How cells make decisions? The cell is a (bio)chemical computer outputs External signals Information Processing System Hanahan & Weinberg (2000) ? ? Signal transduction networks Smad p21 MKK MAPK MAPK-P PP Hanahan & Weinberg (2000) ‘Birth control’ for proteins DNA transcription factor transciption RNA translation protein d [protein] = synthesis - degradation dt Gene expression S = mRNA R = protein R k2 rate (dR/dt) k1 3 2 S=1 synthesis 0 0 dR = k 1 . S – k2 . R dt synthesis degradation response (R) S linear degradation 5 0.5 k1 . S Rss = k2 R 0.5 0 1 0 1 2 signal (S) Signal-response curve 3 Protein phosphorylation-dephosphorylation Michaelis-Menten enzyme kinetics d [ ES ] k1[ E ][ S ] k 1[ ES ] kcat [ ES ] dt since [Eo] = [E] + [ES] d [ ES ] k1 ([ Eo ] [ ES ])[ S ] k 1[ ES ] kcat [ ES ] 0 dt [ ES ] V [ Eo ][ S ] k 1 k cat [S ] k1 k [ E ][ S ] V [S ] d [ P] k 2 [ ES ] cat o max k 1 kcat dt [S ] K M [S ] k1 Protein phosphorylation Signal-response curve 2 k1 R k2 Pi RP 2 1.5 1 1 dephosphorylation phosphorylation 0.5 H 2O sigmoidal 1 response (RP) ADP ATP rate (dRP/dt) S 0.25 0.5 0 0 0 1 dR k S(R R ) k R P 1 T P 2 P dt K R R K R m1 T P m2 P phosphorylation dephosphorylation 0.5 R RP 1 0 1 2 signal (S) 3 0 ‘Buzzer’ graded and reversible zero order ultrasensitivity Goldbeter & Koshland, 1981 Multiple phosphorylation R k p k RP R p RP k p RP2 RPn …… k k2 RP2 RP 2 R ........ p p RT R RP RP2 .... R(1 K K2 .....) where K=k/p for n=2 RT R 1 K K2 K RT RP K R 1 K K2 K 2 RT RP2 K R 1 K K2 2 Multiple phosphorylation n=2 1 RP2 0.8 RP3 0.8 0.6 0.6 0.4 0.4 R 0.2 n=3 1 R 0.2 0 0 0 2 4 6 8 K=k/p 10 1 0.8 4 6 8 10 Hill equation: 0.8 RP4 0.6 0.6 0.4 0.4 R 0.2 2 K=k/p n=4 1 0 K5 RP5 5 J K5 0.2 0 0 0 2 4 6 8 K=k/p 10 0 2 4 6 8 K=k/p 10 Coupling of modules Two linear modules k4 X k1 R rate (dR/dt) 1.9 k3 S adapted synthesis 3 5 4 S R 3 5 2 X 2 1.4 1 1 k2 0 0 0.9 0 dR k S k X R 2 dt 1 dX k S k X 4 dt 3 R 1 Response is independent of Signal kk Rss 1 4 k k 23 k S Xss 3 k 4 2 -1 0 10 time Perfect adaptation 20 Feed-forward loop S S + X + R - R increases for S increase R decreases for S decrease + X - R + R decreases for S increase R increases for S decrease Feed-forward loop with two buzzers X S + XA R + RA Cock and fire RA S XA Another way to get perfect adaptation k0 R’ k1 dR' k0 k1 S R' k2 R dt dR k1 S R' k2 R k3 R dt dR' dR k0 k3 R 0 dt dt k0 R k3 S k2 R k3 The same principle, different deployment k0 k3 dR' k0 k1 S R' k2 R k3 R' dt dR k1 S R' k2 R dt dR' dR k0 k3 R' 0 dt dt k0 R' k3 R’ k1 S k2 R Bacterial chemotaxis swimming (counter-clockwise) tumbling (clockwise) Bacterial chemotaxis Feedback controls Linear module & buzzer k0 EP rate (dR/dt) S k1 16 8 0 0.6 k2 R k3 E k4 0.5 0.4 0.3 0 R response (R) 0.5 bistability 1 ‘Toggle’ switch Scrit1 Scrit2 0 1 signal (S) 0.5 0.1 0 0 mutual activation 0.2 0 0.5 response (R) Protein synthesis: positive feedback 2 0 10 signal (S) ‘Fuse’ response (R) Example: Fuse dying 0.5 0 0 10 signal (S) Apoptosis (Programmed Cell Death) The lac operon (‘toggle’ switch) S k1 k0 EP k2 R k3 k4 S (extracellular lactose) E EP R (intracellular lactose) Multistability in the lactose utilization network of Escherichia coli ERTUGRUL M. OZBUDAK1,*, MUKUND THATTAI1,*, HAN N. LIM1, BORIS I. SHRAIMAN2 & ALEXANDER VAN OUDENAARDEN1 Nature 427, 737 - 740 (19 February 2004) Initially uninduced cells grown for 20 hrs in 18 M TMG TMG = thio-methylgalactoside Initially uninduced cells (lower panel) and induced cells (upper panel) grown in media containing different concentration of TMG ‘Death control’ for proteins d [protein] = synthesis - degradation dt ubiquitilation system proteasome degraded protein Linear module & buzzer k1 k0 EP k2 R k2' k4 k3 0.1 1.8 response (R) S rate (dR/dt) Protein degradation: mutual inhibition 1.2 0.05 mutual inhibition 0.5 0.6 synthesis E 1 0 0 0 0.5 R 1 1.5 0 1 signal (S) 2 Oscillators: three modules PhasePlane k5 S k1 k0 EP k2' 2 R Scrit1 Scrit2 2 1 k2 k3 k4 k6 X R 3 response (R) Positive and negative feedback oscillations (activator-inhibitor) 1 E 0 0 X 1 0 0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 signal (S) 0 . 5 p53 p53-CFP and Mdm2-YFP levels in the nucleus after -irradiation Mdm2 Period of oscillation: 440 100 min Positive and negative feedback oscillations (substrate depletion) Scrit1 k1 X k0' k0 EP k2 R response (R) S 1 R k3 k4 Scrit2 1 E 0 0 X 5 0 0 . 0 signal (S) 0 . 5 S X 5 k1 k0 Y X k3 k4 R YP 1 k2 k2' YP k5 k6 response (RP) Negative feedback and oscillation 5 . 0 Scrit1 Scrit2 4 . 0 3 . 0 0.5 (2) 2 . 0 RP RP 1 . 0 (1) 0 0 0 25 time 50 0 . 0 0 2 4 signal (S) 6 Negative feedback and homeostasis S k4 k3 k2 EP 1.5 production removal 1 1 0.5 0.5 0 0 0.5 R 1 1 homeostatic response (R) E R rate (dR/dt) k0 0.5 0 0 1 signal (S) 2 Typical biosynthetic pathway aminoacid demand protein
© Copyright 2026 Paperzz