Bulgarian Academy of Sciences. 22 July, 2008 Index • Basic concepts • Goal Programming • Reference Point End 1 Bulgarian Academy of Sciences. 22 July, 2008 Basic concepts •A paper production firm elaborates: - cellulose pulp obtained by mechanical means. - cellulose pulp obtained by chemical means. •Maximum production capacities: 300 and 200 mt/day. •Each ton demands a working day. The firm has a staff of 400 workers. •Gross margin per ton: - mechanical means : 1.000 m.u. - chemical means : 3.000 m.u. •Cover fixed costs (300.000 m.u./day). 2 Bulgarian Academy of Sciences. 22 July, 2008 Basic concepts Objectives of the firm: •Maximize the gross margin (economical objective) •Minimize the hazard in the river where the factory pours the production (environmental objective). Biologic oxygen demands in the water of the river: - Mechanical means: 1 ut/mt, - Chemical means: 2 ut/mt. 3 Bulgarian Academy of Sciences. 22 July, 2008 Basic concepts The multiobjective model •Decision variables: x1 tons/day mechanical means, x2 tons/day chemical means. •Constraints: x1 300, x2 200, (production capacities), x1 + x2 400, (employment), 1.000x1 + 3.000x2 300.000 (cover costs) 4 Bulgarian Academy of Sciences. 22 July, 2008 Basic concepts •Objectives (criteria): Maximize 1.000x1 + 3.000x2 (gross margin), Minimize x1 + 2x2 (biologic oxygen demand). max 1.000 x1 3.000 x2 min x 2 x 1 2 s.t. x1 300 x2 200 x1 x2 400 1.000 x1 3.000 x2 300.000 5 Bulgarian Academy of Sciences. 22 July, 2008 Basic concepts Efficiency • x* is an efficient solution (Pareto optimal) of the problem, if there is not any feasible solution y such that fi(y) ≤ fi(x*) (i = 1,…, p), with some fj(y) < fj(x*). •x* is a weakly efficient solution (weak Pareto optimal) of the problem, if there is not any feasible solution y such that fi(y) < fi(x*), (i = 1,…, p). 6 Bulgarian Academy of Sciences. 22 July, 2008 Basic concepts Ideal values Opt f i (x) ( Pi ) s.t. x X Optimal sol: x(i). Ideal value i: fi* = fi(x(i)) 7 Bulgarian Academy of Sciences. 22 July, 2008 Basic concepts Payoff Matrix f1* = f1(x(1)) f2(x(1)) … fp(x(1)) f1(x(2)) f2* = f2(x(2)) … fp(x(2)) … … … … f1(x(p)) f2(x(p)) … fp* = fp(x(p)) f1* f2* fp* Anti-ideals: worst value per column. Approximation to nadir value. 8 Bulgarian Academy of Sciences. 22 July, 2008 Basic concepts Gross margin Biologic O2 demand Gross margin 800.000 600 Biologic O2 demand 300.000 200 9 Bulgarian Academy of Sciences. 22 July, 2008 Basic concepts • Decision space: X x R / g j (x) 0,, j 1,, m R n n • Objective space: f ( X ) z R / z f (x), x X R p p 10 Bulgarian Academy of Sciences. 22 July, 2008 Basic concepts Decision space (3) (1) (2) (4) 11 Bulgarian Academy of Sciences. 22 July, 2008 Basic concepts Objective space 12 Bulgarian Academy of Sciences. 22 July, 2008 Basic concepts Efficient Set 13 Bulgarian Academy of Sciences. 22 July, 2008 Basic concepts Efficient Set 14 Bulgarian Academy of Sciences. 22 July, 2008 Goal Programming • Building a goal Objective function fj(x) fj(x) ≤ tj fj(x) ≥ tj fj(x) = tj Target value tj Negative: how short we fall from the target value fj(x) + nj – pj = tj Deviation variables Positive: how long we fall Undesired deviation variables pj nj pj + nj 15 Bulgarian Academy of Sciences. 22 July, 2008 Goal Programming Achievement function h(nj, pj) = pj nj pj + nj Associated optimization problem min s.t. h( n j , p j ) f j (x) n j p j t j x X If h*(nj, pj) = 0, the goal is satisfied. If h*(nj, pj) > 0, the goal is not satisfied. 16 Bulgarian Academy of Sciences. 22 July, 2008 Goal Programming The decision maker gives a goal for each objective: ≤ fj(x) = tj, ≥ j = 1, …, p Associated optimization problem min s.t. h(n, p) f j ( x) n j p j t j , j 1,, p x X 17 Bulgarian Academy of Sciences. 22 July, 2008 Goal Programming •Satisfying solution: satisfies all the goals. •Non-satisfying solution: does not satisfy some goal •A satisfying solution may not be efficient •Depending on the form of the achievement function h, there are different goal programming variants: •Weighted, •Minmax, •Lexicographic. 18 Bulgarian Academy of Sciences. 22 July, 2008 Goal Programming In our example, let us consider the following goals: - Pollution ≤ 300 - Gross margin ≥ 400.000 min s.t. h( p1 , n2 ) x 300 y 200 x y 400 1.000 x 3.000 y 300.000 x 2 y n1 p1 300 1.000 x 3.000 y n2 p2 400.000 19 Bulgarian Academy of Sciences. 22 July, 2008 Goal Programming Satisfying solutions x + 2y ≤ 300 Efficient and satisfying solutions 1.000x + 3.000y ≥ 400.000 20 Bulgarian Academy of Sciences. 22 July, 2008 Goal Programming f1 ≥ 400.000 f2 ≥ -300 21 Bulgarian Academy of Sciences. 22 July, 2008 Goal Programming Let us now consider the following goals: - Pollution ≤ 300 - Gross margin ≥ 500.000 min s.t. h( p1 , n2 ) x 300 y 200 x y 400 1.000 x 3.000 y 300.000 x 2 y n1 p1 300 1.000 x 3.000 y n2 p2 500.000 22 Bulgarian Academy of Sciences. 22 July, 2008 Goal Programming There are no satisfying solutions x + 2y ≤ 300 1.000x + 3.000y ≥ 500.000 23 Bulgarian Academy of Sciences. 22 July, 2008 Goal Programming f1 ≥ 500.000 f2 ≥ -300 24 Bulgarian Academy of Sciences. 22 July, 2008 Goal Programming Weighted goal programming: The DM gives a weight for each goal mj, j = 1, …, p pj mj h(n, p) n j j 1 t j pj nj p 25 Bulgarian Academy of Sciences. 22 July, 2008 Goal Programming Example. Goals (equal weights: m1 = m2 = 1) - Pollution ≤ 300 - Gross margin ≥ 400.000 min s.t. p1 n2 300 400.000 x 300 y 200 x y 400 1.000 x 3.000 y 300.000 x 2 y n1 p1 300 1.000 x 3.000 y n2 p2 400.000 26 Bulgarian Academy of Sciences. 22 July, 2008 Goal Programming 27 Bulgarian Academy of Sciences. 22 July, 2008 Goal Programming 28 Bulgarian Academy of Sciences. 22 July, 2008 Goal Programming 29 Bulgarian Academy of Sciences. 22 July, 2008 Goal Programming Example. Goals (equal weights: m1 = m2 = 1) - Pollution ≤ 300 - Gross margin ≥ 500.000 min s.t. p1 n2 300 500.000 x 300 y 200 x y 400 1.000 x 3.000 y 300.000 x 2 y n1 p1 300 1.000 x 3.000 y n2 p2 500.000 30 Bulgarian Academy of Sciences. 22 July, 2008 Goal Programming 31 Bulgarian Academy of Sciences. 22 July, 2008 Goal Programming 32 Bulgarian Academy of Sciences. 22 July, 2008 Goal Programming 33 Bulgarian Academy of Sciences. 22 July, 2008 Goal Programming Minmax goal programming: The DM gives a weight for each goal mj, j = 1, …, p pj mj h(n, p) max nj j 1,, p t j p n j j 34 Bulgarian Academy of Sciences. 22 July, 2008 Goal Programming Example. Goals (equal weights: m1 = m2 = 1) - Pollution ≤ 300 - Gross margin ≥ 500.000 min s.t. n2 p1 max , 300 500.000 x 300 y 200 x y 400 1.000 x 3.000 y 300.000 x 2 y n1 p1 300 1.000 x 3.000 y n2 p2 500.000 35 Bulgarian Academy of Sciences. 22 July, 2008 Goal Programming min s.a d x 300 y 200 x y 400 1.000 x 3.000 y 300.000 x 2 y n1 p1 300 1.000 x 3.000 y n2 p2 500.000 p1 d 300 n2 d 500.000 36 Bulgarian Academy of Sciences. 22 July, 2008 Goal Programming 37 Bulgarian Academy of Sciences. 22 July, 2008 Goal Programming 38 Bulgarian Academy of Sciences. 22 July, 2008 Goal Programming 39 Bulgarian Academy of Sciences. 22 July, 2008 Goal Programming Lexicographic goal programming: 1) The goals are defined 2) The priority levels are defined 3) Each goal is assigned to the corresponding level f1 ≤ t1 f2 ≥ t2 f3 = t3 f4 ≥ t4 f5 ≤ t5 f6 ≥ t6 Level 1 Level 2 Level 3 40 Bulgarian Academy of Sciences. 22 July, 2008 Goal Programming 4) The problem of the first level is solved min s.t. n2 p5 h1 (n, p) t 2 t5 x X f 2 ( x ) n2 p 2 t 2 f 5 (x) n5 p5 t5 pi , ni 0 •If h1*(n, p) > 0 (the goals of the first level are not satisfied) stop. •If h1*(n, p) = 0 (the goals of the first level are satisfied) proceed to the next level. 41 Bulgarian Academy of Sciences. 22 July, 2008 Goal Programming 5) The problem of the second level is solved min s.t. p1 n4 n6 h2 (n, p) t1 t 4 t6 x X f 2 (x) n2 p2 t 2 f 5 (x) n5 p5 t5 h1* (n, p) 0 (n2 p5 0) f1 (x) n1 p1 t1 f 4 (x) n4 p4 t 4 f 6 (x) n6 p6 t6 pi , ni 0 42 Bulgarian Academy of Sciences. 22 July, 2008 Goal Programming 6) Problem of the third level min s.t. p3 n3 h3 (n, p) t3 x X f 2 (x) n2 p2 t 2 f 5 (x) n5 p5 t5 h1* (n, p) 0 (n2 p5 0) f1 (x) n1 p1 t1 f 4 (x) n4 p4 t 4 f 6 (x) n6 p6 t6 h2* (n, p) 0 ( p1 n4 p6 0) f 3 (x) n3 p3 t3 pi , ni 0 43 Bulgarian Academy of Sciences. 22 July, 2008 Goal Programming Example. Goals (L1: pollution, L2: gross margin) - Pollution ≤ 300 - Gross margin ≥ 500.000 min s.t. ( L1) p2 300 x 300 y 200 x y 400 1.000 x 3.000 y 300.000 x 2 y n2 p2 300 44 Bulgarian Academy of Sciences. 22 July, 2008 Goal Programming 45 Bulgarian Academy of Sciences. 22 July, 2008 Goal Programming min s.t. ( L 2) n1 500.000 x 300 y 200 x y 400 1.000 x 3.000 y 300.000 x 2 y n2 p2 300 p2 0 1.000 x 3.000 y n1 p1 500.000 46 Bulgarian Academy of Sciences. 22 July, 2008 Goal Programming 47 Bulgarian Academy of Sciences. 22 July, 2008 Goal Programming N2 N1 48 Bulgarian Academy of Sciences. 22 July, 2008 Goal Programming Example. Goals (L1: gross margin, L2: pollution) - Pollution ≤ 300 - Gross margin ≥ 500.000 min s.t. ( L1) n1 500.000 x 300 y 200 x y 400 1.000 x 3.000 y 300.000 1.000 x 3.000 y n1 p1 500.000 49 Bulgarian Academy of Sciences. 22 July, 2008 Goal Programming min s.t. ( L 2) p2 300 x 300 y 200 x y 400 1.000 x 3.000 y 300.000 1.000 x 3.000 y n1 p1 500.000 n1 0 x 2 y n2 p2 300 50 Bulgarian Academy of Sciences. 22 July, 2008 Goal Programming N2 N1 51 Bulgarian Academy of Sciences. 22 July, 2008 Reference point Functions to be maximized. Aspiration levels qj (fj ≥ qj), j = 1, …, p A weight is assigned to each objective j, j = 1, …, p (Ruiz et al., 2008, JORS) min max j f j (x) q j xX j 1,, p 52 Bulgarian Academy of Sciences. 22 July, 2008 Reference point q Direction determined by q 53 Bulgarian Academy of Sciences. 22 July, 2008 Reference point Non-convex problems q 54
© Copyright 2026 Paperzz