Particle precipitation in medium- and large-scale biomass combustion plants Thomas Brunner, Manfred Lixl BIOENERGIESYSTEME GmbH Inffeldgasse 21b, A-8010 Graz, Austria TEL.: +43 (316) 481300; FAX: +43 (316) 4813004 E-MAIL: [email protected]; HOMEPAGE: http://www.bios-bioenergy.at BIOENERGIESYSTEME GmbH Inffeldgasse 21b, A-8010 Graz Content Characterisation of particles to be precipitated Technological description of different dust precipitation technologies Evaluation of the aerosol precipitation efficiencies of different dust precipitation technologies Recommendations concerning the application of different dust precipitation technologies in biomass combustion plants 2 BIOENERGIESYSTEME GmbH Inffeldgasse 21b, A-8010 Graz Aerosols Typical particle size distributions of fly ashes formed during biomass combustion Coarse fly ash particles dm/dlog(dp) [mg/Nm³] 600 500 400 300 200 100 0 0.01 0.10 1.00 10.00 xm [µm ae.d.] 100.00 1,000.00 3 BIOENERGIESYSTEME GmbH Inffeldgasse 21b, A-8010 Graz Dust precipitation technologies – overview Cyclones Multi-cyclones Flue gas condensation units Electrostatic precipitators (ESP) • dry ESP • wet ESP Baghouse filters 4 BIOENERGIESYSTEME GmbH Inffeldgasse 21b, A-8010 Graz Precipitation efficiencies of different dust precipitation technologies 5 BIOENERGIESYSTEME GmbH Inffeldgasse 21b, A-8010 Graz clean gas Cyclones and multi-cyclones Principle: precipitation by centrifugal forces flue gas Cut diameters: ~ 5 µm Operation temperature: - up to 1,300 °C - usually 150 - 250°C Operation pressure: - up to 100 bar - usually atmospheric precipitated dust Only suitable for coarse fly ash precipitation 6 BIOENERGIESYSTEME GmbH Inffeldgasse 21b, A-8010 Graz Scheme of a multi-cyclone clean gas c;eam gas out c;eam gas out clean gas dirty gas in dirty gas outlet tube outlet tubes spin vanes spin vanes dirty gas in dirty gas collected dust out collected dust out collected dust out collected dust out 7 Multi-cyclones – aerosol separation BIOENERGIESYSTEME GmbH Inffeldgasse 21b, A-8010 Graz Measured particle size distributions of aerosols upstream and downstream a multi-cyclone (coarse fly ashes are not considered) test 1 test 2 20 mg/Nm³ dirty gas clean gas 15 10 5 dirty gas clean gas 15 10 5 xm [µm ae.d.] 11.31 5.66 2.83 1.41 0.71 0.35 0.18 0.09 0.03 11.31 5.66 2.83 1.41 0.71 0.35 0.18 0 0.09 0 0.03 mg/Nm³ 20 xm [µm ae.d.] Almost no separation of aerosol particles Explanations: all data related to dry flue gas and 13 vol.% O2 ae.d.: aerodynamic particle diameter underfeed stoker, full load fuel: hardwood (wood chips and sawdust) 8 BIOENERGIESYSTEME GmbH Inffeldgasse 21b, A-8010 Graz Flue gas condensation units Combined dust precipitation and recovery of sensible and latent heat Not applicable in all biomass combustion units. Constraints for application are: - low temperature of return - high moisture content of fuel Particle separation efficiency coarse fly ashes: almost 100% aerosols: depends on amount of condensed water vapour Pre-separation of coarse fly ash particles is recommended to avoid plugging of tube pipes Sludge/water separation is necessary Heat exchanger tubes can be cleaned by water injection 9 Flue gas condensation units – aerosol precipitation BIOENERGIESYSTEME GmbH Inffeldgasse 21b, A-8010 Graz Measured particle size distributions of aerosols upstream and downstream a flue gas condensation unit 11.31 1.41 0.71 0.35 11.31 5.66 2.83 0 1.41 0 0.71 10 0.35 5 0.18 20 0.09 10 0.18 30 0.09 15 40 0.03 mg/Nm³ 20 0.03 mg/Nm³ 25 dirty gas clean gas 50 5.66 dirty gas clean gas 30 xm [µm ae.d.] test 2 60 2.83 test 1 35 xm [µm ae.d.] Aerosol precipitation efficiency: test 1: 39%, test 2: 60% Explanations: all data related to dry flue gas and 13 vol.% O2; ae.d.: aerodynamic particle diameter; grate-fired combustion unit, 70% load; fuel: bark 10 BIOENERGIESYSTEME GmbH Inffeldgasse 21b, A-8010 Graz Electrostatic precipitators principle of dry ESP Principle: (1) Particles are charged and (2) precipitated at collection electrodes (plates) (3) particles are removed from electrodes by rapping Required properties of dust: Specific electric resistivity between 107 and 1011 Ohm*cm Operation temperature up to 480°C, usually <250°C Operation pressure up to 20 bar, usually atmospheric 11 BIOENERGIESYSTEME GmbH Inffeldgasse 21b, A-8010 Graz Electrostatic precipitators plate and tube-type ESP 12 emission [mg/Nm³] 120 100% 100 90% 80 80% 60 70% 40 60% 20 50% 0 40% 50kV 30kV 50kV 35kV 50kV 35kV separation efficieny Dry electrostatic precipitators – aerosol precipitation vs. voltage BIOENERGIESYSTEME GmbH Inffeldgasse 21b, A-8010 Graz 50kV 35kV dirty clean clean dirty clean clean dirty clean clean dirty clean clean gas gas gas gas gas gas gas gas gas gas gas gas beech Explanations: MDF - dust MDF - chips waste wood results from impactor measurements; only particles <1µm considered all data related to dry flue gas and 13 vol.% O2 grate-fired combustion unit; filter current: <2 mA 13 BIOENERGIESYSTEME GmbH Inffeldgasse 21b, A-8010 Graz Electrostatic precipitators principle of wet ESP (I) Principle: • The flue gas flows vertically through honeycomb-shaped collection surfaces. • An emission electrode is located in the centre of the honeycombs. electrode • Before entering the wet ESP, the flue gas is cooled by a quenching process and saturated with water. collection surface • Increasing the amount of moisture in the flue gas reduces the electrical resistance of the dust, making it easier to charge and remove the particles. 14 BIOENERGIESYSTEME GmbH Inffeldgasse 21b, A-8010 Graz Electrostatic precipitators principle of wet ESP (II) Principle: • Collection surfaces are configured as circular pipes electrode • These collection surfaces are cooled on the outside by a surrounding flow of ambient air, which causes a layer of condensed vapour on the inside of the pipes • Disadvantage: larger overall size collection • Advantage: enhanced self-cleaning effect surface (as the condensate drains off, it creates a film of water that carries away the separated particles) 15 Wet ESP – aerosol precipitation vs. filter current emission [mg/Nm³] 60 <1 µm total efficiency 120% 50 100% 40 80% 30 60% 20 40% 10 20% 0 0% 0 50 100 precipitation efficiency BIOENERGIESYSTEME GmbH Inffeldgasse 21b, A-8010 Graz 150 current [mA] Explanations: results from impactor measurements; <1µm ... particles collected on impactor stages with a cut diameter <1µm; total ... total amount of particles collected with the impactor; all data related to dry flue gas and 13 vol.% O2; grate-fired combustion unit; fuel: mixture of bark, wood chips and sawdust; filter voltage: <60 kV 16 BIOENERGIESYSTEME GmbH Inffeldgasse 21b, A-8010 Graz Baghouse filters Principle: • Flue gas is filtered on the surface of filter media by cake generation • The cake is periodically removed from the surface by pressurised air Operation temperature • up to 850°C (depending on filter material) • usually in the range between 160 and 220°C Operation pressure • up to 50 bar • usually atmospheric Additional advantage • Combination with dry sorption in order to decrease HCl, SOx, Hg and PCDD/F emissions 17 Baghouse filters – scheme BIOENERGIESYSTEME GmbH Inffeldgasse 21b, A-8010 Graz pressurised air (3-6 bar) flue gas outlet valves filter bags flue gas inlet dust 18 Baghouse filters – filter bag cleaning BIOENERGIESYSTEME GmbH Inffeldgasse 21b, A-8010 Graz filtration cleaning clean gas pressurised air dirty gas 19 Baghouse filters – aerosol precipitation BIOENERGIESYSTEME GmbH Inffeldgasse 21b, A-8010 Graz 300 2.4 dirty gas dm/dlog(dp) [mg/Nm³] 250 clean gas 2.0 200 1.6 150 1.2 100 0.8 50 0.4 0 0.0 10.00 0.01 0.10 1.00 dp [µm ae.d.] clean gas dm/dlog(dp) [mg/Nm³] dirty gas Aerosol precipitation efficiency: >99% Explanations: results from impactor measurements; all data related to dry flue gas and 13 vol.% O2; grate-fired combustion unit; fuel: waste wood 20 Particle separation in biomass combustion units – results from measurements BIOENERGIESYSTEME GmbH Inffeldgasse 21b, A-8010 Graz multicyclone flue gas cond. unit ESP 1 ESP 2 baghouse filter combustion technology underfeed stoker moving grate moving grate underfeed stoker moving grate moving grate fuel hardwood bark hardwood hardwood ind. waste wood waste wood load (% nominal capacity) 90 70 50 25 80 - 100 60 - 85 av. total fly ash, dirty gas 109 113 260 132 433 av. total fly ash, clean gas 74 24 <10 32 <2 ⌧⌧⌧ ⌧⌧⌧ ⌧⌧⌧ ⌧⌧⌧ ⌧⌧⌧ coarse fly ash precipitation ⌧⌧ aerosols, dirty gas 22 – 35 60 – 110 26 – 36 90 – 120 35 – 58 72 – 98 aerosols, clean gas 22 - 35 36 – 55 22 - 26 <10 6–8 0.4 – 0.7 ⌧⌧ ⌧ aerosol precipitation ⌧⌧ Explanation: all data in mg/Nm³ related to dry flue gas and 13 vol.% O2 ⌧⌧ ⌧⌧⌧ 21 Conclusions and recommendations BIOENERGIESYSTEME GmbH Inffeldgasse 21b, A-8010 Graz Best applicable precipitation technology with respect to the capacity range and fuel used Emission limit: >150 mg/Nm³ multi-cyclone Emission limit: 50 mg/Nm³ flue gas condensation units, dry ESP Emission limit: 20 mg/Nm³ dry or wet ESP Emission limit: 10 mg/Nm³ baghouse filters, wet ESP Waste wood fired plants highly efficient baghouse filters Generally, a cyclone or multi-cyclone should be implemented upstream an ESP, baghouse filter or flue gas condensation unit in order to remove the coarse fly ash particles 22
© Copyright 2026 Paperzz