emin=1 MeV Source test function: Sγ(E,x)dEdx=P(E0,x)/EγdEdx P(E0,x) – a cascade profile of a shower (x C) 2 P( E0 , x) K 0 exp( ) 2 A( x C ) 2 B ∫dx∫dESγ(E,x)=0.8E0 Basic formula: E0=a·(S600)b Energy spectrum of electrons Energy spectrum of photons Estimates of energy with test functions AGASA simulation Model of detector Detector response for gammas Detector response for electrons Detector response for positrons Detector response for muons Comparison of various estimates of energy • Experimental data: 0.98 E0 4.8 1017 s600 • Test source function with γ=1 Coefficient: 4.8/3.2=1.5 1.08 E0 3.2 1017 s600 • Source function from CORSIKA Coefficient: 4.8/3=1.6 0.988 E0 3 1017 s600 • Thinning by CORSIKA (10-6) Coefficient: 4.8/2.6=1.8 0.99 E0 2.6 1017 s600 Direction of muon velocity is defined by directional cosines: sin cos cos cos cos sin cos sin sin sin ; sin sin cos cos sin sin cos cos sin sin ; cos cos sin sin cos All muons are defined in groups with bins of energy Ei÷Ei+ΔE; angles αj÷αj+Δαj, δm÷ δm+Δ δm and height production hk÷ hk +Δhk. The average values have been used: E , j , m and hk . N Number of muons N and were regarded as some weights. The relativistic equation: dV m eV B, dt here mμ – muon mass; e – charge; γ – lorentz factor; t – time; – geomagnetic B field. The explicit 2-d order scheme: Vx n 1 / 2 Vx CHE n (V y Bz Vz B y ) (0.5 ht ); Vy n 1 / 2 V y CHE n (Vz Bx Vx Bz ) (0.5 ht ); Vz n 1 / 2 Vz CHE n (Vx B y V y Bx ) (0.5 ht ); n n x n1 / 2 x n Vx (0.5 ht ) n n n y n1 / 2 y n V y (0.5 ht ) n n Vx n 1 Vy n 1 V y CHE Vz n 1 Vz CHE n1 / 2 (Vx n Vx CHE n1 / 2 (V y n n n n n 1 / 2 n n 1 / 2 (Vz Bz Vz n 1 / 2 n 1 / 2 n 1 / 2 Bx Vx By Vy B y ) ht ; n z n1 / 2 z n Vz (0.5 ht ) x n1 x n Vx n 1 / 2 Bz ) ht ; y n1 y n V y Bx ) ht ; z n1 z n Vz n 1 / 2 n 1 / 2 n n 1 / 2 n 1 / 2 here CHE e ( Ethr / E ) ; Ethr , E – threshold energy and muon energy. ht ht ht , assuming aerosol-free air … more typical air => E ≈ 200 EeV (atmospheric monitoring not yet routine in early 2004 …) Summary: Air Fluorescence Yield Measurements • Kakimoto et al., NIM A372 (1996) • Nagano et al., Astroparticle Physics 20 (2003) • Belz et al., submitted to Astroparticle Physics 2005; astro-ph/0506741 • Huentemeyer et al., proceedings of this conference usahuentemeyer-P-abs2-he15oral Altitude dependence 4,3 fluorescence yield (photons/m) 4,1 3,9 3,7 3,5 3,3 Keilhauer with Ulrich cross sections, only 10 wavelengths as for Nagano Keilhauer with Ulrich cross sections, all 19 wavelengths Nagano (2004) 3,1 2,9 Kakimoto (1996) 2,7 0 2 4 6 8 10 12 altitude (km a.s.l.) 14 16 18 20 Lateral width of shower image in the Auger fluorescence detector. Figure 1. Image of two showers in the photomultiplier camera. The reconstructed energy of both showers is 2.2 EeV. The shower on the left had a core 10.5 km from the telescope, while that on the right landed 4.5 km away. Note the number of pixels and the lateral spread in the image in each shower. Figure 2. FD energy vs. ground parameter S38. These are hybrid events that were recorded when there were contemporaneous aerosol measurements, whose FD longitudinal profiles include shower maximum in a measured range of at least 350 g cm-2, and in which there is less than 10% Cherenkov contamination. CONCLUSION In terms of the hybrid scheme with help of CORSIKA • The energy estimates for the Yakutsk array are a factor of 1.5-1.8 may be lower. • The energy estimates for the AGASA array have been confirmed. • Estimates of energy of the most giant air shower detected at the Yakutsk array should be checked. • The LPM showers have a very small muon content. Acknowledgements We thank G.T. Zatsepin for useful discussions, the RFFI (grant 03-02-16290), INTAS (grant 03-51-5112) and LSS5573.2006.2 for financial support.
© Copyright 2026 Paperzz