Unraveling the mitochondrial role of the human apoptosis inducing factor (hAIF) Patricia Ferreira Neila Departamento de Bioquímica y Biología Molecular y Celular Instituto de Biocomputación y Física de Sistemas Complejos Universidad de Zaragoza BIFI2011: V National Conference “Protein interaction and electron transfer” Group of Structural Biology Dra. Milagros Medina Dr. Carlos Gómez-Moreno Dr. Marta Martínez-Júlvez Dra. Patricia Ferreira Raquel Villanueva Ana Serrano Isaías Lans Beatriz Herguedas Sonia Arilla Ana Sánchez, Thanks Dr. Susin, Dra. M. Luisa Peleato and Dra. M. Dolores Miramar for giving us the cDNA of hAIF cloned in E.coli Apoptosis inducing Factor (AIF) Apoptotic insult AIF is a redox protein NADH-binding domain C-terminal AIF apoptotic FAD-binding domain AIF oxidoreductase hAIF crystal structure (PDB 1M6I) Lipton et al. (2002) Chromatin condensation Caspase-independent cell death AIF seems to display a dual role in cellular death and life. AIF cellular localization hAIF102 Kroemer et al. 2007 MLS Anchored peptide FAD binding NADH binding FAD binding C-terminal 67 KDa 62 KDa 57 KDa Vital AIF function • Antioxidant defense • AIF redox activity is associated with correct behavior of the mitochondrial respiratory chain in vivo Two hypothetical models AIF as an assembly factor Nazanine Modjtahedi, TRENDS in Cell Biology Vol.16 No.5 May 2006 AIF as a maintenance factor NADH-binding domain AIF electron transfer activity C-terminal AIF apoptotic HN5 C4 FAD FAD-binding domain AIF oxidoreductase NADH NADH Reductive half reaction E-FAD E-FADH2 Oxidative half reaction ¿Acceptor ? NAD+ In spite of the large number of studies about AIF, key questions remain to be addressed….. In spite of the large number of studies about AIF, key questions remain to be addressed….. • Which is the biological role of AIF in a healthy cell? • Is AIF an oxidoreductase? • Who is AIF redox partner in the cellular environment? • Is AIF redox activity independent or linked to the apoptotic function? The hAIF102 flavin properties Absorbance 0.24 hAIF 102 reoxidased hAIF 102 intermediate hAIF 102 reduced hAIF 102 oxidased 0.16 0.08 0.00 300 400 500 600 Either photoreduction or sodium dithionite reduction of hAIFΔ102 produced the full reduced FAD without detection of any semiquinone intermediate. 700 Wavelength (nm) The photoreduced hAIF102 results completely reoxidised in the presence of oxygen. Screening hAIF102 redox acceptor NADH oxidase activity was not detected using oxygen as electron acceptor Steady-state kinetic parameters of hAIF102 with different electron acceptors using NADH substrate kcat Km DCPIP K3Fe(CN)6 (s-1) 1.5 ± 0.1 6.4 ± 0.4 (µM) 272.9 ± 31.3 1219 ± 191.6 Cytochrome c 1.3 ± 0.1 202.6 ± 37.6 kcat/Km (s-1·mM-1) 5.5 5.2 Similar catalytic efficiency Low turn-over 6.4 No activity was detected using 1,4-benzoquinone, 1,2-naptoquinone or Fe3+EDTA as electron acceptors. The low affinities for the coenzyme suggest that the hAIF redox reaction might be activated by its electron acceptor under physiological conditions H- hAIF hydride transfer mechanism 0 sec 0.3 sec 6.88 sec 3.6 sec 16.71 sec 26.54 sec 36.37 sec 46.2 sec Absorbance 0.12 0.08 CTC 0.04 N5 C4 FAD NADH Formation of flavin:nicotinamide complex (CTC). very charge stable transfer 0.00 400 500 600 700 800 Wavelength (nm) The reduction rates were independent of the presence of molecular oxygen Pre-steady state kinetic parameters kred (s-1) Kd (µM) NADH 1.23 ± 0.1 1260 ± 167 NADPH 0.08 ± 0.01 4848 ± 1131 k1 NADH is the natural electron donor of hAIF Eox+S k-1 EoxS Kd (k-1/k1) k2 Ered-P kred (k2) Dimerization can modulate hAIF oxidoreductase activity. Gel filtration profile Wildtype Wildtype + NADH Absorbance 120 hAIF102 is a monomeric protein that evolves to a dimeric state during NADH oxidation. This observation suggests that the AIF redox reaction is regulated, and must have some physiological relevance. 80 40 0 0 5 10 15 20 25 30 Flow (mL/min) This process was also observed for the mouse AIF (mAIF). Dimerization can modulate hAIF oxidoreductase activity. Crystal structure of the dimeric mAIF:NAD+ complex (pdb 3GD4) The interactions at the dimer interface R448 E412 R421 R429 R448 R421 All these residues are conserved in hAIF E412 R429 E413A/R422A/R430A Dimerization can modulate hAIF oxidoreductase activity. E413A/R422A/R430A variant reduction with NADH Gel filtration profile 0.10 Wildtype Wildtype + NADH 80 40 Absorbance Lower CTC to the wild-type 0.08 Absorbance 120 0.06 0.04 CTC 0.02 0.00 0 400 120 E413A/R422A/R430A E413A/R422A/R430A + NADH 500 600 700 800 Wavelength (nm) NADH hAIF 80 40 kred (s-1) KdNADH (µM) Wild-type 1.2 ± 0.1 1260 ± 167 Variant 0.5 ± 0.01 2260 ± 295 0 0 5 10 15 20 Flow (mL/min) 25 30 Reduction rates and affinity lower to the wild-type Studying hAIF redox active site Manual docking of NADH into the hAIF redox active site W483G K177W hAIF redox active site (pdb 1m6i) F310G H454S E314S NAD+ FAD AIF variants reduction with NADH W483G Wild-type Absorbance 0.08 CTC 0.04 0.00 0.06 0.03 0.00 400 500 600 700 400 800 500 600 700 P173G F310G 0.12 0 sec 8 sec 11 sec 17 sec 21 sec 25 sec hAIFox hAIFred-NAD+ 0.67 s hAIFred-NAD+ 1.6 s 0,08 hAIFred-NAD+ 4.09 s 0,06 0,04 Absorbance hAIFred-NAD+ 0.019 s hAIFred-NAD+ 0.26 s 0,10 Absorbancia (U.A.) 800 Wavelength (nm) Wavelength (nm) 0,12 0 sec 9 msec 60 msec 0.16 sec 3 sec 0.09 Absorbance 0 sec 0.3 sec 6.88 sec 3.6 sec 16.71 sec 26.54 sec 36.37 sec 46.2 sec 0.12 0.08 0.04 0,02 0.00 0,00 400 500 600 Longitud de onda (nm) 700 400 500 600 Wavelength (nm) 700 800 AIF variants reduction with NADH Pre-steady state kinetic parameters hAIF Variants All residues are involved in AIF redox reaction NADH kred (s-1) KdNADH (µM) Wild-type 1.2 ± 0.1 1260 ± 167 W483G(*) 39.4 ± 1 245 ± 26 F310G 17.3 ± 1 5585 ± 89 P173G 4.7 ± 0.3 11932 ± 1548 All variants show higher kred to the wildtype values W483G at least 40-times 20 (*) Experiments performed at 12 ºC F310G and P173G lower affinity than wild-type kobs (s-1) 15 WT F310G W483G 10 5 0 0 2 4 [NADH] mM 6 AIF variants reduction with NADH H454S E314 F310 9 msec 0.1 sec 0.2 sec 0.4 sec 0.7 sec 1.5 sec 2 sec 0.15 Absorbance NAD+ FAD 0.10 0.05 K177 0.00 W483 400 500 600 700 800 Wavelength (nm) H454S hAIFox and rAIFred:NAD redox active site (pdb 1m6i and 3GD4) No CTC formation hAIF Variants NADH kred (s-1) KdNADH (µM) Wild-type 1.2 ± 0.1 1260 ± 167 H454S 3.7 ± 1 2743± 295 Future work • Explore new acceptor as AIF redox partner • Analyse the AIF oligomerization state into the cell • Study the effect of AIF variants in the efficiency of oxidative phosphorylation in mitochondria • Study the effect of AIF variants in isolated nuclei to evaluate the role of the hAIF redox function, and the derived conformational changes of the NADH interaction, in the apoptotic hAIF function. Apoptosis inducing Factor (AIF) Kroemer et al 2009 Cellular localization of AIF Nazanine Modjtahedi, TRENDS in Cell Biology Vol.16 No.5 May 2006 Reacción de reducción con NAD(P)H Reducción anaeróbica de la hAIF con NADPH de hAIF 1-102 con 625 M NADPH Reduccion Reducción anaeróbica de la hAIF con NADH hAIF 1-102 + 612.5 M NADH en condiciones aeróbicas 0.12 AIFox AIFox-NADPH 2 msec AIFox AIFox-NADH 1 msec 0.08 1.31 sec 67 sec 119 sec 250 sec AIFred-NAD+ 40 msec + AIFred-NAD 1.27 sec 0.08 Absorbance Absorbance AIFred-NAD+ 3.3 sec AIFred-NAD+ 5.36 sec CTC 0.04 0.00 0.04 0.00 400 500 600 700 800 400 Wavelength (nm) 500 600 Wavelength (nm) Reducción completa de la flavina mediada por dos electrones Similares espectros de reducción con NAD(P)H en presencia y ausencia de oxigeno Formación de complejos de transferencia de carga altamente estables La formación del complejo AIFox-NADH se evidencia en los ensayos con un incremento del espectro de la proteína 700 800 AIF como una proteína redox de señalización Inna Y. Churbanova and Irina F. Sevrioukova, JBC 2008
© Copyright 2026 Paperzz