CSCI360 Introduc/ontoAr/ficialIntelligence Week2:ProblemSolvingandOp/miza/on Instructor:Wei-MinShen Week4.1 StatusCheckandReview • Statuscheck – Howisyourproject? – Haveyoudoneyourhomework? – WhythereisnodiscussiononPiazza? – WhythereisnooneshownupforTA? • Reviewoflastlecture • Whatistoday’slecture? – Whataretheexamples? ConstraintSa/sfac/on(review) • Examples:MapColoring,canyouthinkofanother? • Howtoformalizetheproblem? – Search:variables,domains,constrainedrela/ons – Dothesubsetindependent? – Doitcontaincycles? • Howtosolvetheproblem?(Randomlyor“Best”-First) – GlobalBacktracking • Ordervariables:themostconstrainedvariablesfirst • Sa/sfyoneata/me,ifstuck,backtracking – LocalSearch:heuris/c,findthemin-conflictssolu/onlocally – Centralizedvs.Distributed(DCOP) • HW:Magicsquare,defineitandsolveit ThisWeek’sLecture(1):Logics • Therealworldanditsrepresenta/onbylogics • Theworldyoucreatedinsimula/on(e.g.wumpus) – Syntax(onpaper,α,β) – Seman/cs(inworld/modelM),”sa/sfy” • Proposi/onallogic:truthtablefor – Theoremproving,inferencerule,resolu/on,hornclause, forward/backwardchaining, – Proposi/onalagent:currentstate,goalstate,localsearch, globalsearch • HW:PLrulesforWumpusorTic-Tac-Toe ThisWeek’sLecture(2): First-OrderLogic • Syntaxandseman/cs – Addvariables(predicates)andquan/fiers • Knowledgeengineering – Captureandrepresenthumanknowledge,e.g.,usingFOL • InferenceinFOL – ModusPonenswithvariables • Unifica/on:findingthevaluesforvariables – 1.Forwardchaining • E.g.produc/onsystems,ACT,SOAR – 2.Backwardchaining • E.g.,Prolog – 3.Resolu/on • ConverttoCNF,elimina/ngP,-P. • HW:FOLrulesforWumpusorTic-Tac-Toe Today’sLecture • • • • LogicRepresenta/onoftheworld Proposi/onallogic First-orderlogic FOLInferences KeyConceptsofLogic • • • • • • • • • • Syntax Semantics Entailment Inference Soundness Completeness Inference Rules Normal Forms Truth Tables Reasoning 7 KnowledgeandReasoning • • • • • • Knowledgerepresenta/on Logicandrepresenta/on Proposi/onal(Boolean)logic Normalforms Inferenceinproposi/onallogic Wumpusworldexample 8 SymbolsvstheRealWorld Symbol System World Objects: +BLOCKA+ +BLOCKB+ +BLOCKC+ …… Relations: P1:(IS_ON +BLOCKA+ +BLOCKB+) P2:((IS_RED +BLOCKA+) …… “Knowledge Base” “Robot Brain” CS 561, Sessions 10-11 9 Knowledge-BasedAgent Domain independent algorithms ASK Inference engine TELL Knowledge Base Domain specific content • Agentthatusespriororacquired knowledgetoachieveitsgoals – – Canmakemoreefficientdecisions Canmakeinformeddecisions • KnowledgeBase(KB):containsasetof representa/onsoffactsaboutthe Agent’senvironment • Eachrepresenta/oniscalledasentence • Usesomeknowledgerepresenta5on language,toTELLitwhattoknowe.g., (temperature72F) • ASKagenttoquerywhattodo • Agentcanuseinferencetodeducenew factsfromTELLedfacts 10 Genericknowledge-basedagent 1. TELL KB what was perceived Uses a KRL to insert new sentences, representations of facts, into KB 2. ASK KB what to do. Uses logical reasoning to examine actions and select best. 11 Wumpusworldexample 12 Wumpusworldcharacteriza/on • Determinis/c? • Accessible? • Sta/c? • Discrete? • Episodic? 13 Wumpusworldcharacteriza/on • Determinis/c? Yes–outcomeexactlyspecified. • Accessible? No–onlylocalpercep/on. • Sta/c? Yes–Wumpusandpitsdonotmove. • Discrete? Yes • Episodic? (Yes)–becausesta/c. 14 ExampleSolu/onSteps No perception à 1,2 and 2,1 OK B in 2,1 à 2,2 or 3,1 P? Move to 2,1 1,1 V à no P in 1,1 Move to 1,2 (only option) 15 ExampleSolu/onSteps S in 1,2 and No S when in 2,1 à 1,3 or 1,2 has W 1,2 OK à 1,3 W No B in 1,2 à 2,2 OK & 3,1 P 16 ExploringaWumpusworld A= Agent B= Breeze S= Smell P= Pit W= Wumpus OK = Safe V = Visited G = Glitter CS 561, Sessions 10-11 17 ExploringaWumpusworld A= Agent B= Breeze S= Smell P= Pit W= Wumpus OK = Safe V = Visited G = Glitter CS 561, Sessions 10-11 18 ExploringaWumpusworld A= Agent B= Breeze S= Smell P= Pit W= Wumpus OK = Safe V = Visited G = Glitter CS 561, Sessions 10-11 19 ExploringaWumpusworld A= Agent B= Breeze S= Smell P= Pit W= Wumpus OK = Safe V = Visited G = Glitter CS 561, Sessions 10-11 20 ExploringaWumpusworld A= Agent B= Breeze S= Smell P= Pit W= Wumpus OK = Safe V = Visited G = Glitter CS 561, Sessions 10-11 21 ExploringaWumpusworld A= Agent B= Breeze S= Smell P= Pit W= Wumpus OK = Safe V = Visited G = Glitter CS 561, Sessions 10-11 22 ExploringaWumpusworld A= Agent B= Breeze S= Smell P= Pit W= Wumpus OK = Safe V = Visited G = Glitter CS 561, Sessions 10-11 23 ExploringaWumpusworld A= Agent B= Breeze S= Smell P= Pit W= Wumpus OK = Safe V = Visited G = Glitter CS 561, Sessions 10-11 24 OtherTightSpots CS 561, Sessions 10-11 25 LogicinGeneral 26 Typesoflogic 27 TheSeman/cWall Physical Symbol System World +BLOCKA+ +BLOCKB+ +BLOCKC+ P1:(IS_ON +BLOCKA+ +BLOCKB+) P2:((IS_RED +BLOCKA+) CS 561, Sessions 10-11 28 TruthdependsonInterpreta/on Representa/on1 A World B ON(A,B) T ON(B,A) F Representation 2 ON(A,B) F A ON(B,A) T B CS 561, Sessions 10-11 29 Entailment 30 LogicasaRepresenta/onofaWorld Representation: Sentences entails Sentence Refers to (Semantics) World Facts follows Facts 31 Models(“PossibleWorlds”) 32 Inference 33 “Entail”=\=“Inference” KB inference α: derived by a procedure On Paper: complete sound KB entails α Model of KB is a subset of Model of α Model of Symbols: M(KB), M(α), … “possible worlds”? In the Real World: 34 BasicSymbols • Expressionsonlyevaluatetoeither“true”or“false” • • • • • • P ¬P PVQ P^Q P=>Q PóQ “Pistrue” “Pisfalse” nega/on “eitherPistrueorQistrueorboth” disjunc/on “bothPandQaretrue” conjunc/on “ifPistrue,thenQistrue” implica/on “PandQareeitherbothtrueorbothfalse”equivalence 35 Proposi/onalLogic:Syntax 36 Proposi/onallogic:Seman/cs 37 TruthTables • Truthvalue:whetherastatementistrueorfalse. • Truthtable:completelistoftruthvaluesforastatement givenallpossiblevaluesoftheindividualatomic expressions. Example: P T T F F Q T F T F PVQ T T T F 38 TruthTablesforBasicConnec/ves P Q ¬P¬QPVQP^QP=>Q PóQ T T F F T T T T T F F T T F F F FT T F T F T F F F T T F F T T 39 Proposi/onalLogic: BasicManipula/onRules • ¬(¬A)=A • ¬(A^B)=(¬A)V(¬B) • ¬(AVB)=(¬A)^(¬B) • • • • • • • Doublenega/on Negated“and” Negated“or” A^(BVC)=(A^B)V(A^C) Distribu/vityof^onV AV(B^C)=(AVB)^(AVC) Distribu/vityofVon^ A=>B=(¬A)VB bydefini/on ¬(A=>B)=A^(¬B) usingnegatedor AóB=(A=>B)^(B=>A) bydefini/on ¬(AóB)=(A^(¬B))V(B^(¬A)) usingnegatedand&or … 40 Proposi/onalInference: Enumera/onMethod true 41 Enumera/on:Solu/on KB |= alpha? 42 Proposi/onalInference:NormalForms “product of sums of simple variables or negated simple variables” “sum of products of simple variables or negated simple variables” CS 561, Sessions 10-11 43 DerivingExpressionsfromFunc/ons • Givenabooleanfunc/onintruthtableform,findaproposi/onal logicexpressionforitthatusesonlyV,^and¬ • Idea:Easilydoitbydisjoiningthe“T”rowsofthetruthtable. Example:XORfunc/on P Q RESULT T T F T F T P^(¬Q) F T T (¬P)^Q F F F RESULT=(P^(¬Q))V((¬P)^Q) 44 AMoreFormalApproach • HowToconstructalogicalexpressionindisjunc/venormalform fromatruthtable? - Builda“minterm”foreachrowofthetable,where: -ForeachvariablewhosevalueisTinthatrow,include thevariableintheminterm -ForeachvariablewhosevalueisFinthatrow,include thenega/onofthevariableintheminterm -Linkvariablesinmintermbyconjunc/ons - Theexpressionconsistsofthedisjunc/onofallminterms 45 Example:AdderwithCarry Takes3variablesin:x,yandci(carry-in);yields2results:sum(s)andcarry-out(co) Weuseothernota/ons,hereweassumeT=1,F=0,V=OR,^=AND,¬=NOT. co is: s is: 46 Tautologies • Logicalexpressionsthatarealwaystrue.Canbesimplified. Examples: T TVA AV(¬A) ¬(A^(¬A)) AóA ((PVQ)óP)V(¬P^Q) (PóQ)=>(P=>Q) 47 ValidityandSa/sfiability B Theorem 48 LogicProofMethods 49 InferenceRules 50 InferenceRules(cont.) 51 WumpusWorld:example • Facts:Perceptsinject(TELL)factsintotheKB – [Stenchat1,1and2,1]àS(1,1);S(2,1) • Rules:ifsquarehasnostenchthenneitherthesquareoradjacent squarecontaintheWumpus – R1:~S(1,1)è~W(1,1)^~W(1,2)^~W(2,1) – R2:~S(2,1)è~W(1,1)^~W(2,1)^~W(2,2)^~W(3,1) – … • Inference: – KBcontains~S(1,1)thenusingModusPonenswecaninfer ~W(1,1)^~W(1,2)^~W(2,1) – UsingAnd-Elimina/onwecanget:~W(1,1);~W(1,2);~W(2,1) – … 52 Limita/onsofProposi/onalLogic 1.Ithasverylimitedexpressiveness(novariables) • Eachrulehastoberepresentedforeachsitua/on: e.g.,“don’tgoforwardifthewumpusisinfrontofyou”would takes64rules 2.Itcannotkeeptrackofchanges • Ifoneneedstotrackchanges,e.g.,wheretheagenthasbeen beforethenweneeda/med-versionofeachrule.Totrack100 stepswe’llthenneed6400rulesforthepreviousexample. Itshardtowriteandmaintainsuchahugerule-base Inferencebecomesintractable 53 Summary 54 LogicandReasoning • Knowledge Base (KB): contains a set of sentences expressed using a knowledge representation language • TELL: operator to add a sentence to the KB • ASK: to query the KB • Logics are KRLs where conclusions can be drawn • Syntax • Semantics • Entailment: KB |= a iff a is true in all worlds where KB is true • Inference: KB |–i a = sentence a can be derived from KB using procedure i • Sound: whenever KB |–i a, then KB |= a is true • Complete: whenever KB |= a, then KB |–i a 55 Proposi/onalLogicSyntax 56 Proposi/onalLogicSeman/cs 57 Proposi/onalLogicInferenceRules CS 561, Session 12-13 58
© Copyright 2026 Paperzz