Can we resolve the *100*as broad line region?

Spatially Resolving the Kinematics of the โ‰ฒ
100๐œ‡as Quasar Broad Line Region
using Spectro-astrometry
Jonathan Stern (MPIA)
Patzer Colloquium, Nov. 2015
with:
Joseph Hennawi (MPIA), Jörg-Uwe Pott (MPIA), Aaron Barth (UCI)
Spectral Energy Distribution
What is the Quasar
Broad Line Region
(BLR)?
Richards+06
Optical-UV spectrum
Vanden Berk+01
Hฮฑ spectrum
Narrow Hฮฑ
Narrow [NII]
Broad Hฮฑ
10,000 km/s
Why is the BLR interesting?
1. Part of the โˆผ 103 ๐‘Ÿg accretion flow
(e.g. Murray+1995, Czerny & Hryniewicz 2011)
2. ๐‘€BH estimates, ๐‘€BH demographics vs. ๐‘ง
(e.g. Vestergaad+2004, Trakhtenbrot+2011, Shen & Kelly 2012)
3. Measurement of gravitational redshifts
(Tremaine+14)
How can we observe the โ‰ฒ 100๐œ‡as BLR?
๐‘€BH ~109 MโŠ™ ,
โ†’ ๐œƒBLR ~100๐œ‡as
diffraction limit
iffraction limit
beration Mapping
๐‘ŸBLR ~103 ๐‘Ÿg ,
๐‘ง~0.2
What do we know from Reverberation Mapping?
1.
Hฮฒ response from a narrow annulus
Hฮฒ lag (days)
2. ๐’“๐‘ฉ๐‘ณ๐‘น โ‰ˆ ๐ŸŽ. ๐ŸŽ๐Ÿ ๐‘ณ๐Ÿ’๐Ÿ’
๐Ÿ
๐Ÿ
๐ฉ๐œ
Bentz+13
Bentz+10
Blackbody | Hฮฒ|IR (torus surface)
1042
1044
1046
Explained by line emissivity function:
collisional
de-excitation
emissivity
AGN Luminosity
dust
suppression
10โˆ’3.5 10โˆ’3 10โˆ’2.5 0.01
๐‘Ÿ (pc)
Baskin, Laor, and Stern (2014)
0.03
A New Method to Constrain the BLR: Spectroastrometry
Spectroastrometry: Measure photon centroid vs. wavelength
โ‰ˆ
PSF
โ€ข
Astrometric precision
โ€ข
BLR angular size of most luminous quasars:
โ€ข
PSF(8m, with AO) โ‰ˆ 0.1"
1/2
๐‘photons (ฮป)
โ†’ ~๐Ÿ๐ŸŽ๐Ÿ” photons required
Systematics? Pontoppidan+11 achieved ~100๐œ‡as in YSOs
( m hr โˆ’1 103 km s โˆ’1
Photon flux
โˆ’2
Projected
BLR ring
Centroid offset
( ๐œ‡as )
Slit spatial direction
slit
โˆ’1
)
A Simplified Example: A Rotating Ring
Slit spectral direction
Velocity ( km s โˆ’1 )
BLR Characteristics
Centroid offset ( ๐œ‡as )
๐‘ฃturbulent
๐‘ฃrotation
Turbulence
๐‘Ÿ โ‰ˆ ๐‘ŸBLR
r-distribution of
line photons
Centroid offset ( ๐œ‡as )
Velocity ( km sโˆ’1 )
๐‘Ÿ โ‰ซ ๐‘ŸBLR
1. Narrow lines need
to be masked
2. Offset detectable
on an 8m!
Centroid offset ( ๐œ‡as )
Expected signal
(๐‘ง = 2)
Expected Signal vs. Redshift
Large symbols: 39m
Small symbols: 8m
redshift
Spectro-astrometry vs. RM
Reverberation Mapping:
Spectroastrometry:
โ€ข Response-weighted function
of BLR geometry
โ€ข Requires variability
โ†’ low ๐‘ณ๐€๐†๐
โ€ข Small response time
โ†’ low ๐‘ณ๐€๐†๐ , low z
โ€ข ๐’“-weighted function of
BLR geometry
โ€ข Large angular size
โ†’ high ๐‘ณ๐€๐†๐
โ€ข High photon count
โ†’ high ๐‘ณ๐€๐†๐
Spectroastrometry provides independent constraints
on the BLR, mainly at high ๐‘ณ๐‘จ๐‘ฎ๐‘ต
Proposal Status
1. Gemini 2015A: Submitted and awarded 2 nights with
LGS-AO, eventually not scheduled
2. VLT P95: Submitted and awarded 3 nights, weather
permitted only 1 hour of LGS-AO
3. Gemini 2016A: submitted
4. VLT P97: submitted
Summary
Spectro-astrometry is applicable to the BLR.
โ†’ A novel method to constrain ๐‘ด๐๐‡ at high-๐‘ณ and high-๐’›
โ†’ Feasible with 8m telescopes (proposals submitted)
โ†’ 30m telescopes: high ๐‘ฃ-resolution, ๐‘ง~5 quasars, AGN sub-classes
โ†’ Need to reduce systematics to โ‰ฒ 30๐œ‡as
(Pontoppidan+11: achieved ~100๐œ‡as in YSOs)