Dalitz decay: From theory… …to HADES experimental spectra B. Ramstein, IPN Orsay In collaboration with J. Van de Wiele GSI, HADES Collaboration Meeting , 05/07/08 Dalitz decay in transport codes: C+C 2 GeV No medium effects HSD IQMD Dalitz pn Me+e-(GeV/c2) Thomère,Phys ReV C 75,064902 (2007) E. Bratkovskaya nucl-th 07120635 Important issue for understanding intermediate mass dilepton yield Dalitz decay : intrinsic interest of the measurement Dalitz decay p + * e+ Branching ratio not measured experimental challenge q2 = M2inv(e+e-) = M*2 > 0 e- Time Like - N transition: Complementary probes of electromagnetic structure of N - transition Space Like N - transition : ee- * p q2 = M* = - Q2 < 0 + →Np Pion electro/photo-production extraction of electromagnetic form factors GE(q2), GM(q2), GC(q2) Lots of data, Mainz, Jlab N- Dalitz decay dilepton yield: ingredients of the calculation Strong interaction model 1) N N N : • Mass dependent width Breit-Wigner, with possible cut-offs • model for t dependence or angular distribution QED N 2 ) N e- e + • exact field theory calculation • 3 independent amplitudes: e.g. Electric, Magnetic and Coulomb N p N + * e+ q2 = 0 M* 2> Dalitz decay e-- QCD 3) electromagnetic form factors GM(q2),GE(q2),GC(q2) N- em transition : what do we know? • at q2=0, mainly M1+ (magnetic) transition N « Photon point » : q2=0 GM(0)=3, GE(0)~0 • At finite q2, many recent data points from Mainz, Jlab: multipole analysis of p° or p+ electroproduction (%) GM(q2) REM Im( E1 ) Im( M 1 ) related to GE(q2 ) (%) RSM Im( S1 ) Im( M 1 ) related to GC( q2 ) Many models: dynamical models (Sato,Lee), EFT (Pascalutsa and Vanderhaeghen), Lattice QCD, two component model Q. Wan and F. Iachello What about time-like region ? N- transition em structure: what about time-like region? Problems in Time-like region No data Electromagnetic form factors are complex Space Like: q2<0 Analytic continuation : real GSL(q2) Models constrained by data Time Like: q2>0 complex GTL(q2) eg. GTL(q2) = GSL(-q2) or GTL(q2) = GSL(-q2ei),… But,… decay width doesn’t depend on phases of form factors q2 stays small in Dalitz decay at M =1232 MeV/c2 , q2 < 0.09 GeV/c2 2 options: take constant form factors HSD, UrQMD, IQMD use models for form factors GE(q2),GM(q2),GC(q2) : VDM,eVDM, (RQMD) two component Iachello model Sensitivity to Iachello form factor two component model: GM (q2) Unified description of all baryonic transition form factors Direct coupling to quarks + coupling mediated by 0.6m2 M=1.1 GeV/c2 M=1.3 GeV/c2 __ pure QED __ Iachello FF Analytic formula 4 parameters fitted on • elastic nucleon FF (SL+TL) • SL N- transition GM M=1.5 GeV/c2 M=1.7 GeV/c2 PLUTO simulations: sensitivity to Iachello’s form factor in pe+e- events from Dalitz decay E. Morinière, PHD thesis pp @ 1.25 GeV pe+e- events Normalisation problem now solved →no sensitivity at E=1.25 GeV N- Dalitz decay dilepton yield: ingredients of the calculation Strong interaction model 1) N N N : • Mass dependent width Breit-Wigner, with possible cut-offs • model for t dependence or angular distribution QED N 2 ) N e- e + • exact field theory calculation • 3 independent amplitudes: e.g. Electric, Magnetic and Coulomb N p N + * e+ q2 = 0 M* 2> Dalitz decay e-- QCD 3) electromagnetic N- transition form factors GM(q2),GE(q2),GC(q2) Dalitz decay in « reference » papers HSD before 2007, IQMD, UrQMD Wolf, Nucl.Phys. A517 (1990) 615 GMWolf=2.7 GM=4.1 HSD after 2007 PLUTO Ernst, Phys.Rev C 58, 447 (1998) GMErnst=3 (HSD 2.7) GM=4.5 (HSD=4.1) (PLUTO= 3.2) RQMD Krivoruchenko Phys.Rev.D 65, 017502 e-VDM GM(0)~3 Zetenyi and Wolf Zetenyi and Wolf, nucl-th0202047 g1= 2 GM(0)~3 Jones and Scadron convention form factor conventions (including or not isospin factor differences 2 3 of the amplitude) choices of form factors d( e e ) analytic formula for dq 2 See Krivoruchenko et al. Phys.Rev.D 65, 017502 « remarks on radiative and Dalitz decays » Comparing different Dalitz decay dilepton spectra: • analytic formula for d( e e ) dq 2 • and form factors values at q2=0 from 4 papers compare dilepton spectra for M=1232 MeV/c2 X4 (misprint) mass dependence factor 1.5 factor 1.7 factor 2 Discrepancy increases with mass But also off-shell effects problem at high mass factor 2.2 Me+e-( GeV/c2) Check: radiative decay width values d(Δ Ne e- ) (Δ N *) 2 2 dq 3π q M=1232 MeV/c2 For M* =0 radiative decay width Dalitz decay width d(Δ Ne e- ) 2 (Δ Ne e ) dq 2 dq (Δ N ) - Branching Ratio Expt « Wolf »: HSD before 2007, IQMD, UrQMD « Ernst » HSD after 2007 « Krivoruchenko » RQMD Zetenyi Radiative decay (10-3) 5.6± 0.4 6.0 8.7 7.05 (HSD) 5.6 5.6 4.6 6.5 5.3 (HSD) 4.12 (const.GM) 4.25 (e-VDM) 4.12 Dalitz decay (10-5) ? Radiative decay width OK PLUTO 4.4 Pretty well! Direct effect: different normalisation of Dalitz decay dilepton spectrum Same « Ernst » formula Pluto BR(+→pe+e-) = 4.4 10-5 HSD BR (+→pe+e-) =5.3 10-5 Field theory calculation: From reference papers and Jacques Van de Wiele’s work • Differential decay width: e • Amplitude Mc phase space d 1 1 2 M Ne e 2 s s s s dq d q d e 2M 4 mN ,m ,m ,m 5 e Leptonic current 1 s L s s J m , p N , mΔ , pΔ J m e , p e , m e , p e 2 q H isospin hadronic current s N Same as for →N • Electromagnetic hadronic current: 2 sets of covariants can be used: E,M,C : eg Krivoruchenko « standard normal parity set »: eg Wolf J H G M (q 2 ) J M G E (q 2 ) J E GC (q 2 ) J C J H g1 (q 2 ) J1 g 2 (q 2 ) J 2 g3 (q 2 ) J3 • Spin ½ projector (Dirac spinors) • spin 3/2 projector (Rarita-Schwinger spinors) • Traces of products of matrices Calculation of JH(..) JH ’*(..)* JL’(..) JL(…) * Dalitz decay width calculation: results Jacques Van de Wiele’s calculation → same analytical function as Krivoruchenko’s 2 2 2 1/ 2 2 3/ 2 q d(Δ Ne e- ) 2 3 2 mΔ mN 2 2 2 2 2 q mΔ mN q GM 3 GE 2 GC c dq2 48π 2 isospin 2 3 2 mΔ mN 2 mΔ q m Δ mN Can also be expressed in terms of g1,g2,g3: GM g1 2 G M ( q ) E g2 G g3 C • Shyam and Mosel; Kaptari and Kämpfer: g1=5.42, g2=6.61, g3=7 equivalent to GM=3.2 GE=0.04 GC~0.2 • Zetenyi and Wolf: g1=1.98, g2=0,g3=0 fitted to reproduce radiative decay width → same Dalitz decay width as Van de Wiele/Krivoruchenko q2 dependence negligible for Dalitz decay Dalitz decay width calculation: results and suggestions for new PLUTO inputs * angular distribution p + d 3( N *) dq 2 d * * e+ q2 = M* 2 Dalitz decay « helicity distribution » e-- Ok with E. Bratkovskaya, Phys. Lett. B348 (1995) 283 isotropic d 5 ( N *) 2 * ~ 1 cos e dq 2 d *d*e Krivoruchenko/Van de Wiele ( or « Zetenyi » ) expression for d(Δ Ne e- ) dq2 Electromagnetic N- transition form factors Branching ratio d(Δ Ne e- ) (Δ Ne e ) dq2 dq 2 M=1232 MeV/c2 N- Dalitz decay dilepton yield: ingredients of the calculation Strong interaction model 1) N N N : • Mass dependent width Breit-Wigner, with possible cut-offs • model for t dependence or production angular distribution QED N 2 ) N e- e + • exact field theory calculation • 3 independent amplitudes: e.g. Electric, Magnetic and Coulomb N p N + * e+ q2 = 0 M* 2> Dalitz decay e-- QCD 3) electromagnetic form factors GM(Q2),GE(q2),GC(Q2) N N N model: polarisation effects Dalitz decay N N q N polarization 4x4 density matrix ms= -3/2,-1/2,1/2,3/2 + * m p Anisotropy of * angular distribution s m 's Same as in p photoproduction Spin-isospin excitation 1p exchange p + exchange Effective interaction,… Long. polarization : S .q (pure 1p exch.) 1/2 1/2 = -1/2 -1/2 =1/2 others ij=0 Transv. polarization : ( exch.) 3/2 3/2 = -3/2 -3/2 =1/2 others ij=0 S q Jacques Van de Wiele’s result pp ppe+e- interference effects Interference between all graphs including either a Delta or a nucleon p p + p ,p p p p , N + ….. ee+ e- , N p p cf Kaptari and Kämpfer,…. In PLUTO: factorization of NN → N cross section and (→Ne+e-): p p1 No Bremstrahlung two exit protons are distinguishable p2 p + e+ q2=M2inv(e+e-)=M* e- Origin of high dilepton mass tails p+p 1.25 GeV HSD PLUTO C+C, 1.0 A GeV no medium effects 10 -2 10 -3 10 -4 10 -5 10 -6 Brems. NN Brems. pN All 10 -7 10 -8 10 -2 HSD 0.0 0.2 0.4 0.6 0.8 C+C, 1.0 A GeV in-medium effects: CB+DM tail at high dilepton mass: absent in PLUTO HSD: ? 10 Dalitz HADES absent in pp and pn ? Dalitz Dalitz 10 Dalitz Different mass distributions ? -3 2 1 AGeV 1/GeV /c ] 12C+12C PLUTO HSD: p Dalitz Dalitz Dalitz Dalitz HADES 2 1/Np dN/dM [1/GeV /c ] HSD -4 p Delta mass [email protected] distribution in PLUTO: GeV Dmitriev’s mass distribution parametrisation + fromform-factors pp° but with Moniz vertex M 2 p M2 M M 2 M r2 3 M 2 M 2 2 k k 2 k k r Teis = 300 MeV/c M Teis M r r M 2 r 2 2 2 Mass distribution W. Przygoda’s talk from e+e-p M k DmitrievM r r M kr 3 kr2 2 2 2 k M(e+e-) >140 MeV/c2 Dmitriev = 200 MeV/c M(MeV/c2) d/dM high mass dilepton yield is sensitive to high mass E. Morinière, PHD thesis q2=0.02 (GeV/c)2 q2=0.2 (GeV/c)2 N- Dalitz decay dilepton yield: Quite well known, can be improved with ingredients of the calculation our data Strong interaction model 1) N N N : • Mass dependent width Breit-Wigner, with possible cut-offs • model for t dependence or angular distribution QED N 2 ) N e- e + • exact field theory calculation • 3 independent amplitudes: e.g. Electric, Magnetic and Coulomb N Exact calculation, p But offshell + effects? * N e+ q2 = 0 M* 2> e-No sensitivity at E=1.25GeV, Dalitz decay Important at E=2.2 GeV or in p-p E=0.8 GeV/c QCD 3) electromagnetic form factors GM(q2),GE(q2),GC(q2) Normalized yi Tingting’s talk + simulation total pp →pnp E=1.25 GeV • Experiment • Simulation total • Simulation • Simulation Ania Kozuch’s talk • Simulation N* pp → pp p° E=1.25 GeV 6 events Sexperiment =1.39*10 Marcin Wisniovski 6 events Ssimulation pp=1.37*10 → pp p° pp → pn p+ E=2.2 GeV Very good agreement pp→ppe+e-, pn →ppe+eChallenging data ? Tetyana Witold „pure ” + (p,e+,e-) invariant mass dilepton angle, helicity angle,… Conclusion A lot of different models to describe HADES data Different results , but we need to understand the reasons Some investigations for Dalitz decay A lot of other questions about other processes Let’s start the discussions… Results of simulations for Dalitz decay Possibility to reduce p° background to 20% 1500 e+e-p events In HADES acceptance 7 days of beam time Better sensitivity to discriminate pp bremstrahlung M corrected pp data, comparison to transport model calculation IQMD Δ→e+e-N seems to explain e+e- yield in p+p at 1.25 GeV Dalitz decay in transport codes: p+p and pn at 1.25 GeV Isospin effects Transport code or calculation Form factors (different conventions) Effective form factors at q2=0 using convention of Jones and Scadron Reference papers HSD before 2007 GM=2.7 GE=GC=0 GM=3.3 GE=GC=0 WOLF,Nucl.Phys.A517(1990)615 HSD after 2007 GM=2.7 GE=GC=0 GM=3.3 GE=GC=0 Ernst,Phys.Rev C58,447(1998) RQMD e-VMD GM=3. GE=GC=0 Krivoruchenko Phys.Rev.D 65, 017502 IQMD G=2.72 GE=GC=0 GM=3.33 GE=GC=0 WOLF,Nucl.Phys.A517(1990)615 Zetenyi and Wolf g1=1.98, g2=0,g3=0 GM=3.33 GE=GC=0 Zetenyi, nucl-th 0202047 Kaptari and Kämpfer g1= 5.4 g2=6.6 g3=7 GM=3.2 GE=0.04 GC=0.19 Kaptari,Nucl.Phys. A764 (2006)338 analytic continuation to Time-Like region: 3) Intrinsic form factor: Space Like: g Q2 1 (1 a 2 Q 2 ) 2 Analytic continuation : Q2 - q2 ei Time Like: g q2 1 (1 a 2 ei q 2 ) 2 phase : removes singularity at q2=1/a2 (~ 3.45 (GeV/c)2) =53° fitted to elastic nucleon form factors Time Like data same value taken for N - transition Space Like: Time Like:
© Copyright 2026 Paperzz