Spatially Resolving the Kinematics of the โฒ 100๐as Quasar Broad Line Region using Spectro-astrometry Jonathan Stern (MPIA) Patzer Colloquium, Nov. 2015 with: Joseph Hennawi (MPIA), Jörg-Uwe Pott (MPIA), Aaron Barth (UCI) Spectral Energy Distribution What is the Quasar Broad Line Region (BLR)? Richards+06 Optical-UV spectrum Vanden Berk+01 Hฮฑ spectrum Narrow Hฮฑ Narrow [NII] Broad Hฮฑ 10,000 km/s Why is the BLR interesting? 1. Part of the โผ 103 ๐g accretion flow (e.g. Murray+1995, Czerny & Hryniewicz 2011) 2. ๐BH estimates, ๐BH demographics vs. ๐ง (e.g. Vestergaad+2004, Trakhtenbrot+2011, Shen & Kelly 2012) 3. Measurement of gravitational redshifts (Tremaine+14) How can we observe the โฒ 100๐as BLR? ๐BH ~109 Mโ , โ ๐BLR ~100๐as diffraction limit iffraction limit beration Mapping ๐BLR ~103 ๐g , ๐ง~0.2 What do we know from Reverberation Mapping? 1. Hฮฒ response from a narrow annulus Hฮฒ lag (days) 2. ๐๐ฉ๐ณ๐น โ ๐. ๐๐ ๐ณ๐๐ ๐ ๐ ๐ฉ๐ Bentz+13 Bentz+10 Blackbody | Hฮฒ|IR (torus surface) 1042 1044 1046 Explained by line emissivity function: collisional de-excitation emissivity AGN Luminosity dust suppression 10โ3.5 10โ3 10โ2.5 0.01 ๐ (pc) Baskin, Laor, and Stern (2014) 0.03 A New Method to Constrain the BLR: Spectroastrometry Spectroastrometry: Measure photon centroid vs. wavelength โ PSF โข Astrometric precision โข BLR angular size of most luminous quasars: โข PSF(8m, with AO) โ 0.1" 1/2 ๐photons (ฮป) โ ~๐๐๐ photons required Systematics? Pontoppidan+11 achieved ~100๐as in YSOs ( m hr โ1 103 km s โ1 Photon flux โ2 Projected BLR ring Centroid offset ( ๐as ) Slit spatial direction slit โ1 ) A Simplified Example: A Rotating Ring Slit spectral direction Velocity ( km s โ1 ) BLR Characteristics Centroid offset ( ๐as ) ๐ฃturbulent ๐ฃrotation Turbulence ๐ โ ๐BLR r-distribution of line photons Centroid offset ( ๐as ) Velocity ( km sโ1 ) ๐ โซ ๐BLR 1. Narrow lines need to be masked 2. Offset detectable on an 8m! Centroid offset ( ๐as ) Expected signal (๐ง = 2) Expected Signal vs. Redshift Large symbols: 39m Small symbols: 8m redshift Spectro-astrometry vs. RM Reverberation Mapping: Spectroastrometry: โข Response-weighted function of BLR geometry โข Requires variability โ low ๐ณ๐๐๐ โข Small response time โ low ๐ณ๐๐๐ , low z โข ๐-weighted function of BLR geometry โข Large angular size โ high ๐ณ๐๐๐ โข High photon count โ high ๐ณ๐๐๐ Spectroastrometry provides independent constraints on the BLR, mainly at high ๐ณ๐จ๐ฎ๐ต Proposal Status 1. Gemini 2015A: Submitted and awarded 2 nights with LGS-AO, eventually not scheduled 2. VLT P95: Submitted and awarded 3 nights, weather permitted only 1 hour of LGS-AO 3. Gemini 2016A: submitted 4. VLT P97: submitted Summary Spectro-astrometry is applicable to the BLR. โ A novel method to constrain ๐ด๐๐ at high-๐ณ and high-๐ โ Feasible with 8m telescopes (proposals submitted) โ 30m telescopes: high ๐ฃ-resolution, ๐ง~5 quasars, AGN sub-classes โ Need to reduce systematics to โฒ 30๐as (Pontoppidan+11: achieved ~100๐as in YSOs)
© Copyright 2026 Paperzz