1 Lesson Plan #62 Class: AP Calculus Date: Monday February 16th, 2011 1 Topic: Anti-derivative of y . x Aim: How do we find the anti-derivative of 1 du u Objectives: 1) Students will be able to find the anti-derivative of 1 du u HW# 62: Evaluate 1 x2 dx 4) 3) dx 3x 2 3 x3 Note: We have formulas for the derivative of eu and ln u , the natural exponential function and the natural logarithmic function, respectively. Let’s just state the formulas for the derivatives of a u and log a u the general exponential 10 1) dx x 1 dx 2) x5 function and the general logarithmic function, respectively Theorem: For 1. d a x a x ln a dx Theorem: For 1. a 0 and a 1 2 d u du a a u ln a dx dx 2. d 1 du log a u dx u ln a dx a 0 and a 1 d 1 log a x dx x ln a Do Now: Differentiate 1) y (ln x) 4 2) y (log x) 4 3) y 8 x Procedure: Write the Aim and Do Now Get students working! Take attendance Give back work Go over the HW Collect HW Go over the Do Now We have seen that d ln x 1 . Then going backwards, what must dx x 1 x dx be? 2 1 1 x dx ln x c u du ln u c Examples: Evaluate 1) 2 x dx 6) u 3du 7) 6 x 1dx 8) sin d 9) x 1dx 2) 1 1 cos 1 x 10) 1 4x 11) 5 2 sin x dx 2 cos x dx 1 3 2 xdx 3) x x 2 1 dx 4) x2 4 x 5) x 2 x3 6x 7 3 12) e x 1 2e x dx On Your Own Exercises: Evaluate sin x 1) 1 3 cos x dx 2) 1 3u du 2 e x e x 3) x dx e ex x 4) 1 4x 5) 6) 9 z 7) x ln x 2 dx 2x 1 dx 2x z dx 2 dz 4 1 8) 9) 1 cos xdx 10) 1 x 3 1 x 3 2 dx sin x sec x tan x dx sec x 1 Sample Test Questions: 2)
© Copyright 2026 Paperzz