Multireference-Ab Initio Dynamics Simulations of the Photostability of DNA Bases Hans Lischka Institute for Theoretical Chemistry COLUMBUS Program System • Focus: multireference calculations on ground and excited states • Methods: MCSCF, MR-CISD, MR-ACPF/AQCC, Spinorbit CI • Analytic MR-CI gradients, nonadiabatic couplings, parallel CI • Authors: R. Shepard, I. Shavitt, R. M. Pitzer, H.Lischka – – – – Vienna: M. Barbatti, M. Ruckenbauer, J. Szymczak, B. Sellner Budapest: P. G. Szalay Jülich: Th. Müller Columbus/Ohio S. Brozell, … • Web page: http://www. univie.ac.at/columbus Photodynamics • Input includes the energy surfaces, energy • • gradients and nonadiabatic coupling vectors What kind of dynamics – quantum (wavepacket) or surface-hopping? Restricted set of internal coordinates vs. onthe-fly approach with full set of internal coordinates? Development of the surface-hopping program NEWTON-X A TOOL-KIT: FROM POTENTIAL SURFACES TO PHOTODYNAMICS Available QC codes • COLUMBUS (MR-CISD, State-averaged • • • • • CASSCF) TURBOMOLE (RI-CC2, TDDFT: adiabatic dynamics) MOPAC Coming: ACES II (EOM-CCSD, nonadiabatic couplings (P. G. Szalay, A. Tajti) Installation in progress: DFTB (TD-DFTB, adiabatic dynamics) In development: QM/MM for solvation based on COLUMBUS Ultrafast decay of DNA/RNA bases NH2 N NH NH2 N N N N NH O O O NH NH NH N O NH2 NH H3C O NH NH Canuel et al. JCP 122, 074316 (2005) Fast deactivation times for the DNA/RNA bases Photostability of DNA/RNA under the UV solar radiation? Relevance for prebiotic evolution? O Lifetime: Between 750 fs [1] and 1.1 ps [2] Mechanism: Single-exponential decay [3] Double-exponential decay [2] 1: 100 fs– relaxation into S1 [4] 2: 1 ps– relaxation into S0 1: 100 fs– relaxation into S0(*)[5] 2: 1 ps– relaxation into S0(n*) Triple-exponential decay [1] 0 750 1500 delay time / fs [1] Ullrich et al. JACS 126, 2262 (2004) [2] Canuel et al. JCP 122, 074316 (2005) [3] Kang et al. JACS 124, 12958 (2002) [4] Perun et al. JACS 127, 6257 (2005) [5] Serrano-Andrés et al. PNAS 103, 8691 (2006) Photodynamics of DNA bases Hydrogen detachment s*/S0 crossing Adenine: Ring puckering */S0 crossing Marian, JCP 122, 104314 (2005) 9H-adenine, Sobolewski and Domcke, Eur. Phys. J. D 20, 369 (2002) Perun, Sobolewski and Domcke, JACS 127, 6257 (2005) Serrano-Andrés, Merchán and Borin, PNAS 103, 8691 (2006) Three-state model 1 ps 100 fs Serrano-Andrés, Merchán and Borin, Chem. Eur. J. 12, 6559 (2006) Aminopyrimidine 9H Adenine H H H H N N 7 6 10 5 N 6 H N 1 H 2 5 7 N 8 1 N 3 4 H 6-aminopyrimidine H 2 N 3 4 H N9 H 9H-adenine Ring puckering vs. NH2 out-of-plane motion CASSCF(8el,7orb), state-averaging over 2 and 3 states 6-31G* basis Cremer-Pople parameters • Any puckered N-membered ring is described by a special subset of N-3 coordinates • Cremer and Pople [1] gave an useful prescription using the deviations from the average ring plane • For 6-memberd rings, these coordinates are: Q – degree of puckering q and f – type of puckering [1] Cremer and Pople, JACS 97, 1358 (1975) Chair Twisted-chair Envelope Q q Screw-boat f Boat Example: 1S6 = Screw-boat with atoms 1 above the plane and 6 below Boeyers, J. Cryst. Mol. Struct. 8, 317 (1978) 9-H Adenine MXS Structures 7 7 Energy (eV) 6 6 5 5 5 4 4 4 3 3 3 2 2 H3 1 2 1 2 3 4 5 6 S3 0 1 2 3 4 5 6 0 5 5 4 4 4 3 3 3 2 2 2 E3 0 0 1 2 3 4 5 0 0 7 7 6 6 * 5 B3,6 1 6 1 2 3 4 5 4 3 3 2 E 1 0 1 2 3 4 1/2 dMW (amu Å) 5 6 6 n* 6 S1 1 0 0 3 4 5 6 s* E8 1 0 0 1 2 3 4 dMW (amu Å) 2 2 2 1/2 5 4 1 6 5 1 H3 0 7 n* 6 * 4 1 6 7 7 s* 2 4 1 0 0 Energy (eV) n* 6 * 0 Energy (eV) 7 0 1 2 3 4 1/2 dMW (amu Å) 5 6 5 6 Adenine Dynamics Lifetime 1.0 S3 Occupation 0.8 S1 0.6 0.4 S0 S2 0.2 0.0 0 S1: f t 2 1 2 100 200 t t exp exp 2 1 400 600 Time (fs) 1: 22 fs, 2: 538 fs, exp: ~0.1/1 ps Single trajectory 180 150 6 q (°) 120 170 fs 90 E2 S1 2 E 200 fs 3,6 B 30 120 fs 0 60 3 H2 3 3 3 H4S4 E 120 180 1 S6 0 fs 240 4S3 B 3,6 Hop 60 0 2H3 E3 4H3 300 360 All trajectories 180 150 120 90 60 30 0 0 60 120 180 240 300 360 Aminopyrimidine/Adenine dynamics • Ring puckering is the main mechanism at • • • • • picosecond level First step: Fast relaxation S3S2S1 (22 fs) Second step: S1S0 relaxation (0.5 ps) After relaxation in to S1: trapping close to 2E structure Deactivation almost exclusively at 2E Deactivation via NH2 out-of-plane motion not observed Outlook • Photodynamics in solution – QM/MM MRCI, CAS Force field • Base pairs – ultrafast deactivation by proton • transfer? Energy trapping due to stacking interaction of bases COLUMBUS Photos OSU May 2000 ANL July 2001 Seattle, July 2001 Acknowledgments Vienna: Mario Barbatti, Adélia Aquino, Daniel Tunega, Jaroslaw Szymczak, Matthias Ruckenbauer, B. Sellner, H. Pašalić Pisa: Maurizio Persico, Giovanni Granucci Berlin/Prague: V.Bonačić-Koutecký,J. Pittner Argonne/USA: R. Shepard Budapest: P. Szalay Munich: R. de Vivie-Riedle, E. Riedle Zagreb: Z. Maksić, M. Eckert-Maksić, M. Vazdar and I. Antol Sofia: I. Georgieva and N. Trendafilova Bratislava: V. Lukeš São Paulo: S. Canuto and K. Coutinho Rio de Janeiro: M. A. C. Nascimento, I. Borges, Jr. Ribeirão Preto: S. E. Galembeck Prag: P. Hobza Austrian Science Fund
© Copyright 2026 Paperzz