EDM in ground state (I=1/2) H = -(d E + μ B) · I/I mI = 1/2 parallel B 2ω1 anti-parallel E B E 2ω2 mI = -1/2 Electric Dipole Moment: Precession Frequency: ω1 ω2 eh d= I 2mc w=d·E/h d = 10-26 e cm, E = 100 kV/cm, w = 15 *10-6 rad/s Trapped Radioactive Isotopes: micro-laboratories for fundamental Physics Laser cooling leaky systems: Barium 3D 1 Multiple repump transitions 1P 1 1D l1 Efficient capture from atomic beam (>1%) 2 3D Rate [10 6 /s] 1S 3 2 1 Radium similar level scheme. Laser cooling approach transferable 0 ● MOT signal 150 ● Doppler-free beam signal 100 50 X 100 0 -80 -60 -40 -20 0 Detuning @ l1 [MHz] 20 S. De et al., Phys. Rev. A 79 , 041402(R) (2009) Trapped Radioactive Isotopes: micro-laboratories for fundamental Physics Intrinsic sensitivity Radium 7s7p 1P1 2 7s6d 1D2 7s7p 3P 1 0 7s6d 3D 3 2 1 EDM Enhancement over 199Hg ~ 40000 3D2 | er | 3P1 3P1 | H EDM | 3D2 d E ( 3D2 ) E ( 3P1 ) 482.7 nm 714.3 nm Octupole deformation for some isotopes (225Ra) enhancement 50-500 7s2 1S0 Radium Level Scheme Trapped Radioactive Isotopes: micro-laboratories for fundamental Physics 225Ra 7s2 1S0 7s7p 1P1 _ Strong transition for efficient laser cooling 7s7p 1P1 7s6d Hyperfine Structure 4198(4) MHz 7s7p 482.7 nm F = 1/2 - F = 3/2 2 1D 2 3P 1 0 7s6d 3D F = 1/2 - F = 3/2 3 2 1 130Te 2 130Te 2 714.3 nm 7s2 1S0 Reference line in 130Te2 at 20715.4777 cm-1 Trapped Radioactive Isotopes: micro-laboratories for fundamental Physics
© Copyright 2026 Paperzz