Gross primary production algorithm development and validation K.Muramatsu(Nara Women’s Univ.) S. Furumi (Nara Saho College ) M. Daigo (Doshisha Univ.) Yukiko Mineshita ( NWU M2 student) Yuri Hattori (NWU B4 student) 14年1月14日火曜日 Framework of GPP estimation Characteristics of the algorithm Correspond to photosynthesis process ● Photosynthesis velocity = Capacity x depression ● Use light response curves ● Estimate directly GPP, not use LAI Photosynthesis process: only the light exposure area 14年1月14日火曜日 stomatal opening and closing photosynthesis process light Light reaction Carbon fixation Carbon fixation chlorophyll Chemical energy ∼ amount of absorbed light chlorophyll contents, light intensity plant physiological parameter related to color fcapacity (PAR, chlorophyll) 14年1月14日火曜日 Calvin cycle stomata CO2 ∼ amount of absorbed CO2 stomatal opening and closing, Weather, soil moisture plant physiological actions gas exchange is controlled fstomata (xxx, xxx, •••) GPP capacity estimation framework photosynthesis velocity with low stress initial slope Pmax_capacity slope x Pmax_capacity x PAR 1+slope xPAR PAR From the plant physiological study For a leaf Initial slope: efficiency of light conversion to carbon related to chlorophyll contents Pmax_capacity: volume of chloroplasts [Ono et. al, 1995, Oguchi 2003] Pmax_capacity related to chlorophyll contents CIgreen=G/NIR -1. [Gitellson et. al, 2006] 14年1月14日火曜日 Characteristics of CIgreen(=NIR/G-1 ) Results from Previous study i) High sensitivity to Chlorophyll contents:Green>Red ii) Linear relationship with Chlorophyll contents of a leaf iii) Linear relationship with Pmax_capacity_2000 Photosynthesis velocity with low stress initial slope 2000 14年1月14日火曜日 Pmax_capacity PAR (μmol) Pmax_capacity_2000 slope x Pmax_capacity x PAR 1+slope xPAR Previous study Pmax_capacity2000 vs. CIgreen for each vegetation functional types J.Thanyapraneedkul. et.al, 2012, Remote Sensing, 4, 3689-3720 14年1月14日火曜日 GPP capacity estimation : Parameters determined mainly using Japan FLUX EF DNF DBF DBF Grass PF 14年1月14日火曜日 ??? Use Grass parameters Open Shrub ? Closed Shrub ? Evergreen Broad Leaf forests ? Amazon Study site , this year US-Los: ハンノキ,湿地 IGBP: Closed shrub bland CA-Let IGBP: Grass US-Ses: Desert shrub land IGBP: Open shrub land US-Wjs: Savanna(EGF) IGBP: Open shrub land US-Whs: Grazing area IGBP: Open shrub land Km67: natural Forest IGBP: EBF Km83: Logged Forest IGBP: EBF 14年1月14日火曜日 Open shrub and GRASS Pmaxcapacity2000[mgCO2/m2/s] CI-2000 2 CA-Let US-Wjs US-Ses US-Whs 0.42*x-0.33 1.5 Previous study (Grass) added data (Open Shrub) 1 0.5 0 0 2 4 6 8 10 CI=NIR/Green-1 12 Grass (CA-Let) and Open shrubs (US-Wjs, US-Ses, US-Whs) On the same line 14年1月14日火曜日 Closed shrub and Amazonia Forest (EBF) Pmaxcapacity2000[mgCO2/m2/s] CI-2000 2 JP-TMK JP-FJY TH-SKR US-Los km67 km83 JP-TKY 0.14*x+0.21 0.17*x-0.35 1.5 1 NDF NEF Previous study BEF closed shrub Added BEF( Amazonia F.) data BDF (Previous study) 0.5 0 0 2 4 6 8 10 CI=NIR/Green-1 12 Amazonian Forest: Pmax_capacity_2000 has almost constant value Except for Amazonian Forest On the same line US-Los(Closed shrub), JP-FJY(ENF), JP-TMK (DNF), TH-SKR(EBF) Another line JP-TKY Slopes of them are the almost same value 14年1月14日火曜日 The relationship between CI vs. Pmax_capacity_2000 Three vegetation groups 1) Grass and Shrubs 2) Woody plant except for Amazonian Forest 3) Amazonian Forest In the same group: The slope are almost same values If there is the determination rule of the intercept, determination of parameters can be generalized. 14年1月14日火曜日 CI seasonal changes of Shrubs 2.5 2.5 CI US-Wjs 2 CI US-Whs 2 1.5 CI CI 1.5 1 1 0.5 0.5 0 0 1 2 3 4 5 6 7 MONTH 8 9 10 11 12 1 2 3 4 5 6 7 MONTH 8 9 10 11 12 Not growing season’s CI value is this start point Pmaxcapacity2000[mgCO2/m2/s] CI-2000 2.5 CA-Let US-Wjs US-Ses US-Whs 0.42*x-0.33 2 1.5 1 0.5 0 0 For Woody plant group: considering 14年1月14日火曜日 2 4 6 CI=NIR/Green-1 8 10 Stomata opening closing http://www.jspp.org/17hiroba/kaisetsu/kinoshita.html Stomatal Conductance ( mol H20 m-2 s-1 ) Daily change of stomatal conductance 0.4 Observation with LI-6400 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 08: 09: 10: 11: 12: 13: 14: 15: Time of Day Gas exchange is controlled by stomata opening and closing. When absorbing CO2, H2O is evapolated → Leaf temperature rising is suppressed 14年1月14日火曜日 16: 17: 18: At Takayama (Gifu, Pref.) and Ymashiro (Kyoto Pref.) site For three vegetation species: ミズナラ•ダケカンバ•コナラ Quercus crispula, Betula ermanii, Quercus serrata Leaf : Measurements Photosynthesis Leaf Temperature : Thermal imager Brightness thermometer 14年1月14日火曜日 Canopy: Measurements Canopy temperature: Thermal imager Daily change of leaf temperature Quercus crispula ミズナラ Betula ermanii ダケカンバ The relationship among conductance, leaf temperature, weather conditions (air temperature, humidity, solar radiation) Calculate LUT using the moel[Baldocchi,1994] 14年1月14日火曜日 LUT Leaf T VPD(0~4) VPD(5~9) VPD:Vapor pressure deficit (kPa) VPD(25~29) VPD(35~39) VPD(15~19) VPD(40~44) VPD(20~24) Leaf temperature Thermal imager Brightness thermometer VPD(30~34) VPD(10~14) quercus serrata コナラ Thermocouple (LI6400) Estimation results of stomatal conductance VPD(45~) Thermal imager PAR stomata conductance (mol H20m-2s-1) 14年1月14日火曜日 PAR Brightness thermometer Measurements (LI6400) Pattern : O.K. Absolute values: Calibration This year: Continue the field measurements for scaling up from leaf to canopy at Takayama and Yamashiro site MODIS data analysis for scaling up from canopy to satellite Using MODIS11C3 products (monthly averaged daily LST data ) 14年1月14日火曜日 Example of field measurements at Yamashiro site 44. (℃) 36. (℃) 5 branches: daily change of photosynthesis measurement 14年1月14日火曜日 Stomatal conductance 0.4 0.3 0.25 b1 b2 b3 b4 b5 (μmol/m2/s) Photosynthesis Conductance 20 b1 b2 b3 b4 b5 0.35 (mol/m2/s) photosynthesis 0.2 0.15 0.1 15 10 5 0.05 0 8 12 14 Time 16 18 0 20 6 8 10 12 14 Time 16 18 20 Brightness Temperature (℃) b1 40 Brightness Temperature b1 35 30 25 6 8 10 12 14 Time 16 18 20 (℃) 45 b3 40 b3 35 30 25 6 8 10 12 14 Time 14年1月14日火曜日 16 18 20 45 40 LUT is checked using these data. b2 b2 35 30 25 6 8 45 10 12 14 Time 18 20 (℃) b4 b4 40 16 Brightness Temperature (℃) 45 (℃) Brightness Temperature 10 Brightness Temperature Brightness Temperature (℃) 6 35 30 25 6 8 10 12 14 Time 16 18 20 45 b5 b5 40 35 30 25 6 8 10 12 14 Time 16 18 20 MODIS data analysis study the daily variation range of surface temperature for evergreen and deciduous types 14年1月14日火曜日 MODIS daily variation of LST(max.-min. ) vs. CI Jan. Jan. desert Evergreen Jul. 0.1CI •¥ Jul. 0.1CI 0.1CI desert Evergreen 0.1CI 14年1月14日火曜日 Deciduous Deciduous 0.1CI Study Plan • GPP capacity estimation • Another vegetation types : FLUX site • consider the generalized rule for the estimation formula • Stomatal opening and closing • Consider scaling up method ( LUT for global study ) 14年1月14日火曜日 Preparation for Validation • Collect the validation data • FLUX data sets • find the available ( we can use ) data • Calculate typical value of the site • Ground observation data sets • Nara prefecture forest, Yatsugatake site,,, • Ecological study sites : Nasahara-san G 14年1月14日火曜日 Thank you! 14年1月14日火曜日
© Copyright 2026 Paperzz