141 150 90 9 Journal of Chinese Corrosion Engineering, Vol.15 No.3, PP.1411~150(2001) The Influence of Hydrogen Water Chemistry and Platinum-coating on Stress Corrosion Cracking of Sensitized Type 304 Stainless Steels K. L. Lee, T. K. Yeh, and C. H. Tsai Boiling Water Reactor, BWR Intergranular Stress Corrosion Cracking, IGSCC Hydrogen Water Chemistry, HWC Noble Metal Chemical addition, NMCA BWR IGSCC M H/O 2 Electrochemical Corrosion Potential, ECP M H/O 2 ECP M H/O Slow Strain Rate Tensile, SSRT ECP ECP HWC IGSCC Abstract The reactor internal structural components in boiling water reactors BWRs are composed of stainless steel SS materials due to their good corrosion resistant properties. However, vessel internal cracking VIC problems due to intergranular stress corrosion cracking IGSCC were still found. Two technologies, hydrogen water chemistry HWC and noble metal chemical addition NMCA , have been proposed to mitigate VIC problems. In theory, the * Department of Engineering and system science, National Tsing Hua University ** Nuclear Science and Technology Development Center, National Tsing Hua University -141- 90 9 electrochemical corrosion potential ECP on surface of component material is reduced when the molar ratio of hydrogen to oxygen M H/O in H2O recombination reactions is greater than 2. It was also found that even ECP would be reduced with the catalysis of noble metals when M H/O is smaller than 2. In this study, the specimens of different coating condition were tested in the water chemistry of various M H/O by slow strain rate tensile SSRT and continuous monitoring of ECP. The result came out that ECP reduction was more profound under the condition of higher dissolved hydrogen. In HWC environment, no IGSCC occurred regardless of specimens with or without noble metal coating. Key words hydrogen water chemistry, noble metal chemical addition, intergranular stress corrosion cracking, electrochemical corrosion potential, slow strain rate tensile Normal Water Chemistry, NWC NMT Stoichiometric Ratio M H/O Boiling Water Reactor, BWR M H/O Hydrogen Water Chemistry, HWC 2 ECP HWC (1) M H/O (8) Radiolysis IGSCC Slow Strain Rate Tensile, SSRT ECP Noble Metal Chemical Addition, NMCA 304 Electrochemical Corrosion (9) Potential, ECP HWC (5) SSRT Noble Metal Treatment, NMT 2 HWC (10) (14) ECP 304 NMT 1 650 24 288 360 (15) -142- 200 ppb 304 100 ppb Na2Pt (OH) 6 150 NMCA-12 24 12 NMCA-24 1 Prefilm 2 IGSCC Transgranular Stress Corrosion Cracking, TGSCC 1 300 ppb 24 12 2 300 ppb 50 ppb Prefilm NMCA-12 NMCA-24 1. Figure 1. Sample size of tensile test 1. 300 ppb SSRT Table 1. The SSRT results of different coating SSRT BWR specimens at 300 ppb [O2]dis 3 288 -7 10 s -1 IGSCC 8.3 MPa (MPa) 300 ppb 10 ppb 50 ppb ( ) ( TGSCC ) ( ) Prefilm 109 20.6 9.8 15.9 NMCA-24 (1) 107 15.6 30.5 7.1 NMCA-24 (2) 147 20.0 27.4 6.5 2. 300 ppb 10 ppb SSRT Table 2. The SSRT results of different coating 0.1 S/cm specimens at 300 ppb [O2]dis and 10 ppb [H2]dis 20mL/min IGSCC ECP KCl TGSCC Ag/AgCl (MPa) Intergranular Stress Corrosion Cracking, IGSCC Scanning Electron Microscopy, SEM -143- ( ) ( ) ( ) Prefilm (1) 170 39 0 17 Prefilm (2) 174 39 0 0 NMCA-12 (1) 136 33 0 2 NMCA-12 (2) 162 22 0 10 NMCA-24 (1) 153 39 0 12 NMCA-24 (2) 179 39 0 2 90 9 Prefilm Prefilm NMCA-24 (1) NMCA-24 (1) 2. 300 ppb 3. SSRT 300 ppb SEM SSRT SEM Figure 2. Fractured surface of the prefilmed and Figure 3. Side surface if the prefilmed and platinum platinum treated specimens after the SSRT treated specimens after the SSRT tests under tests under 300 ppb [O2]dis 300 ppb [O2]dis 300 ppb NMCA-24 (2) 30.5 NMCA-24 (1) 27.4 9.8 NMCA-24 (2) 2 NMCA-24 (1) Prefilm NMCA-24 (1) IGSCC NMCA-24 (2) 1 IGSCC NMCA-24 (1) 3 -144- 304 3 300 ppb 50 ppb SSRT Table 3. The SSRT results of different coating specimens at 300 ppb [O 2] dis and 50 ppb [H2]dis. TGSCC IGSCC (MPa) Prefilm ( ( ) ) ) Prefilm 162 27.8 0 27 NMCA-12 213 50.0 0 0 NMCA-24 221 47.2 0 0 Prefilm NMCA-24 (1) 2 300 ppb (M H/O 1) 10 ppb SSRT NMCA-12 NMCA-24 NMCA-24 NMCA-12 (1) ( NMCA-12 33 39 22 170 MPa 174 MPa 39 Prefilm SSRT 4 HWC IGSCC Prefilm (1) Prefilm (2) NMCA-12 (2) NMCA-24 (1) TGSCC 10 NMCA-12 (1) 17 NMCA-24 (2) TGSCC HWC NMCA-24 (1) M H/O Prefilm 4. NMCA-24 300 ppb 10 ppb SSRT Figure 4. Fracture surfaces of three kinds of coating specimens after the SSRT tests under 300 ppb [O2]dis and 10 ppb [H2]dis NMCA-24 Prefilm -145- 0.5 SSRT 90 9 IGSCC IGSCC 3.3 3 50 ppb 300 ppb M H/O 2 SSRT 5 SEM M H/O HWC IGSCC NMCA-12 NMCA-24 NMCA-12 NMCA-24 213 MPa 221 MPa Prefilm NMCA12 NMCA-24 50 48 Prefilm 162 MPa 28 SCC IGSCC 5 IGSCC TGSCC Prefilm 27 NMCA-12 NMCA-12 TGSCC NMCA-24 HWC TGSCC M H/O SSRT 12 2 NMCA- NMCA-24 Prefilm IGSCC Prefilm TGSCC IGSCC NMCA-24 5. Prefilm 300 ppb NMCA-12 50 ppb SSRT Fracture 5. Surfaces of three kinds of coating specimens after the SSRT tests under 300 ppb [O2]dis and 50 ppb [H2]dis NMCA-24 ECP 200 ppb -146- 1500 ppb 50 ppb 304 6. 288 7. Pt ECP 10 ppb ECP Figure 6. ECP Variations as a function of dissolved Figure 7. ECP Variations as a function of dissolved oxygen concentration for the three different oxygen concentration for the three different specimens in 288 specimens in 288 water. water with a fixed dissolved hydrogen level of 10 ppb. IGSCC ECP mVSHE -230 Ecrit 3 BWR 304 initiation ECP IGSCC 6 13 200 ppb 1500 ppb 14 304 ECP ECP -230 mVSHE 200 ppb mVSHE ECP NMCA-12 ECP NMCA-24 -165 1000 1500 ppb 129 mVSHE ECP 200 ppb 7 500 ppb ppb 200 SSRT 1 IGSCC IGSCC ppb 1500 ppb 10 ppb 1500 ppb 100 ECP Pt 300 ppb 300 ppb 1500 ppb ECP Pt ECP 100 mVSHE NMCA-24 ECP 300 Pt SSRT 500 ppb ECP Prefilm -147- ECP NMCA 90 9 8 50 ppb ECP 5 ECP ECP ECP -400 mVSHE 1500 ppb 200 ppb -190 mV SHE 250 mV ECP -600 mV SHE ECP ECP 8. 288 50ppb 200 ppb 1000 ppb 250 mV ECP M H/O 2 1500 ppb M H/O Figure 8. ECP Variations as a function of dissolved 170 mV oxygen concentration for the three different specimens in 288 1 8 water with a fixed 50 ppb dissolved hydrogen level of 50 ppb. -600 mV SHE ECP ECP 100 mV SHE ppb Pt 200 ECP ECP Prefilm NMCA mV SHE Pt ECP mVSHE 1500 ppb 1 50 ppb M H/O -250 ECP 1 -230 mVSHE 1000 ppb Pt 1 M H/O -400 ECP Ecrit 500 ppb 0.5 ECP 100 ppb M H/O M H/O M H/O 1 ECP ECP ECP mV 300 ppb Prefilm 10 ppb SSRT ECP Prefilm NMCA Y.J. ECP Kim M H/O ECP IGSCC HWC 200 ppb(16) 304 Prefilm ECP Pt 150 50 ppb -148- /min ECP NMCA 304 15 Prefilm 20 Environmental Degradation of Materials in /min NMCA ppb Pt ECP 300 150 200 Nuclear Power Plant - Water Reactors, NACE, 100 Myrtle Beach, South Carolina, Aug. 22-25, (1983) p.69. mVSHE (3) ECP Internals with Hydrogen Water Chemistry," Water 10 ppb ECP ECP 200 R. L. Cowan, "The Mitigation of IGSCC of BWR Chemistry of Nuclear Reactor Systems 7, BNES, 400 ppb Bournemouth, England, Oct. 13-17, 1996, p.196. E crit ECP (4) 300 ppb 10 ppb J. C. Danko, "Recent Observations of Cracking in Large Diameter BWR Piping," Proc. Intl. SSRT Symposium on Environmental Degradation of IGSCC Materials in Nuclear Power Plant - Water Reactors, NACE, Myrtle Beach, South Carolina, Aug. 22-25, 1983, p.209. 1. NMCA (5) 304 U.S. Nuclear Regulatory Commission, Intergranular Stress Corrosion of Core Shrouds in Boiling Water Reactors, NRC Generic Letter 9403, July 25, 1994. 2. (6) IGSCC U.S. Nuclear Regulatory Commission, Jet Pump Hold-Down Beam Failure, NRC Information 3. Notice 93-101, December 19, 1993. IGSCC HWC 4. (7) IGSCC M H/O of Lower Region of the Core Shroud in Boiling ECP Water Reactors, NRC Information Notice 94-42, June 7, 1994 . ECP (8) 5. U.S. Nuclear Regulatory Commission, Cracking U.S. Nuclear Regulatory Commission, Reactor Vessel Top Guide and Core Plate Cracking, NRC 304 Information Notice 95-17, March 10, 1995. ECP (9) C. C. Lin, " Hydrogen Water Chemistry Technology in BWRS", Proc. of the 1998 JAIF Water Chemistry Conference, JAIF, Kashiwazaki, Japan, Oct.11-16, 1998, p.211. (10) S. Hettiarachchi et al., "The Concept of Noble (1) (2) R. L. Cowan, Nuclear Engineering International, Metal Chemical Addition Technology for IGSCC January, (1986) p.26. Mitigation of Structural Materials," Proc. 7th R.W. Weeks, "Stress Corrosion Cracking in BWR International Symposium on Environmental and PWR Piping," Proc. Intl. Symposium on Degradation of Material in Nuclear Power -149- 90 Systems - Water Reactors, NACE, Breckenridge, Colorado, Aug.6-10,1995,p.735. (11) Y. J. Kim, L. W. Niedrach, M. E. Indig, P. L. Andresen, "The Application of Noble Metals in Light Water Reactors", JOM, April, (1992) p.14. (12) P. L. Andresen, "Mitigation of Stress Corrosion Cracking by Underwater Thermal Spray of Noble Metals", CORROSION/95, paper no. 412, Houston, TX, NACE International, (1995). (13) Y. J. Kim, L. W. Niedrach, P. L. Andresen, "Corrosion Potential Behavior of Noble Metal Modified Alloys in High Temperature Water", CORROSION/95, paper no.99. Houston, TX, NACE International, (1995). (14) S. Hettiarachchi, G. P. Wozadlo, "A Novel Approach for Noble Metal Deposition on Surface for IGSCC Mitigation of Boiling Water Reactor Internals", CORROSION/95, paper no. 413, Houston, TX, NACE International, (1995). (15) T. K. Yeh et al.,"The Effect of Catalytic Coatings on IGSCC Mitigation for Boiling Water Reactors Operated Under Hydrogen Water Chemistry," Proceedings of the 8th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems - Water Reactors, Amelia Island, Floriga, August 10-14, 1997, American Nuclear Society, p.559. (16) Y. J. Kim, "Effect of Noble Metal Addition on Electrochemical Polarization Behavior of Hydrogen Oxidation and Oxygen Reduction on Type 304 Stainless Steel in High-Temperature Water", Corrosion, May, (1999) p.456. -150- 9
© Copyright 2026 Paperzz