YOKOHAMA MATHEMATICAL JOURNAL VOL. 34, 1986 ON LOCALLY $W^{*}$ -ALGEBRAS By MARIA FRAGOULOPOULOU (Received March 25, 1985; Revised October 1, 1985) We consider in this paper a more general class than that of the classical algebras; namely the class of locally -algebras defined as inverse limits of algebras (Definition 1.1). Among the examples of this sort of algebras we work out, is the locally -algebra $L(H),$ $H$ a ’‘locally Hilbert space” [8; Section 5]. As it is apparent from what follows, $L(H)$ represents, in effect, the most general case of a locally -algebra. That is, defining the respective -weak (operator) topology on $L(H)$ , we prove that every locally -algebra $E$ equipped with the inverse limit (Proposition topology 1.3) coincides (within an isomorphism of topological algebras) with a -weakly closed -subalgebra of some $L(H),$ $H$ a locally Hilbert space (Theorem 2.1). In this respect, one gets that the center $Z(E)$ of a locally algebra $E$, is a $\sigma- closed*$ -subalgebra of , hence also a locally -algebra (cf. Corollary 2.2 and Example 1.4.1, Proposition). On the other hand, one always obtains that every locally -algebra admits an ”Arens-Michael-type decomposition” consisting of -aIgebras (Proposition 1.3). An application of the above gives information concerning the inner derivations of a locally -algebra $E$. More $E$ precisely, one has that each inner derivation , of is an inverse limit of inner derivations , corresponding to the -algebra factors of $E$. $E$ Thus, the set of all inner derivations of , becomes a complete locally convex spaoe (Theorem 3.1), so that if , is a defining family of seminorms for , one gets that for every $W^{*}-$ $W^{*}$ $W^{*}-$ $C^{*}$ $W^{*}$ $\sigma$ $W^{*}$ $\sigma$ $*$ $\sigma$ $W^{*}-$ $W^{*}$ $(E, \sigma)$ $W^{*}$ $W^{*}$ $W^{*}$ $\delta_{x},$ $\delta_{x_{a}},$ $\alpha\in A$ $x=(x_{\alpha})\in E$ $W^{*}$ $\overline{E}_{\alpha}^{\sigma_{\alpha}},$ $\alpha\in A$ $\delta_{0}(E)$ $(q_{\alpha}),$ $\alpha\in A$ $\delta_{0}(E)$ $\delta_{x}\in\delta_{O}(E)$ $q_{\alpha}(\delta_{x})=2\inf\{p_{\alpha}(x-z):z\in Z(E)\}$ , $\alpha\in A$ , , is a family of (submultiplicative) where -seminorms defining the $E$ topology of . The latter extends in our case a previous result of L. Zsid\’o [16] conceming an estimation of the norm of an (inner) derivation acting on an abstract -algebra. Similar estimations referred to (inner) derivations of the -algebra of all bounded linear operators on a Hilbert space $H$, or of a -algebra acting on a separable Hilbert space, have been also given earlier by J. G. Stampfli [14] and P. Gajendragadkar [5] respectively. Furthermore we use Zsid6’s technique of Theorems 1 and 2 in [16] in order to estimate the above numbers , by means of a certain map , at the cost however of some particular restriction on the locally -algebra $E$ (Theorem 3.5). A further application of the latter leads to a new information even for the normed case, according to which $(p_{\alpha}),$ $\alpha\in A$ $C^{*}$ $W^{*}$ $C^{*}$ $\mathscr{L}(H)$ $W^{*}$ $q_{\alpha}(\delta_{x}),$ $\Phi:E\rightarrow Z(E)$ $W^{*}$ $\alpha\in A$ M. FRAGOULOPOULOU 36 [ ; Theor. 3] is, in effect, a relatively open Zsido’s continuous map (Theorem 4.3). section of a continuous open linear surjection $16$ $v:\delta_{0}(E)\rightarrow E$ $u:E\rightarrow\delta_{0}(E)$ 1. The topological algebras considered throughout are all over the field $C$ of complex numbers and have an identity element. -algebra $E$ endowed with a By an lmc (locally $m$ -convex)*-algebra, we mean (a directed index set), of -preserving topology defined by a family submultiplicative seminorms. A complete lmc -algebra $E$ is called a locally $x\in E$ . Given an lmc , for any algebra [8] if, in addition, the completion of the normed algebra and denote by algebra $E$, set $x\in E$ and (cf. , with norm defined by , within a topological algebraic [1], [11]). Then, if $E$ is complete one gets $a^{*}$ $*$ $\alpha\in A$ $(p_{\alpha}),$ $*$ $C^{*}-$ $*-$ $\alpha\in A,$ $p_{\alpha}(x)^{2}=p_{\alpha}(x^{*}x)$ $\tilde{E}_{\alpha}$ $N_{\alpha}\equiv ker(p_{\alpha})$ $\dot{p}_{\alpha}(x_{\alpha})=p_{\alpha}(x),$ $\dot{p}_{\alpha}$ $E_{\alpha}\equiv E/N_{\alpha}$ $\alpha\in A$ $x_{\alpha}=x+N_{\alpha}\in E_{\alpha},$ $E=\varliminf_{\alpha}\tilde{E}_{\alpha}$ isomorphism (ibid.), the latter expression being called an Arens-Michael decomis always , if $E$ is a locally $C^{*}- algebra,$ position of $E$ [ ; Def. III, 3.1]. In (cf. [13; Folg. 5.4]), a for every -algebra, i.e., complete, hence a $E$ has no unit (cf. [4; Prop. 2.1, (ii)]), $E$ given thus fact being actually true even if as an inverse limit of -algebras. -algebras, where the , be an inverse system of Now, let with respect to the , continuous are considered in connecting maps into . The canonical map of the inverse limit uniform (norm) topology of $E_{\alpha}$ $10$ $P_{\sim}^{articular}$ $C^{*}$ $\alpha\in A$ $E_{\alpha}=E_{\alpha}$ $C^{*}$ $(F_{\alpha},f_{\alpha\beta}),$ $f_{\alpha\beta},$ $W^{*}$ $\alpha\in A$ $A$ $\alpha\leq\beta$ $F_{\alpha}’ s$ $\varliminf_{\alpha}F_{\alpha}$ $F_{\alpha}$ , will be denoted by . In this regard, we now set the next. Mallios). An algebra is said to be a locally $f_{\alpha},$ $\alpha\in A$ Deflnition 1.1 (A. is given as an inverse limit of W*-algebras, i.e., $E$ $W^{*}$ -algebra, if it , is a , where each $W^{*}$ $F_{\alpha},$ $E=\varliminf_{\alpha}F_{\alpha}$ $\alpha\in A$ -algebra. -algebra equipped with -algebra $E$ is a locally Scholium 1.2. Every locally -algebra the inverse limit topology , induced on it by the uniform topology of its is given exactly . In addition, the Arens-Michael decomposition of factors . by the *-subalgebras of , -norm defining the uniform topology of denotes the In fact, if one gets by [10; Lemma III, 3.2] that $C^{*}$ $W^{*}$ $W^{*}$ $\tau$ $F_{\alpha},$ $(E, \tau)$ $\alpha\in A$ $f_{\alpha}(E)$ $F_{\alpha}’ s,$ $\alpha\in A$ $C^{*}$ $\Vert\cdot\Vert_{\alpha}$ (1.1) $F_{\alpha},$ $\varliminf_{\alpha}F_{\alpha}=(E, \tau)=\varliminf_{a}f_{\alpha}(E)=\varliminf_{\alpha}\overline{f_{\alpha}(E)}$ where “–,, (1.2) means $\Vert\cdot\Vert_{\alpha}$ $\alpha\in A$ , -closure. Now the relation $p_{\alpha}=\Vert\cdot\Vert_{\alpha}\circ f_{\alpha}$ , $\alpha\in A$ , -seminorm on $E$, and it is clear by (1.1) defines a ( -preserving submultiplicative) -algebra. Now, , and makes $E$ into a locally that is defined by the family , one has by (1.2) that , of considering the Arens-Michael factor $*$ $\tau$ $C^{*}$ $(p_{\alpha}),$ $C^{*}$ $\alpha\in A$ $E_{\alpha},$ $\alpha\in A$ $\dot{p}_{\alpha}(x_{\alpha})=p_{\alpha}(x)=\Vert f_{\alpha}(x)\Vert_{\alpha}$ , $(E, \tau)$ $x\in E$ , $\alpha\in A$ , ON LOCALLY $W^{*}$ -ALGEBRAS consequently the map (1.3) $E_{\alpha}\equiv E/N_{\alpha}\rightarrow f_{\alpha}(E):x_{\alpha}-\rightarrow f_{\alpha}(x)$ , $x\in E$ , $\alpha\in A$ , (cf. discussion before is a topological algebraic isomorphism, and since . Thus, we finally have Definition 1.1), one also gets $E_{\alpha}=\tilde{E}_{\alpha},$ $\alpha\in A$ $f_{\alpha}(E)=\overline{f_{\alpha}(E)}^{-}\alpha\in A$ (1.4) $\varliminf_{a}(F_{\alpha}, \Vert\cdot\Vert_{\alpha})=(E, \tau)=\varliminf_{\alpha}(E_{\alpha}\cong f_{\alpha}(E),\dot{p}_{\alpha})$ , within isomorphisms of topological algebras. , Note that, because of (1.3), the connecting maps of the inverse system . Thus, from now on, we agree to , on coincide with the restrictions of , for the connecting maps, respectively, canonical keep the symbols , as well. maps of the inverse system , there is a Banach , for each Now, given a locally -algebra $(E_{\alpha}),$ $f_{\alpha\beta},$ $f_{\alpha\beta},$ $\alpha\leq\beta$ $\alpha\in A$ $f_{\beta}(E)$ $\alpha\in A$ $\alpha\leq\beta,f_{\alpha},$ $\alpha\in A$ $(E_{\alpha}),$ $\alpha\in A$ $W^{*}$ $E=\varliminf_{\alpha}F_{\alpha}$ the [ ; Defs. 1.1.2, 1.1.3]. We denote by space the dual of which is -algebra the and by on weak -topology . In this respect, we now have the next. endowed with $F_{\alpha},$ $M_{*}^{\alpha}$ $\alpha\in A$ $12$ $\sigma_{\alpha}$ $*$ $F_{\alpha}\cong(M_{*}^{\alpha})^{*}$ $\sigma((M_{*}^{\alpha})^{*}, M_{*}^{\alpha})$ $W^{*}$ $(M_{*}^{\alpha})_{\sigma_{\alpha}}^{*}$ $F_{\alpha}$ $\alpha\in A$ $\sigma_{\alpha},$ Proposition 1.3. Let $E=\varliminf F_{\alpha}$ be a locally $W^{*}$ -algebra, in such a way that the $\alpha$ , are weakly $E$ , than the Then, coarser topology is with inverse limit endowed the -continuous. admits an Arens-topology (cf. Scholium 1.2). In addition, inverse limit lmc -algebras, in the sense that Michael-type decomposition consisting of connecting maps $f_{\alpha\beta},$ $\alpha\leq\beta$ in $A$ , of the respective inverse system $(F_{\alpha}),$ $\alpha\in A$ $*$ $\sigma$ $C^{*}$ $(E, \sigma)$ $\tau$ $W^{*}$ (1.5) $(E, \sigma)=\varliminf_{\alpha}\overline{E}_{\alpha^{\alpha}}^{\sigma}$ within a topological algebraic isomorphism, where , ’ $-\sigma_{\alpha}$ means $\sigma_{\alpha}$ -closure in $F_{\alpha},$ . one $\alpha\in A$ , Proof. By the above comments and the weak -continuity of , is a projective system of topological vector spaces, concludes that in such a way that $*$ $f_{\alpha\beta},$ $((M_{*}^{\alpha})_{\sigma_{\alpha}}^{*},f_{\alpha\beta}),$ $\alpha\leq\beta$ $\alpha\leq\beta$ (1.6) $E=\varliminf_{\alpha}(M_{*}^{\alpha})_{\sigma_{\alpha}}^{*}$ , within an isomorphism of vector spaces. So that by (1.6) $E$ is obviously equipped with -topology , which is coarser than the lmc the inverse limit topology $C^{*}$ $\sigma=\varliminf\sigma_{\alpha}$ $\tau$ $\alpha$ defined by the family diagram $(p_{\alpha}),$ $\alpha\in A$ (cf. (1.2)), as this follows by the next commutative $id_{E}(E,\sigma)(E,\tau)\downarrow\rightarrow(F_{\alpha}, \sigma_{\alpha})=(M_{*}^{\alpha})_{\sigma_{\alpha}}^{*}\rightarrow(F\alpha_{I^{id_{F_{\alpha}}}}||\cdot\Vert_{\alpha})f_{\alpha}f_{\alpha}$ 38 M. FRAGOULOPOULOU and the fact that on for every . Now, denote by the -closure of into (cf. Scholium 1.2). Then, -subalgebra of the [ ; Def. -algebra as a -algebra is a 1.1.4]. On the other hand, since are weakly *-continuous, they are uniquely ; , in such a way that extended to , is a projective $\sigma_{\alpha}\leq\Vert\cdot\Vert_{\alpha}$ $\alpha\in A$ $F_{\alpha}$ $\overline{E}_{\alpha^{\alpha}}^{\sigma}$ $E_{\alpha}$ $F_{\alpha},$ $\sigma_{\alpha}$ $W^{*}$ $\overline{E}_{\alpha^{\alpha}}^{\sigma}$ $f_{\alpha\beta},$ $f_{\alpha\beta}$ $\overline{E}_{\beta}^{\sigma\rho}\rightarrow\overline{E}_{\alpha^{\alpha}}^{\sigma},$ system too. Thus, $\alpha\in A$ $W^{*}$ $\sigma_{\alpha}- closed^{*}$ $F_{\alpha},$ $\alpha\in A,$ $12$ $\alpha\leq\beta$ $\alpha\leq\beta$ $(\overline{E}_{\alpha}^{\sigma_{\alpha}},f_{\alpha\beta}),$ $\alpha\in A$ one gets $E=\varliminf_{\alpha}E_{\alpha}\subset\varliminf_{\alpha}\overline{E}_{\alpha^{\alpha}}^{\sigma}\subset\rightarrow\varliminf_{\alpha}F_{\alpha}=E$ , which implies $(E, \sigma)=\varliminf_{\alpha}\overline{E}_{\alpha^{\alpha}}^{\sigma}$ , within an isomorphism of topological algebras. $\square $ Motivated by the above when we speak in the sequel about the -topology of -algebra, we shall always mean that the connecting maps of the a locally respective inverse system are weakly *-continuous. $\sigma$ $W^{*}$ 1.4. Examples of locally 1. Proof. . -algebras. The first example of a locally Proposition. is also a locally $(E, \tau)$ $W^{*}$ Every -algebra. $\sigma- closed^{*}$ $W^{*}$ -algebra is given by the next. -subalgebra $G$ of a locally $W^{*}$ -algebra $E=\varliminf F_{\alpha}$ $W^{*}$ Sinoe $\sigma\leq\tau$ on $E,$ , $q$ $G$ is also -closed, hence a locally $C^{*}$ $\tau$ -subalgebra of Thus, (cf. [1], [11]) $(G, \tau|_{G})=\varliminf_{\alpha}G_{\alpha}$ , I within a topological algebraic isomorphism, where ( ), (cf. 1.1). algebra discussion before Definition In particular, is -closed one gets by [10; Lemma III, 3.2] (1.3)), so that, since $G_{\alpha}\equiv G/ker$ $p_{\alpha}$ $\alpha\in A$ $G$ $G_{\alpha}\cong f_{\alpha}(G),$ $G$ a $C^{*}-$ $\alpha\in A$ (cf. , is $\sigma$ (1.7) $(G, \sigma|_{G})=\varliminf_{\alpha}\overline{G}_{\alpha}^{\sigma_{\alpha}}$ , within an isomorphism of topological algebras, where each -subalgebra of the -algebra . $W^{*}$ $\sigma_{\alpha}- closed^{*}$ $\overline{E}_{\alpha}^{\sigma_{\alpha}},$ $\alpha\in A$ $\overline{G}_{\alpha^{\alpha}}^{\sigma}$ is a $W^{*}$ -algebra as a $\square $ $n\in N$ (natural numbers), be 2. Let a descending sequence of -algebras with non-trivial intersection (cf. [3]). Let also that uniform, respectively, weak $n\in N$, topologies on form an ascending sequence (for any $n\leq m$ in $N$, $(E_{n}),$ $W^{*}$ $*-$ $E_{n},$ $\Vert\cdot\Vert_{n}|_{E_{m}}\leq\Vert\cdot\Vert_{m}$ , as well as $\sigma_{n}|_{E_{m}}\leq\sigma_{m}$ ). Then, $E\equiv\bigcap_{n}E_{n}$ , ON LOCALLY is a locally $W^{*}$ $W^{*}$ -ALGEBRAS -algebra. It is easily seen that $\varliminf_{n}E_{n}=\bigcap_{n}E_{n}$ , within an algebraic isomorphism. Moreover, the canonical injections : $j_{nm}$ $E_{m}\subset-E_{n}$ , are norm, respectively, weakly*-continuous, so that limit topologies a locally $W^{*}$ $\tau=\varliminf_{n}\Vert\cdot\Vert_{n},$ $\sigma=\varliminf_{n}\sigma_{n}$ in $n\leq m$ , where $\sigma\leq\tau$ $N$ is endowed with the inverse $\varliminf_{n}E_{n}$ since , $\sigma_{n}\leq\Vert\cdot\Vert_{n},$ $n\in N$ . Thus, $E$ is -algebra by Definition 1.1. In particular (cf. also Proposition 1.3), $\varliminf_{n}(E_{n}, \sigma_{n})=(E, \sigma)\cong\varliminf_{n}\overline{F}_{n}^{\sigma_{n}}$ , where $F_{n}\equiv(E, \Vert\cdot\Vert_{n|E})$ is a a $W^{*}$ , $n\in N$ , -algebra corresponding to the Arens-Michael decomposition of $n\in N$. -subalgebra of $C^{*}$ 3. $\langle$ , $(E, \tau)$ , and $\overline{F}_{n^{n}}^{\sigma}$ $E_{n},$ Let $\rangle_{\lambda}=\langle, \rangle_{\mu}$ $(H_{\lambda}),$ on and a directed family of Hilbert spaces, with in . Then, endowed with the respective for any $\lambda\in\Lambda$ $H_{\lambda}$ , be $H_{\lambda}\subset H_{\mu}$ $\Lambda$ $\lambda\leq\mu$ $H=\rightarrow\lim_{\lambda}H_{\lambda}$ locally convex inductive limit topology, is called a locally Hilbert space (cf. [8; Def. 5.2]). Thus, if $L(H)=\{T\in \mathscr{L}(H)$ : for every $\lambda\leq\mu|_{\Lambda},$ , and $T_{\mu}\circ i_{\mu\lambda}=i_{\mu\lambda}\circ T_{\lambda}$ . where the canonical injection of $T_{\lambda}=\tau|_{H_{\lambda}}$ into }, $L(H)$ is, in fact, a locally -algebra (cf. [8; Prop. 5.1]). In particular, $L(H)$ is a locally -algebra, in such a way that the connecting maps of the inverse system of algebras corresponding to $L(H)$ , are weakly -continuous. The topology of $L(H)$ is , defined by a family of ( -preserving submultiplicative) -seminorms $\in \mathscr{L}(H_{\lambda}),$ $\lambda\in\Lambda$ $i_{\mu\lambda}$ $H_{\lambda}$ $H_{\mu}$ $C^{*}$ $W^{*}$ $W^{*}-$ $*$ $*$ $C^{*}$ $(p_{\lambda}),$ $\lambda\in\Lambda$ (ibid). Now, considering the , such that -algebra corresponding to the Arens-Michael decomposition of $L(H)$ , we conclude that the $p_{\lambda}(T)=\Vert T_{\lambda}\Vert,$ $C^{*}$ $\lambda\in\Lambda$ $L(H)/N_{\lambda},$ $\lambda\in\Lambda$ map $L(H)_{\lambda}\equiv L(H)/N_{\lambda}\rightarrow \mathscr{L}(H_{\lambda}):T+N_{\lambda}-\rightarrow T_{\lambda}=\tau|_{H_{\lambda}}$ , $\lambda\in\Lambda$ , is an isomorphism of topological algebras, so that (1.8) $L(H=\rightarrow\lim_{\lambda}H_{\lambda})=\varliminf_{\lambda}\mathscr{L}(H_{\lambda})$ , within a topological algebraic isomorphism, where each , is a algebra; hence, by Definition 1.1 $L(H)$ is a locally -algebra. We shall now show that the connecting maps in , of the inverse system , , are weakly *-continuous. For each $\mathscr{L}(H_{\lambda}),$ $\lambda\in\Lambda$ $W^{*}-$ $W^{*}$ $f_{\lambda\mu},$ $(L(H)_{\lambda}\cong \mathscr{L}(H_{\lambda})),$ $\lambda\in\Lambda$ $\lambda\leq\mu$ $\Lambda$ $\lambda\in\Lambda \mathscr{L}(H_{\lambda})=(\mathscr{L}_{*}(H_{\lambda}))^{*}$ 40 M. FRAGOULOPOULOU the dual of the compact operators of . Moreover, the weak -topology , is the -weak (operator) , defined by the following family of seminorms topology of with $\mathscr{L}(H_{\lambda}),$ $\mathscr{L}_{*}(H_{\lambda})=\mathscr{L}\mathscr{C}(H_{\lambda})^{*}$ $*$ $\lambda\in\Lambda$ $\sigma(\mathscr{L}(H_{\lambda}), \mathscr{L}_{*}(H_{\lambda})),$ $\lambda\in\Lambda$ $\sigma$ $\mathscr{L}(H_{\lambda})$ (1.9) $p_{\langle\xi_{\lambda}^{*}),\langle\eta_{\lambda}^{n})}(T_{\lambda})=|\sum_{n=1}^{\infty}\langle T_{\lambda}\xi_{\lambda}^{n}, \eta_{\lambda}^{n}\rangle_{\lambda}|$ , $T_{\lambda}\in \mathscr{L}(H_{\lambda})$ , $\lambda\in\Lambda$ , , in with , for any sequences [ ; p. 67], . Thus, if is a net in such that with respect to , then since , one also gets that and , respect to in with . By the above and Proposition 1.3 we now have that $L(H)$ is endowed with the inverse limit topology $(\xi^{n})$ $15$ $\lambda\in\Lambda$ $(\eta_{A}^{n})$ $\sum_{n=1}^{\infty}\Vert\xi_{\lambda}^{n}\Vert^{2}<\infty$ $H_{\lambda}$ $(T_{\mu}^{\alpha})$ $\sigma(\mathscr{L}(H_{\mu}), \mathscr{L}_{*}(H_{\mu}))$ $\mathscr{L}(H_{\mu})$ $T_{\lambda}^{\alpha}=T_{\mu}^{\alpha}$ I (1.10) $H_{\lambda}$ The topology $\sigma$ on $L(H)$ with , $\sigma=\varliminf_{\lambda}\sigma_{\lambda}$ $T_{\mu}^{\alpha}\rightarrow 0$ $\rangle_{\lambda}=\langle, \rangle_{\mu}|_{H_{\lambda}}$ $\langle$ $\sigma(\mathscr{L}(H_{\lambda}), \mathscr{L}_{*}(H_{\lambda})),$ $T_{\lambda}^{\alpha}\rightarrow 0$ $\sum_{n=1}^{\infty}\Vert\eta_{\lambda}^{n}\Vert^{2}<\infty$ $\Lambda$ $\lambda\leq\mu$ $\sigma_{\lambda}\equiv\sigma(\mathscr{L}(H_{\lambda}), \mathscr{L}_{*}(H_{\lambda}))$ . will be called, in the sequel, -weak (operator) topology. $\sigma$ 2. In this Section we shall show that every locally -algebra equipped with (Proposition 1.3) (within topology the inverse limit is identified a topological algebraic isomorphism) with a -weakly closed *-subalgebra of some $L(H),$ $H$ a locally Hilbert space (Theorem 2.1). The latter constitutes in our case, an analogue of the respective classical situation for -algebras (cf., for instance, [15; Theor. III’, 3.5]). $W^{*}$ $E$ $\sigma$ $\sigma$ $W^{*}$ -algebra $E$ endowed with the inverse limit Theorem 2.1. Every locally topology coincides, within an isomorphism of topological algebras, with a -weakly closed *-subalgebra of some $L(H),$ $H$ a locally Hilbert space. $W^{*}$ $\sigma$ $\sigma$ Proof. $E=\varliminf_{\backslash }F_{\alpha}$ , where each $F_{\alpha},$ $\alpha\in A$ , is a $W^{*}$ -algebra, hence [15; Theor. $\alpha$ III, 3.5] there is a faithful representation (2.1) $H_{\alpha},$ $\alpha\in A$ $\varphi_{\alpha}$ , : $F_{\alpha}\rightarrow \mathscr{L}(H_{\alpha})$ , $\alpha\in A$ , a Hilbert space, bicontinuous with respect to the topologies $\sigma_{\alpha}\equiv\sigma(F_{\alpha}, M_{*}^{\alpha})$ , , respectively (cf. comments before Proposition of 1.3 and (1.10)). Now, set (cf. also [8; Theor. 5.1]) $\sigma(\mathscr{L}(H_{\alpha}), \mathscr{L}_{*}(H_{\alpha}))$ $F_{\alpha},$ $\mathscr{L}(H_{\alpha}),$ $\alpha\in A$ $\ovalbox{\tt\small REJECT}_{\lambda}=\bigoplus_{\alpha\leq\lambda}H_{\alpha}$ , where $\oplus means$ orthogonal direct sum. Then, for any , , so that on $\langle$ $\rangle_{\mu}$ $\lambda\leq\mu\ovalbox{\tt\small REJECT}_{\lambda}\subset\ovalbox{\tt\small REJECT}_{\mu}$ $\ovalbox{\tt\small REJECT}_{\lambda}$ $H=\varliminf_{\lambda}\ovalbox{\tt\small REJECT}_{\lambda}$ , is a locally Hilbert space (cf. Example 1.4.3). In this regard, define $\varphi:E\rightarrow L(H)\cong\lim_{\overline{\lambda}}\mathscr{L}(\ovalbox{\tt\small REJECT}_{\lambda}):x\mapsto\varphi(x):\varphi(x)|_{x_{\lambda}}=\varphi(x)_{\lambda}$ , and $\langle$ , $\rangle_{\lambda}=$ ON LOCALLY $W^{*}$ -ALGEBRAS with $\varphi(x)_{\lambda}(\xi_{\lambda})=\bigoplus_{\alpha\leq\lambda}\varphi_{\alpha}(x_{\alpha}X\xi_{\alpha})$ for every , in $\xi_{\lambda}=(\xi_{\alpha})_{\alpha\leq\lambda}$ $\ovalbox{\tt\small REJECT}_{\lambda}$ . It is easily seen that is a 1-1 algebraic morphism. On the other hand, if canonical map of $L(H)$ onto is continuous if, and only if, each $E$ is a net in with we have to show that continuous. Thus, if $\varphi$ $\mathscr{L}(\ovalbox{\tt\small REJECT}_{\lambda}),$ $\varphi$ $(x_{\delta})$ $ x_{\delta}\rightarrow 0\sigma$ $\pi_{\lambda}(\varphi(x_{\delta}))=$ $\lambda$ $(\xi_{\lambda}^{n}),$ $(\eta_{\lambda}^{n})$ in $\ovalbox{\tt\small REJECT}_{\lambda}$ , is the is $\pi_{\lambda}\circ\varphi$ ’ for all . According to the definition of $\varphi(x_{\delta})_{\lambda}\rightarrow 0\sigma_{\lambda}$ $\pi_{\lambda}$ $\sigma_{\lambda}$ (cf. (1.9)), for any sequences such that (2.1) $\sum_{n=1}^{\infty}\Vert\xi_{\lambda}^{n}\Vert^{2}<\infty$ , $\sum_{n=1}^{\infty}\Vert\eta_{\lambda}^{n}\Vert^{2}<\infty$ , we must show (2.2) $|\sum_{n=1}^{\infty}\langle\varphi(x_{\delta})_{\lambda}\xi_{\lambda}^{n}, \eta_{\lambda}^{n}\rangle_{\lambda}|\rightarrow 0$ . But, (2.3) where $|\sum_{n=1}^{\infty}\langle\varphi(x_{\delta})_{\lambda}\xi_{\lambda}^{n}, \eta_{\lambda}^{n}\rangle_{\lambda}|=|\sum_{n=1}^{\infty}\sum_{\alpha\leq\lambda}\langle\varphi_{\alpha}(x_{\alpha}^{\delta})\xi_{\lambda,\alpha}^{n}, \eta_{\lambda.\alpha}^{n}\rangle_{\alpha}|$ $(\xi_{\lambda,\alpha}^{n}),$ $(\eta_{\lambda,\alpha}^{n})$ are sequences in (2.4) $\alpha\leq\lambda$ $\sum_{n=1}^{\infty}\Vert\xi_{\lambda.\alpha}^{n}\Vert^{2}<\infty$ On the other hand, $\alpha\in A$ $\varphi_{\alpha},$ $x_{\delta}\rightarrow 0\sigma\Leftrightarrow x_{\alpha}^{\delta}\rightarrow 0\sigma_{\alpha}$ , such that $\sum_{n=1}^{\infty}\Vert\eta_{\lambda,\alpha}^{n}\Vert^{2}<\infty$ . for all , which by the weak *-continuity of $\alpha$ , yields that (2.5) for all $H_{\alpha},$ , $\varphi_{\alpha}(x_{\alpha}^{\delta})\rightarrow 0$ $\alpha\in A$ . But, (2.5) , with respect to $\sigma(\mathscr{L}(H_{\alpha}), \mathscr{L}_{*}(H_{\alpha}))$ means that for any sequences as in $|\sum_{n=1}^{\infty}\langle\varphi_{\alpha}(x_{\alpha}^{\delta})\xi_{\lambda,\alpha}^{n}, \eta_{\lambda,\alpha}^{n}\rangle_{\alpha}|\rightarrow 0$ , , (2.4) $\alpha\leq\lambda$ . Thus, (2.2) follows now from the fact that the right-hand side of (2.3) is less than or equal to . Conversely, let be a net in $\varphi(E)\subset L(H)$ , with $\sum_{\alpha\leq\lambda}|\sum_{n=1}^{\infty}<\varphi_{\alpha}(x_{\alpha}^{\lambda})\xi_{\lambda,\alpha}^{n},$ $\eta_{\lambda,\alpha}^{n}>_{\alpha}|$ $(\varphi(x_{\delta}))$ (2.6) where $\varphi(x_{\delta})\rightarrow 0\sigma$ $\sigma$ is now given by (1.10). We must show that $(f_{\alpha}\circ\varphi^{-1})(\varphi(x_{\delta}))=x_{\alpha}^{\delta}\rightarrow 0$ $\sigma_{\alpha}$ or equivalently , for all $\alpha\in A$ , 42 M. FRAGOULOPOULOU (2.7) $\varphi_{\alpha}(x_{\alpha}^{\delta})\rightarrow 0$ By (2.6) we have that sequences for all sequences $(\xi_{\lambda}^{n}),$ $(\eta_{\lambda}^{n})$ , $\sigma(\mathscr{L}(H_{\alpha}), \mathscr{L}_{*}(H_{\alpha}))$ , $\alpha\in A$ for all , which means that (2.2) is true for all $\ovalbox{\tt\small REJECT}_{\lambda}$ $(\eta_{\alpha}^{n})$ $(\xi_{\alpha}^{n}),$ fulfilling (2.1). Moreover, (2.7) will have been proved, if , one gets in with , $\sum_{n=1}^{\infty}\Vert\xi_{\alpha}^{n}\Vert^{2}<\infty,$ $H_{\alpha}$ $|\sum_{n=1}^{\infty}\langle\varphi_{\alpha}(x_{\alpha}^{\delta})\xi_{\alpha}^{n}, \xi_{\alpha}^{n}\rangle_{\alpha}|\rightarrow 0$ , $\sum_{n=1}^{\infty}\Vert\eta_{\alpha}^{\hslash}\Vert^{2}<\infty$ $\alpha\in A$ . , so that the sequences is imbedded to some But each Thus, (cf. also (2.3)) (2.1). which satisfy define sequences $H_{\alpha}$ $\ovalbox{\tt\small REJECT}_{\lambda},$ $(\xi_{\lambda}^{n}),$ $\alpha\leq\lambda$ $(\xi_{\alpha}^{n}),$ $(\eta_{\alpha}^{n})$ as before, $(\eta_{\lambda}^{n})$ $|\sum_{n=1}^{\infty}\langle\varphi_{\alpha}(x_{\alpha}^{\delta})\xi_{\alpha}^{n}, \eta_{\alpha}^{n}\rangle_{\alpha}|=|\sum_{n=1}^{\infty}\langle\varphi(x_{\delta})_{\lambda}\xi_{\lambda}^{n}, \eta_{\lambda}^{n}\rangle_{\lambda}|\rightarrow 0$ $\alpha\leq\lambda$ . $\lambda$ $\varphi(x_{\delta})_{\lambda}\rightarrow 0\sigma_{\lambda}$ in (2.8) with respect to , , which proves (2.8). We now show that $\varphi(E)$ is -weakly closed in $\sigma$ $L(H)$ . Let , $\varphi(x_{\delta})$ be a net in $\varphi(E)$ with $\varphi(x_{\delta})\rightarrow T\in L(H)\sigma$ Then, $\varphi(x_{\delta})_{\lambda}\rightarrow T_{\lambda}\sigma_{\lambda}$ the notation $\sigma_{\alpha}$ for ’ for all $\lambda$ (cf. (1.10)), $\sigma(\mathscr{L}(H_{\alpha}), \mathscr{L}_{*}(H_{\alpha})),$ $\varphi_{\alpha}(x_{\alpha}^{\delta})\rightarrow T_{\alpha}\sigma_{\alpha}$ where $T_{\alpha}\in\varphi_{\alpha}(F_{\alpha}),$ $\alpha\in A$ where, in particular, , since $f_{\alpha\beta}(y_{\beta})=y_{\alpha}$ $\alpha\in A$ for all , is , for any $\varphi_{\alpha}(F_{\alpha})$ so that applying the argument of (2.3) and , too, we conclude that $\sigma_{\alpha}$ $\alpha\in A$ , -closed. Thus, in . On the other hand, $T_{\alpha}=\varphi_{\alpha}(y_{\alpha}),$ $y_{\alpha}\in F_{\alpha},$ $\alpha\in A$ , $A$ $\alpha\leq\beta$ $y_{\alpha}=\varphi_{\alpha}^{-1}(\varphi_{\alpha}(y_{\alpha}))=\varphi_{\alpha}^{-1}(\lim_{\delta^{\alpha}}^{\sigma}\varphi_{\alpha}(x_{\alpha}^{\delta}))=\lim_{\delta^{\alpha}}^{\sigma}x_{\alpha}^{\delta}$ , for every $\alpha\in A$ . Hence, $\lim\delta\delta\sigma x=y\in E$ and $T=\lim_{\delta}^{\sigma}\varphi(x_{\delta})=\varphi(\lim_{\delta}^{\sigma}x_{\delta})=\varphi(y)\in\varphi(E)$ Corollary 2.2. The center algebra. In particular, (2.9) $Z(E)$ of a locally $W^{*}$ -algebra $E$ $(E_{\alpha}),$ $\alpha\in A$ $\square $ is also a locally $(Z(E), \sigma|_{Z\langle E)})=Z((E, \sigma)=\varliminf_{\alpha}\overline{E}_{\alpha^{\alpha}}^{\sigma})=\varliminf_{\alpha}Z(\overline{E}_{\alpha^{\alpha}}^{\sigma})$ within a topological algebraic isomorphism, where Michael decomposition of $E$. . $W^{*}-$ , , corresponds to the Arens- Proof. It is easily seen that multiplication of $L(H),$ $H$ a locally Hilbert space, is separately continuous with respect to the -weak topology. Thus, by the preceding theorem, one also gets that multiplication of $E$ is separately continuous with respect , to . A consequence of the latter is that $Z(E)$ is a $\sigma- closed*$ -subalgebra of -algebra according to Example 1.4.1, Proposition. Moreover, therefore a locally $\sigma$ $(E, \sigma)$ $\sigma$ $W^{*}$ ON LOCALLY $W^{*}$ -ALGEBRAS 43 by (1.7) (cf. also Proposition 1.3) (2.10) $(Z(E), \sigma|_{Z\langle E)})=\varliminf_{\alpha}\overline{Z(E)_{\alpha}}^{\sigma_{\alpha}}$ , within an isomorphism of topological algebras, where Michael decomposition of $Z(E)$ , as a locally -subalgebra of $\alpha\in A$ , is the Arens- $(E, \tau)$ . Now, $(Z(E)_{\alpha}),$ $C^{*}$ (2.11) $Z(E)_{\alpha}=Z(E_{\alpha})$ , $\alpha\in A$ , within the topological algebraic isomorphism $Z(E)_{\alpha}\rightarrow Z(E_{\alpha});z+ker(p_{\alpha}|_{Z\langle E)})\vdash\rightarrow z+N_{\alpha}$ , $\alpha\in A$ , while, (2.12) $Z(\overline{E}_{\alpha^{\alpha}}^{\sigma})=Z(E_{\alpha})=\overline{Z(E_{\alpha})}^{\sigma_{\alpha}}$ , $\alpha\in A$ , as this follows by the separate continuity of the multiplication of (cf., (2.11), (2.12). $\alpha\in A$ $\sigma_{\alpha},$ with respect to for instance, [15; Theor. III, 3.5]). Thus, (2.9) follows now by (2.10), $\overline{E}_{\alpha}^{\sigma_{\alpha}}$ $\square $ 2.3. The connecting maps of the inverse system (cf. are those of restricted on . Thus, according to Section 1 (cf., in particular, proof of Propositlon 1.3 and discussion before it), when no confusion is likely to result, we shall keep the symbols , of the connecting, respectively, canonical maps of the projective system , for both of the projective systems and . Remark 2.4. If $L(H),$ $H$ a locally Hilbert space, is the localIy -algebra of Example 1.4.3, one also defines on $L(H)$ the respective of the classical weak $(Z(\overline{E}_{\alpha}^{\sigma_{\alpha}})=Z(E_{\alpha})),$ (2.12)), $(\overline{E}_{\alpha}^{\sigma_{\alpha}})$ $Z(\overline{E}_{\alpha}^{\sigma_{\alpha}}),$ $f_{\alpha\beta},$ $\alpha\leq\beta,$ $f_{\alpha},$ $(F_{\alpha}),$ $\alpha\in A$ $(\overline{E}_{\alpha}^{\sigma_{\alpha}}),$ $\alpha\in A$ $\alpha\in A$ $(Z(\overline{E}_{\alpha}^{\sigma_{\alpha}})=Z(E_{\alpha})),$ $\alpha\in A$ $\alpha\in A$ $\alpha\in A$ $W^{*}$ (operator) topology. In fact, if $T=(T_{\lambda})\in L(H=\lim H_{\lambda})\cong\lim \mathscr{L}(H_{\lambda})$ $\overline{\lambda}$ , there is $\eta\in H$ $\lambda\in\Lambda$ such that $\xi,$ (2.13) $\eta\in H_{\lambda}$ , the seminorms , define a locally convex topology on called weak (operator) topology and is denoted by . Furthermore, for any , one defines $\xi,$ $\eta\in H$ $lt$ $\xi,$ $\omega_{\xi,\eta}$ where : $\xi$ . Thus, if $p_{\xi,\eta}(T)=|\langle T_{\lambda}\xi, \eta\rangle_{\lambda}|$ $(p_{\xi,\eta}),$ (cf. (1.8)) and , $\overline{\lambda}$ $L(H)$ , which is $w$ $\eta\in H$ $L(H)\rightarrow C:T^{\llcorner}\rightarrow\omega_{\xi,\eta}(T)=\langle T_{\lambda}\xi, \eta\rangle_{\lambda}$ , is that index in with . Then, (topological dual of $(L(H), w))$ , for any . Thus, if is the linear subspace of $L(H)$ generated by , the pair $(L(H), L\mathscr{F}(H))$ forms a dual system, in such a way that one particularly obtains $\lambda$ $\Lambda$ $\xi,$ $\xi,$ $\omega_{\xi,\eta},$ $\eta\in H$ $\eta\in H_{\lambda}$ $\omega_{\xi,\eta}\in L(H)^{\prime}$ $L\mathscr{F}(H)$ $\eta\in H$ (2.14) On the other hand, if and $\xi,$ $w=\sigma(L(H), L\mathscr{F}(H))$ $w_{\lambda}$ . denotes the weak (operator) topology on , , one has (cf. linear subspace of $\mathscr{L}\mathscr{F}(H_{\lambda})therespectivetoL\mathscr{F}(H)$ $\mathscr{L}(H_{\lambda}),$ $\mathscr{L}(H_{\lambda})^{\prime},$ $\lambda\in\Lambda$ $\lambda\in\Lambda$ M. FRAGOULOPOULOU 44 also [15; p. 68]) (2.15) $\lambda\in\Lambda$ . , of the inverse system In particular, the connecting maps continuous, so that one finally gets , are weakly $f_{\lambda\mu},$ $\lambda\in\Lambda$ , $w_{\lambda}=\sigma(\mathscr{L}(H_{\lambda}), \mathscr{L}\mathscr{F}(H_{\lambda}))$ (2.16) $\lambda\leq\mu$ $w=\lim w_{\lambda}=\lim\sigma(\mathscr{L}(H_{\lambda}), \mathscr{L}\mathscr{F}(H_{\lambda}))=\sigma(L\langle H),$ $L\mathscr{F}(H))$ $(\mathscr{L}(H_{\lambda}))$ , . $\overline{\lambda}$ $\overline{\lambda}$ Moreover (cf. [15; p. 68] as well as (1.10)), (2.17) $w_{\lambda}\leq\sigma_{\lambda}\equiv\sigma(\mathscr{L}(H_{\lambda}), \mathscr{L}_{*}(H_{\lambda}))$ , $\lambda\in\Lambda$ , consequently, (2.18) $w\leq\sigma=\varliminf_{\lambda}\sigma_{\lambda}$ , with the -weak topology on $L(H)$ . Thus, a consequenoe of (2.18) and Example 1.4.1, Proposition is that every -closed*-subalgebra of $L(H),$ $H$ a locally Hilbert -algebra. space, is a locally $\sigma$ $\sigma$ $w$ $W^{*}$ 3. In Sections 3 and 4 we apply the theory developed above, in order to get -algebra. Some of our some information about the inner derivations of a locally previous results of L. -algebras, locally of general case more results extend in the -algebra. Zsid\’o [16] concerning the norm of a derivation of an abstract $E$ is such that $\delta(xy)=$ a linear map A derivation of an algebra $\delta(x)y+x\delta(y)$ for any for some in $E$. A derivation of $E$ is called inner, if $E$ in , with $\delta_{x}(y)=xy-yx,$ in . , is a -algebra. Since each be a locally Now, let $W^{*}$ $W^{*}$ $W^{*}$ $\delta:E\rightarrow E$ $\delta$ $x,$ $y$ $E$ $\delta=\delta_{x}$ $x$ $\alpha\in A$ $W^{*}-$ $y$ $W^{*}$ $F_{\alpha},$ $E=\varliminf_{\alpha}F_{\alpha}$ , is norm-continuous and inner [12]. Thus, if $x=$ algebra, every derivation of , respectively defined , are the inner derivations of and , one gets by $F_{\alpha},$ $(x_{\alpha})\in E$ $x,$ $\delta_{x},$ $\delta_{x_{\alpha}},$ $\alpha\in A$ $E,$ $\alpha\in A$ $F_{\alpha},$ $\alpha\in A$ $\alpha\in A$ $x_{\alpha},$ $f_{\alpha\beta}\circ\delta_{x\rho}=\delta_{x_{a}}\circ f_{\alpha\beta}$ for any linear map $\alpha\leq\beta$ in $A$ and $x_{\beta}\in F_{\beta}$ with $f_{\alpha\beta}(x_{\beta})=x_{\alpha}$ $\delta=\varliminf_{\alpha}\delta_{x_{\alpha}}$ : , . Hence, there is a unique continuous $E\rightarrow E$ , $x=(x_{\alpha})\in E$ . , and such that is the set of all inner derivations of $E$ and In this respect, if , one has the following. the Banach space of all (inner) derivations of $f_{\alpha}\circ\delta=\delta_{x_{\alpha}}\circ f_{\alpha},$ $\alpha\in A$ $\delta=\delta_{x},$ $\delta(F_{\alpha}),$ $\delta_{0}(E)$ $F_{\alpha},$ Theorem 3.1. For every locally convex space, in such a way that $W^{*}$ $\alpha\in A$ , $\alpha\in A$ -algebra $E,$ $\delta_{0}(E)$ is a complete locally ON LOCALLY $W^{*}$ , $\delta_{0}(E)=\varliminf_{\alpha}\delta(\overline{E}_{\alpha^{\alpha}}^{\sigma})$ where $(E_{\alpha}),$ $\alpha\in A$ 45 -ALGEBRAS , corresponds to the Arens-Michael decomposition of . $E$ Proof. Each , is complete [13; Folg. 5.4] (cf. also discussion in , are onto, before Definition 1.1) therefore the connecting maps : which yields that $\alpha\in A$ $E_{\alpha}\equiv E/N_{\alpha},$ $E_{\beta}\rightarrow E_{\alpha},$ $f_{\alpha\beta}$ $f_{\alpha\beta}(Z(E_{\beta}))\subset Z(E_{\alpha})$ Hence, according to (2.12) Proposition 1.3) , one also gets $f_{\alpha\beta}(Z(\overline{E}_{\beta}^{\sigma\rho}))\subset Z(\overline{E}_{\alpha}^{\sigma_{\alpha}})$ Thus, for any (3.1) : $g_{\alpha\beta}$ Now, every in $\alpha\leq\beta$ $A$ $\overline{E}_{\alpha^{\alpha}}^{\sigma},$ $\alpha\in A$ $\delta_{x_{\alpha}}\in\delta(\overline{E}_{\alpha}^{\sigma_{\alpha}}),$ , for all , in $\alpha\leq\beta$ . 2.3 and comments after $A$ . we may define the continuous morphisms , , is a $W^{*}$ $x_{\alpha}\in Z(\overline{E}_{\alpha^{\alpha}}^{\sigma}),$ (3.3) $u_{\alpha}$ : z_{\alpha}\in Z(\overline{E}_{\alpha}^{\sigma_{\alpha}})\}$ , $\alpha\in A$ , (cf. [16; p. 148, Corol.]). Thus, sinoe , it follows that the map $\alpha\in A$ $x_{\alpha}\in\overline{E}_{\alpha^{\alpha}}^{\sigma},$ $\alpha\in A$ . -algebra (cf. Proposition 1.3), so that $\Vert\delta_{x_{\alpha}}\Vert=2\inf\{\Vert x_{\alpha}-z_{\alpha}\Vert_{\alpha} : $\delta_{x_{\alpha}}=0$ (cf. besides $A$ $A$ $\overline{E}_{\beta}^{\sigma\rho}/Z(\overline{E}_{\beta}^{\sigma\rho})\rightarrow\overline{E}_{\alpha}^{\sigma_{\alpha}}/Z(\overline{E}_{\alpha}^{\sigma_{\alpha}}):\dot{x}_{\beta}\equiv x_{\beta}+Z(\overline{E}_{\beta}^{\sigma\rho})-\rightarrow f_{\alpha\beta}(x_{\beta})\wedge$ (3.2) for any in $\alpha\leq\beta$ $\alpha\leq\beta$ $\overline{E}_{\alpha^{\alpha}}^{\sigma}/Z(\overline{E}_{\alpha}^{\sigma_{\alpha}})\rightarrow\delta(\overline{E}_{\alpha^{\alpha}}^{\sigma}):\dot{x}_{\alpha}$ – $\delta_{x_{a}}$ , moreover , $\alpha\in A$ is a topological vector spaoe isomorphism. A consequence of (3.1), (3.3) is now that in , is a projective system of Banach spaces, where the pair $(\delta(\overline{E}_{\alpha}^{\sigma_{\alpha}}), h_{\alpha\beta}),$ $h_{\alpha\beta}$ : $A$ $\alpha\leq\beta$ $\delta(\overline{E}_{\alpha}^{\sigma p})\rightarrow\delta(\overline{E}_{\alpha^{\alpha}}^{\sigma}):\delta_{x_{\beta}}$ } $-\delta_{x_{\alpha}}$ with , $x_{\alpha}=f_{\alpha\beta}(x_{\beta})$ , Hence, taking also into account the discussion before Theorem 3.1 $\delta_{0}(E)=\varliminf_{\alpha}\delta(\overline{E}_{\alpha}^{\sigma_{\alpha}})$ $\alpha\leq\beta$ . we obtain , becomes a complete locally convex space, for which a defining family of seminorms is given by so that $\delta_{0}(E)$ (3.4) $ q_{\alpha}(\delta_{x})=\Vert\delta_{x_{\alpha}}\Vert$ for any $\delta_{x}\in\delta_{0}(E),$ $x=(x_{\alpha})\in E$ . , $\alpha\in A$ , $\square $ An interesting result in this direction would be, of course, that every derivation -algebra is inner. of a locally The mext theorem provides in our case an analogue of a known result concerning -algebra, see [16; p. 148, Corol.] as well as [5; Theor. the norm of a derivation of a $W^{*}$ $W^{*}$ 1]. Theorem 3.2. Let $E$ be a locally $W^{*}$ -algebra. Then, 46 M. FRAGOULOPOULOU (3.5) $q_{\alpha}(\delta_{x})=2\inf\{p_{\alpha}(x-z):z\in Z(E)\}$ for any $x=(x_{\alpha})\in E$ $\delta_{x}\in\delta_{0}(E),$ $\alpha\in A$ , . By Proposition 1.3 Proof. , $E\cong\varliminf_{\alpha}\overline{E}_{\alpha}^{\sigma_{\alpha}}$ , so that if $x=(x_{\alpha})$ (cf. also 2.3). Thus, by Theorem 3.1, with Moreover, by (2.12), (2.11) . Hence, according to (3.2), (3.4), (1.2) we conclude that every in $E,$ $x_{\alpha}=f_{\alpha}(x)$ for $\alpha\in A$ . $Z(\overline{E}_{\alpha}^{\sigma_{\alpha}})=Z(E_{\alpha})\cong Z(E)_{\alpha}=Z(E)/ker(p_{\alpha}|_{Z(E)})=f_{\alpha}(Z(E))$ , $\alpha\in A$ $\delta_{x}=(\delta_{f_{\alpha}\{x)})$ $\delta_{f_{\alpha}\langle x)}\in\delta(\overline{E}_{\alpha}^{\sigma_{\alpha}}),$ $\alpha\in A$ $q_{\alpha}(\delta_{x})=\Vert\delta_{f_{\alpha}\langle x)}\Vert=2\inf\{\Vert f_{\alpha}(x)-z_{\alpha}\Vert_{\alpha} : z_{\alpha}\in Z(\overline{E}_{\alpha}^{\sigma_{\alpha}})\}$ $=2\inf\{\Vert f_{\alpha}(x)-f_{\alpha}(z)\Vert_{\alpha} : $=2\inf\{p_{\alpha}(x-z):z\in Z(E)\}$ for any $\delta.\in\delta_{0}(E),$ $x\in E$ . z\in Z(E)\}$ , $\alpha\in A$ $\square $ As a corollary to the preceding theorem we now get Stampfli’s result for $L(H),$ $H$ a locally Hilbert space, referred to the norm of a derivation acting on the -algebra $H$ a Hilbert spaoe (cf. [14; Theor. 4]). $C^{*}$ $\mathscr{L}(H),$ Corollary 3.3. Let $H$ be a locally Hilbert space and $L(H)$ the locally in $L(H)$ . Then, of Example 1.4.3. Let also in $\delta_{0}(L(H)),$ (3.6) $q_{\lambda}(\delta_{T})=2\inf\{p_{\lambda}(T-zid_{H}):z\in C\}$ for all $\lambda\in\Lambda$ $W^{*}$ -algebra $T=(T_{\lambda})$ $\delta_{T}$ , . , of Proof. Working out the Example 1.4.3, we saw that each factor $L(H)$ the Arens-Michael decomposition of coincides (algebraically-topologically) , a Hilbert space. Moreover, by (2.11) with the -algebra , where , , with $L(H)_{\lambda},$ $W^{*}$ $\mathscr{L}(H_{\lambda}),$ $H_{\lambda},$ $\lambda\in\Lambda$ $\lambda\in\Lambda$ $\lambda\in\Lambda$ $Z(L(H))\cong\varliminf_{\lambda}Z(\mathscr{L}(H_{\lambda}))$ $Z(\mathscr{L}(H_{\lambda}))=\{z_{\lambda}id_{H_{\lambda}} : z_{\lambda}\in C\}\equiv C_{\lambda}$ . Hence, (cf. [2; p. 77, Exemple 2)]), all so that the assertion now follows by Theorem 3.2. $C_{\lambda}\cong C$ , for $\lambda\in\Lambda$ $Z(L(H))=\{zid_{H} : z\in C\}$ , $\square $ -algebra. Then, $\delta_{0}(E)=E/Z(E)$ within an Let $E$ be a locally isomorphism of locally convex spaces or, equivalently, the sequence Corollary 3.4. $W^{*}$ $0$ – $Z(E)\rightarrow E\rightarrow^{u}\delta_{0}(E)\rightarrow 0$ , is topologically exact. The map $u:E\rightarrow\delta_{0}(E):x-u(x)=\delta_{x}$ is alinear surjection with $ker(u)=$ (cf. (3.5)), therefore is also , for any $x\in E,$ $Z(E)$ . Moreover, linear bijection continuous. Thus, taking the induced from fact, is, , this in an isomorphism of locally convex spaces by (3.5). Hence, the continuous linear surjection is a ”topological homomorphism” [7; p. 106, Def. 2], which is equivalent to the fact that is moreover open [7; . Proof. $q_{\alpha}(u(x))\leq 2p_{\alpha}(x)$ $\alpha\in A$ $u$ $\overline{u}:E/Z(E)\rightarrow$ $u$ $\delta_{0}(E):\dot{x}\equiv x+Z(E)-\overline{u}(\dot{x})=\delta_{\chi}$ $u$ $u$ $p$ ON LOCALLY 106, Theor. 1]. $W^{*}$ -ALGEBRAS 47 $\square $ L. Zsid\’o realized the norm of a derivation acting on an abstract -algebra $E$ by means of a certain particular map $\Phi:E\rightarrow Z(E)$ [ ; Theorems 1, 2]. Using Zsid\’o’s technique we shall also try to estimate the numbers , (cf. (3.5)) via of a corresponding to our case map , at the cost however of some extra restriction for the locally -algebra involved (cf. Theorem 3.5). Thus, let $E$ be a locally -algebra. Then (Proposition 1.3), $W^{*}$ $16$ $q_{\alpha}(\delta_{x}),$ $\alpha\in A$ $\Phi$ $W^{*}$ $W^{*}$ $E\cong\varliminf_{\alpha}\overline{E}_{\alpha}^{\sigma_{\alpha}}$ . Denote by , $\mathfrak{M}_{\alpha}\equiv \mathfrak{M}(Z(\overline{E}_{\alpha}^{\sigma_{\alpha}}))$ the spectrum (Gel’fand space) of $\alpha\in A$ $Z(\overline{E}_{\alpha}^{\sigma_{\alpha}}),$ , $Z(\overline{E}_{\alpha}^{\sigma_{\alpha}})\cong \mathscr{C}(\mathfrak{M}_{\alpha})$ by the Gel’fand-Naimark theorem. Thus, if (3.7) $M_{\alpha}=\{\sum_{i=1}^{n}m_{\alpha}^{i}y_{\alpha}^{i}$ : $m_{\alpha}^{i}\in ker(h_{\alpha}),$ $n$ , $\alpha\in A$ , where $\alpha\in A$ , is a positive integer and , $y_{\alpha}^{i}\in\overline{E}_{\alpha^{\alpha}}^{\sigma}\}^{-}\equiv[ker(h_{\alpha})]$ $h_{\alpha}\in \mathfrak{M}_{\alpha}$ $\alpha\in A$ set , where “–,, means norm-closure in . Then, is the smallest closed 2-sided ideal of containing , so that it is primitive by [6; Theor. 4.7]. Therefore, every , has a faithful irreducible representation in some Hilbert spaoe . In this regard, L. Zsid\’o shows in [16; Theor. 1] the existenoe of a unique norm continuous map $\overline{E}_{\alpha^{\alpha}}^{\sigma},$ $\overline{E}_{\alpha}^{\sigma_{a}}$ $ker(h_{\alpha}),$ $\alpha\in A$ $M_{\alpha}$ $\alpha\in A$ $\overline{E}_{\alpha}^{\sigma_{\alpha}}/M_{\alpha}$ $\psi_{\alpha}$ $H_{\alpha},$ $\alpha\in A$ (3.8) $\Phi_{\alpha}$ : $\overline{E}_{\alpha}^{\sigma_{\alpha}}-Z(\overline{E}_{\alpha}^{\sigma_{\alpha}})\cong \mathscr{C}(\mathfrak{M}_{\alpha})$ , , $\alpha\in A$ defined by the relation (3.9) $\Phi_{\alpha}(x_{\alpha})(h_{\alpha})=oenter$ of the operator $\psi_{\alpha}(x_{\alpha}+M_{\alpha})$ for any , where by the center of an operator the unique complex number for which $x_{\alpha}\in\overline{E}_{\alpha}^{\sigma_{\alpha}},$ $h_{\alpha}\in \mathfrak{M}_{\alpha},$ $\alpha\in A$ , $T$ in $\mathscr{L}(H_{\alpha})$ is meant $z_{T}$ (3.10) $\Vert T-z_{T}\Vert=\inf\{\Vert T-zid_{H}\Vert : z\in C\}$ (cf. [14]). By means of , L. Zsid\’o estimates the norm of a derivation in (cf. [16; Theor. 2]). Namely, for any and , the map (3.8) has the $\Phi_{\alpha}$ $\overline{E}_{\alpha}^{\sigma_{\alpha}},$ $x_{\alpha}\in\overline{E}_{\alpha}^{\sigma_{\alpha}}$ $z_{\alpha}\in Z(\overline{E}_{\alpha}^{\sigma_{\alpha}}),$ $\alpha\in A$ $\alpha\in A$ following properties: (3.11) (3.12) (3.13) $\Phi_{\alpha}(x_{\alpha}+z_{\alpha})=\Phi_{\alpha}(x_{\alpha})+z_{\alpha}$ , $\Phi_{\alpha}(x_{\alpha}z_{\alpha})=\Phi_{\alpha}(x_{\alpha})z_{\alpha}$ $\Vert x_{\alpha}-\Phi_{\alpha}(x_{\alpha})\Vert_{\alpha}=\inf\{\Vert x_{\alpha}-z_{\alpha}\Vert_{\alpha} ; z_{\alpha}\in Z(\overline{E}_{\alpha}^{\sigma_{\alpha}})\}$ $\Vert\delta_{x_{\alpha}}\Vert=2\Vert x_{\alpha}-\Phi_{\alpha}(x_{\alpha})\Vert_{\alpha}$ , $\delta_{x_{\alpha}}\in\delta(\overline{E}_{\alpha}^{\sigma_{\alpha}})$ , , . Following the preceding notation, as well as the notation of 2.3, we consider the M. FRAGOULOPOULOU 48 primitive ideal . Thus, for any $M_{\beta}\equiv[ker(h_{\beta})]$ $\alpha\in A$ (3.14) : $\lambda_{\alpha\beta}$ $\alpha\leq\beta$ in in $A$ $\overline{E}_{\beta}^{\sigma\rho}$ $\pi_{\alpha}$ $h_{\beta}=h_{\alpha}\circ f_{\alpha\beta}$ in $\mathfrak{M}_{\beta},$ $\alpha\leq\beta,$ in $h_{\alpha}$ $\mathfrak{M}_{\alpha}$ , we can define the map $\overline{E}_{\beta}^{\sigma\rho}/M_{\beta}\rightarrow\overline{E}_{\alpha}^{\sigma_{\alpha}}/M_{\alpha}$ In this respect, if (cf. (3.7)), with : . one has $x_{\beta}+M_{\beta}|\rightarrow\lambda_{\alpha\beta}(x_{\beta}+M_{\beta})=f_{\alpha\beta}(x_{\beta})+M_{\alpha}$ denotes the quotient map of $\lambda_{\alpha\beta}\circ\pi_{\beta}=\pi_{\alpha}\circ f_{\alpha\beta}$ $\overline{E}_{\alpha^{\alpha}}^{\sigma}$ for any , onto in $\alpha\leq\beta$ $\alpha\in A$ $\overline{E}_{\alpha}^{\sigma_{\alpha}}/M_{\alpha},$ $A$ , , so that (3.14) is continuous. On the other hand, the faithful irreducible representation , is in fact, an isometric representation, since of the primitive algebra , is 1-1, this also , is a -algebra. Besides, supposing that becomes an isometry. Hence, considering the diagram $\overline{E}_{\alpha}^{\sigma_{\alpha}}/M_{\alpha},$ $\alpha\in A$ $\psi_{\alpha}$ $\alpha\in A$ $\overline{E}_{\alpha^{\alpha}}^{\sigma}/M_{\alpha},$ $C^{*}$ $\lambda_{\alpha\beta},$ $\alpha\leq\beta$ $\psi_{\beta}^{-1}|\downarrow\psi_{\alpha}\overline{E}_{\beta}^{\sigma\rho}/M_{\beta}\overline{E}_{\alpha^{\alpha}}^{\sigma}/M_{\alpha}\underline{\lambda_{\alpha\beta}}$ (3.15) $\alpha\leq\beta$ in $A$ ${\rm Im}(\psi_{\beta})\subset \mathscr{L}(H_{\beta}){\rm Im}(\psi_{\alpha})\subset \mathscr{L}(H_{\alpha})\overline{\psi_{\alpha}\circ\lambda_{\alpha\beta}\circ\psi_{\beta}^{-1}}$ , becomes 1-1 for any is an isometry too. Note that , bijections, : with connecting maps -algebra henoe norm and weakly *-bicontinuous (for the latter see [12; Corol. 4.1.23]). In this concern, one now gets the next theorem, which is an analogue in our case of [16; Theorems 1, 2]. -algebra, in such a way that the map (3.14) is Theorem 3.5. Let $E$ be a locally , with 1-1. Then, there is a unique -continuous (cf. Scholium 1.2) map the properties: i) $\Phi(x+z)=\Phi(x)+z,$ $\Phi(xz)=\Phi(x)z$ , for any $x\in E,$ $z\in Z(E)$ . . ii) $p_{\alpha}(x-\Phi(x))=\inf\{p_{\alpha}(x-z):z\in Z(E)\}$ , for any $x\in E,$ $(x\in E),$ . , for any iii) the map locally $\psi_{\alpha}\circ\lambda_{\alpha\beta}\circ\psi_{\beta}^{-1}$ $\lambda_{\alpha\beta},$ $W^{*}$ $\alpha\leq\beta$ $F_{\beta}\rightarrow F_{\alpha},$ $f_{\alpha\beta}$ $ E=\lim_{\alpha}F_{\alpha}\leftarrow$ $\alpha\leq\beta$ ’ $W^{*}$ $\Phi:E\rightarrow Z(E)$ $\tau$ $\alpha\in A$ $\alpha\in A$ $\delta_{x}\in\delta_{0}(E),$ $q_{\alpha}(\delta_{x})=2p_{\alpha}(x-\Phi(x))$ Proof. We shall first show that the maps system. Thus, we consider the diagram $(\Phi_{\alpha}),$ $\alpha\in A$ , (cf. (3.8)) form an inverse $\overline{E}_{\beta}^{\sigma\rho}Z(\overline{E}_{\beta}^{\sigma_{\beta}})\cong \mathscr{C}(\mathfrak{M}_{\beta})\underline{\Phi_{\beta}}$ (3.16) $\downarrow{}^{t}(^{t}f_{\alpha\beta})$ $ f_{\alpha\beta}\downarrow$ $\alpha\leq\beta$ in $A$ $\overline{E}_{\alpha^{\alpha}}^{\sigma}\rightarrow Z(\overline{E}_{\alpha}^{\sigma_{a}})\cong \mathscr{C}(\mathfrak{M}_{\alpha})\Phi_{\alpha}$ denotes the transpose of , one has (cf. also (3.9), (3.10)) where $A$ ${}^{t}f_{\alpha\beta}$ $f_{\alpha\beta},$ $\alpha\leq\beta$ . Then, for any $x_{\beta}\in\overline{E}_{\beta}^{\sigma\rho},$ $h_{\alpha}\in \mathfrak{M}_{\alpha},$ $\alpha\leq\beta$ in ON LOCALLY $W^{*}$ -ALGEBRAS 49 $(({}^{t}({}^{t}f_{\alpha\beta})\circ\Phi_{\beta})(x_{\beta}))(h_{\alpha})=(\phi_{\beta}(x_{\beta})\circ {}^{t}f_{\alpha\beta})(h_{\alpha})=\phi_{\beta}(x_{\beta})(h_{\alpha}\circ f_{\alpha\beta})$ . $=\phi_{\beta}(x_{\beta})(h_{\beta})=z_{\psi_{\beta}\langle x\rho+M_{\beta})}$ But, sinoe $\lambda_{\alpha\beta},$ $\alpha\leq\beta$ , is 1-1, the map $\psi_{\alpha}\circ\lambda_{\alpha\beta}\circ\psi_{\beta}^{-1}$ of diagram (3.15) is an isometry, so that $z_{\psi_{\beta}\{x\rho+M_{\beta})}=z_{\langle\psi_{\alpha}\circ\lambda_{\alpha\beta}\circ\psi\rho^{-1})\langle\psi_{\beta}\langle x\rho+M_{\beta}))}$ $=z_{\psi_{\alpha}\langle\lambda_{\alpha\beta}\langle xp+M_{\beta}))}=z_{\psi_{\alpha}\langle f_{\alpha\beta}(x\rho)+M_{\alpha})}$ $=(\Phi_{\alpha}\circ f_{\alpha\beta})(x_{\beta})(h_{\alpha})$ , $\alpha\leq\beta$ . a unique Thus, the diagram (3.16) is commutative, which yields the existenoe of continuous map (cf. also Proposition 1.3 and Corollary 2.2) (3.17) $\Phi=\varliminf_{a}\Phi_{\alpha}$ : $E\cong\varliminf_{\alpha}\overline{E}_{\alpha}^{\sigma_{\alpha}}\rightarrow Z(E)\cong\varliminf_{\alpha}Z(\overline{E}_{\alpha^{\alpha}}^{\sigma})$ $\tau-$ , such that $f_{\alpha}\circ\Phi=\Phi_{\alpha}\circ f_{\alpha}$ , for all $\alpha\in A$ . Now, the definition of and (3.11) imply i). On the other hand, (cf. also (1.2) and (3.12)), for every $x=(x_{\alpha})\in E$ $\Phi$ $p_{\alpha}(x-\Phi(x))=\Vert x_{\alpha}-\Phi_{\alpha}(x_{\alpha})\Vert_{\alpha}\leq\Vert x_{\alpha}-z_{\alpha}\Vert_{\alpha}$ for all $z_{\alpha}=f_{\alpha}(z)\in Z(\overline{E}_{\alpha^{a}}^{\sigma})\cong f_{\alpha}(Z(E)),$ $\alpha\in A$ , $\alpha\in A$ , (cf. proof of Theorem 3.2). Thus, $p_{\alpha}(x-\Phi(x))\leq\inf\{p_{\alpha}(x-z):z\in Z(E)\}\leq p_{\alpha}(x-\Phi(x))$ , for any $x\in E,$ . Concerning iii), this isaconsequenoe of (3.4), (3.13) and (1.2). $\alpha\in A$ $\square $ 4. If $(E, (p))$ is a locally convex spaoe and $Z$ a closed linear subsapce of , denote by the quotient map of onto $E/Z$ and by the seminorm of $E/Z$ derived by . In this respect, using the properties of the map (3.17) of Theorem 3.5, we are led to $E$ $E$ $\pi$ $r$ $p$ the following general statement. Theorem 4.1. Let $(E, (p))$ be a locally convex space and $Z$ a closed linear subspace of E. Then, is a continuous map with the properties $\Psi(x+z)=$ $\Psi(x)+z,$ $x\in E,$ $z\in Z$, and $p(x-\Psi(x))=\inf\{p(x-z):z\in Z\},$ $x\in E$, for every if, and only if, admits a continuous relatively open section , in the sense that $\pi\circ s=id_{E/Z}$ and $p(s(\dot{x}))=r(\dot{x}),\dot{x}\equiv x+Z,$ $x\in E$, for any . $\psi:E\rightarrow Z$ $p$ $\pi$ $s$ $p,$ $r$ $\Psi(x)=x-y+\Psi(y)$ , so that one defines where and $p(x-\Psi(x))=r(\dot{x}),$ $x\in E$, for $x\in E$, for any all . Conversely, if is a section of with , we first $\pi(x-s(\dot{x}))=0$ $\Psi:E\rightarrow Z:x->\Psi(x)=x-s(\dot{x})$ hence, , have that . Then, one defines $p(\Psi(x))\leq 2p(x),$ $x\in E$, for every , so that is continuous, having besides the re- Proof. For any $x\in E$ and $s:E/Z\rightarrow E:\dot{x}\mapsto s(\dot{x})=x-\Psi(x)$ $p,$ $r$ $y\in\dot{x},$ , $s$ $\pi\circ s=id_{E/Z}$ $\pi$ $p$ $p(s(\dot{x}))=r(\dot{x}),$ $\Psi$ $p,$ $r$ M. FRAGOULOPOULOU 50 quired by Theorem 4.1 properties. $\square $ A direct consequence of Theorems 4.1, 3.5 is now the next. Corollary 4.2. Then, $\pi:E\rightarrow E/Z(E)$ , where $x\in E$ $\Phi$ be a locally -algebra for which the map (3.14) is 1-1. has a continuous relatively open section , with $s(\dot{x})=x-\Phi(x)$ , Let $E$ $W^{*}$ $s$ is the map (3.17) $\square $ Now, according to Corollary 3.4, for every locally $W^{*}$ -algebra $E$ , one defines the ”topological homomorphism” (4.1) $u:E\rightarrow\delta_{0}(E):x\mapsto u(x)=\delta_{x}$ , in such a way that the induced linear bijection (4.2) $\overline{u}:E/Z(E)\rightarrow\delta_{0}(E):\dot{x}-\rightarrow\overline{u}(\dot{x})=u(x)$ , becomes an isomorphism of locally convex spaces. The next theorem gives an extension and strengthening as well of a previous result of L. Zsid\’o [16; Theor. 3]. More precisely, Theorem 4.3 below, gives a new information, even in the norm case, ensuring that Zsid\’o’s continuous map of Theorem 3 in [16] (cf., for instance, the map of the next theorem) is, in addition, a relatively open section of the topological homomorphism (4.1). That is, one has. $v$ Theorem 4.3. Let $E$ be a locally -algebra for which the map (3.14) is 1-1. Let also be the map (3.17) and $v:\delta_{0}(E)\rightarrow E:\delta_{x}-v(\delta_{x})=x-\Phi(x)$ . Then, the continuous open linear surjection (cf. (4.1)) has as a continuous relatively open section. In particular, $W^{*}$ $\Phi$ $u$ $v$ $2p.(v(\delta.))=q.(\delta.)$ for any $\delta_{x}\in\delta_{0}(E),$ Proof. If $(x\in E),$ $\delta_{x},$ . $\alpha\in A$ $\delta_{y}\in\delta_{0}(E),$ , $(x, y\in E)$ , with $\delta_{x}=\delta_{y}$ , one gets that $x-y\in Z(E)$ , consequently (cf. Theorem 3.5, )) $\Phi(x)=\Phi(x-y+y)=x-y+\Phi(y)$ , which yields that , for every , is well defined. On the other hand, $x\in E$; moreover, 4.2, , with as in Corollary respectively (4.2). Hence, is, in effect, a continuous relatively open section of , having besides the property (cf. $(x\in E)$ . Theorem 3.5) $q.(\delta.)=2p.(v(\delta.))$ , for any $i$ $v$ $\delta_{x}\in\delta_{0}(E)$ $(u\circ v)(\delta_{x})=\delta_{x}-\delta_{\Phi\langle x)}=\delta_{x}$ $v=s\circ\overline{u}^{-1}$ $s,\overline{u}$ $v$ $u$ $\alpha\in A,$ $\delta_{x}\in\delta_{0}(E),$ $\square $ Acknowledgements. The initial motive to this paper was the subject matter of my M. Sc. Thesis for the supervision of which I am grateful to Dr. A. L. Brown (Univ. of Newcastle upon Tyne). I also thankfully acknowledge the financial support to this work of the Greek Ministry of Coordination. However, to put the whole stage within this framework, it was the idea of Professor A. Mallios (Univ. of Athens), as a result of which the paper took the present form. I wish to express him my thanks for advice, several penetrating discussions and his perseverance in finishing this study. ON LOCALLY $W^{*}$ -ALGEBRAS References [1] [2] [3] R. Arens: A generalization of normed rings, Pacific J. Math., 2 (1952), 455-471. N. Bourbaki: Th\’eorie des Ensemples, Chapitre 3, Hermann, Paris, 1967. C. R. Chen: On the intersections and the unions of Banach algebras, Tamgang J. Math., 9 (1978), 21-27. [4] M. Fragoulopoulou: Kadison’s transitivity for locally $C^{*}$ -algebras, J. Math. Anal. Appl., 108 (1985), 422-429. [5] P. Gajendragadkar: Norm of a derivation on a von Neumann algebra, Trans. Amer. Math. Soc., 170 165-170. H. Halpem: Irreducible module homomorphisms of a von Neumann algebra into its center, Trans. Amer. Math. Soc., 140 (1969), $19\succ 221$ . J. Horv\’ath: Topological Vector Spaces and Distributions I, Addison-Wesley Publishing Company, 1966. A. Inoue: Locally -algebras, Mem. Faculty Sci. Kyushu Univ., 25 (1971), 197-235. G. K\"othe: Topological Vector Spaces I, Springer-Verlag, Berlin Heidelberg New York, 1969. A. Mallios: Topological Algebras: Selected Topics, North Holland, Amsterdam, 1986. E. A. Michael: Locally multiplicatively-convex topological algebras, Mem. Amer. Math. Soc., No. 11, 1952. S. Sakai: -Algebras and -Algebras, Springer-Verlag, Berlin Heidelberg New York, 1971. K. Schm\"udgen: Uber LMC*-Algebren, Math. Nachr., 68 (1975), 167-182. J. G. Stampfli: The norm of a derivation, Pacific J. Math., 33 (1970), 737-747. M. Takesaki: Theory of Operator Algebras I, Springer-Verlag, New York Heidelberg Berlin, 1979. L. Zsid\’o: The norm of a derivation in a -algebra, Proc. Amer. Math. Soc., 38 (1973), 147-150. (1972), [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] $C^{*}$ $C^{*}$ $W^{*}$ $W^{*}$ Mathematical Institute University of Athens 57, Solonos Street 10679 Athens Greece
© Copyright 2024 Paperzz