-Artificial Neural NetworkBasic Model 朝陽科技大學 資訊管理系 李麗華 教授 陳榮昌 修訂(2013/02/27) The Basic Model of ANN 1. Input layer 2. Hidden layer 3. Weights 4. Output layer 5. Processing Element(PE) 6. Learning 7. Recalling 8. Energy function 朝陽科技大學資管系 李麗華 教授 2 ANN Components (1/4) 2. Hidden layer: (i.e. PE) I j => net j => f(netj) 1. Input layer: X=[X1,X2,…,Xn]t , here t means vector transpose Notes: Wij X1 Y1 H2 X2 ‧ ‧ ‧ Xn H1 ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ Yj Hh 朝陽科技大學資管系 李麗華 教授 3 ANN Components (1/4) 3. Weights : Wij 4. Output layer: Yj Three common ways of generating output - normalized output - competitive output - competitive learning means the connection value between layers W11 X1 H1 Y1 W21 W?? W?? X2 ‧ ‧ ‧ Xn ‧ ‧ ‧ H2 Wih Wnh ‧ ‧ ‧ Hh 朝陽科技大學資管系 李麗華 教授 ‧ ‧ ‧ Yj ※要注意weights編號原則 4 ANN Components (2/4) 5. Processing Element(PE) (A)Summation Function: I j Wij X i supervised i or I j ( X i Wij )2 unsupervised i n n n 1 n (B)Activity Function: or net I C net j j j net j I j or net I n C I n1 (*)通常與上面函數合併,即: j j j net j Wij X i i (C)Transfer Function: (a) Discrete type (hard limiter) (b) Linear type (c) Non-linear type 朝陽科技大學資管系 李麗華 教授 5 Transfer Functions (1/4) (a) Discrete type (Hard Limiter) transfer function: 1 Yj= net j > 0 if 0 net j 1 Ynj= 0 00 netj=0 if net j > 0 net j -1 1 Hopfield-Tank fc. 0 net j<0 1 -1 Step function or perceptron fc. net j > 0 Yn-1j if Yj = <=0 1 -1 1 Signum fc. net j<=0 0 -1 朝陽科技大學資管系 李麗華 教授 6 Transfer Functions (2/4) (a) Discrete type transfer function (cont.): 1 Yj = 0 -1 if netj = 0 net j<0 1 Yn j = Yn-1j -1 1 net j > 0 Signum0 fc. -1 1 net j > 0 if net j = 0 0 BAM fc. net j<0 朝陽科技大學資管系 李麗華 教授 0 -1 7 Transfer Functions (3/4) (b) Linear type: Draw: Yj = net j Draw: Yj = net j <=0 0 if net j net j > 0 朝陽科技大學資管系 李麗華 教授 8 Transfer Functions (4/4) (c) Nonlinear type transfer function: Draw: 1 Yj = 1 e net j Sigmoid function Yj = tanh(netj) = net j net j e e e net j e net j Draw: Hyperbolic Tangent function Draw: 2 Yj =exp(-net ) Bell function 朝陽科技大學資管系 李麗華 教授 9 Learning & Recalling 6. Learning: Based on the ANN model used, learning is to adjust weights to accommodate a set of training pattern in the network. Notes: 7. Recalling: Based on the ANN model used, recalling is to apply the real data pattern to the trained network so that the outputs are generated and examined. Notes: 朝陽科技大學資管系 李麗華 教授 10 Energy Function (1/2) 8. Energy function: Energy function is a verification function which determines if the network energy has converged to its minimum. Whenever the energy function approaches to zero, the network approaches to its optimum solution. Notes: 朝陽科技大學資管系 李麗華 教授 11 Energy Function (2/2) (a) The energy function for supervised network learning: 1 2 T Y E= where E is the energy value j j 2 j E ‧ ΔW= This is the general form of weights Wij updating for weight W ij (b) The energy function for unsupervised network learning: 1 2 X W E= i ij 2 i ΔW= ‧ E Wij This is the value for adjusting weight Wij 朝陽科技大學資管系 李麗華 教授 12 A Simple ANN Formula • We Can also summary the ANN function into a simple function. That is the output Y is derived from a transferred formula,the summation of weighted input, as shown below Yj= f( Wij X i j ) i Y= the output of ANN (輸出) f = the transfer function of ANN (轉換函數) Wij = the weights, representing the connection strength neurons (連結加權值) Xi = the input of ANN (輸入)。 θj=the bias of ANN (閥值)。 13 Basic Model Q&A What you should learn in this lecture (1) The basic model of ANN? (2) The ANN terminology of network structure? (3) The various types of transfer function? (4) The mathematical concept of supervised and unsupervised model? (5) The concept of Energy function? 朝陽科技大學資管系 李麗華 教授 14
© Copyright 2026 Paperzz