p q

Boolean Expression Evaluation
CS 270: Math Foundations of CS
Jeremy Johnson
Objective
 To use recursive data structure to
represent Boolean expressions. To use
recursion to evaluate and process
expression trees, and to use induction to
reason about expression trees.
Outline
Boolean expressions
Expression trees
Predicate to check for expression trees
Recursive Evaluation
ITE (if-then-else) representation
Conversion and Equivalence
Inductive proof
Simplification
3
Boolean Expressions
BExpr :=
Constant: T|F [t | nil]
Variable [symbol]
Negation:  BExpr [(not BExpr)]
And: BExpr  BExpr [(and BExpr BExpr)
Or: BExpr  BExpr [(or BExpr BExpr)]
4
Predicate for Boolean
Expressions
(defunc booleanexprp (expr)
:input-contract t
:output-contract (booleanp (booleanexprp expr))
(cond
( (is-constant expr) t )
( (is-variable expr) t )
( (is-not expr) (booleanexprp (op1 expr)) )
( (is-or expr) (and (booleanexprp (op1 expr))
(booleanexprp (op2 expr))) )
( (is-and expr) (and (booleanexprp (op1 expr))
(booleanexprp (op2 expr))) )
( t nil) ) )
5
Expression Trees
Boolean expressions can be represented by a
binary tree
Internal nodes are operators
Leaf nodes are operands

Consider p  (1   q):

p
(and p (or t (not q))
1

q
Evaluation
(defun bool-eval (expr env)
(cond
( (is-constant expr) expr )
( (is-variable expr) (lookup expr env) )
( (is-not expr) (not (bool-eval (op expr) env)) )
( (is-or expr) (or (bool-eval (op1 expr) env) (bool-eval (op2 expr) env)) )
( (is-and expr) (and (bool-eval (op1 expr) env) (bool-eval (op2 expr)
env)) )
))
Evaluation with Contracts
(defunc bool-eval (expr env)
:input-contract (and (booleanexprp expr)
(environmentp env)
(all-variables-defined expr env))
:output-contract (booleanp (bool-eval expr env))
(cond
( (is-constant expr) expr )
( (is-variable expr) (lookup expr env) )
( (is-not expr) (not (bool-eval (op1 expr) env)) )
( (is-or expr) (or (bool-eval (op1 expr) env) (bool-eval (op2 expr) env)) )
( (is-and expr) (and (bool-eval (op1 expr) env) (bool-eval (op2 expr)
env)) ) ) )
If-then-else
 The ternary boolean
function ite(p,q,r) can be
used to represent , , and

p q
r ite(p,q,r)
0 0
0
0
 p  ite(p,0,1)
0 0
1
1
 p  q  ite(p,1,q)
0 1
0
0
 p  q  ite(p,q,0)
0 1
1
1
1 0
0
0
1 0
1
0
1 1
0
1
1 1
1
1
Conversion to ite Expression
 Any Boolean expression can be converted
to an equivalent expression using ite
 (bool-eval expr env)  (ite-eval (bool2ite
expr) env)

ite

p
1
p ite

q
1
0
1 ite
q
0
1
bool2ite
(defun bool2ite (expr)
(cond
( (is-constant expr) expr )
( (is-variable expr) expr )
( (is-not expr) (list 'ite (bool2ite (op1 expr)) nil t) )
( (is-or expr) (list 'ite (bool2ite (op1 expr))
t (bool2ite (op2 expr))) )
( (is-and expr) (list 'ite (bool2ite (op1 expr))
(bool2ite (op2 expr)) nil) )
)
)
Ite-eval
(defun ite-eval (expr env)
(cond
( (is-constant expr) expr )
( (is-variable expr) (lookup expr env) )
( (is-ite expr) (if (ite-eval (op1 expr) env)
(ite-eval (op2 expr) env)
(ite-eval (op3 expr) env)) )
)
)
Equivalence of Conversion
 Want to prove that (bool-eval expr env) =
(ite-eval (bool2ite expr) env)
 Lemma ite
1.
p  ite(p,0,1)
2.
p  q  ite(p,1,q)
3.
p  q  ite(p,q,0)
p q ite(p,0,1) p ite(p,1,q) p  q
ite(p,q,0) p  q
0 0
1
1
0
0
0
0
0 1
1
1
1
1
0
0
1 0
0
0
1
1
0
0
1 1
0
0
1
1
1
1
Equivalence of Conversion
 (bool-eval expr env) = (ite-eval (bool2ite
expr) env)
 Proof by induction on expr using Lemma
ite
 [Base case] constant or variable. In this case
(bool2ite expr) = expr and bool-eval and iteeval return the same thing
Equivalence of Conversion
 [Not] Assume (bool-eval expr1 env) = (ite-eval
(bool2ite expr1))
 (ite-eval (bool2ite ‘(not expr1)) env)
 (ite-eval ‘(ite (bool2ite expr1) nil t) env) [by def of
bool2ite]
 (not (ite-eval (bool2ite expr1) env)) [by Lemma ite
part 1]
 (not (bool-eval expr1 env)) [by IH]
 (bool-eval ‘(not expr1) env) [by def of bool-eval]
Equivalence of Conversion
 [Or] Assume (bool-eval expr1 env) = (ite-eval
(bool2ite expr1)) and (bool-eval expr2 env) = (iteeval (bool2ite expr2))
 (ite-eval (bool2ite ‘(or expr1 expr2)) env)
 (ite-eval ‘(ite (bool2ite expr1) t (bool2ite expr2)) env)
[by def of bool2ite]
 (or (ite-eval (bool2ite expr1) env) (ite-eval (bool2ite
expr2) env)) [by Lemma ite part 2]
 (or (bool-eval expr1 env) (bool-eval expr2 env)) [by
IH]
 (bool-eval ‘(or expr1 expr2) env) [by def of bool-eval]
Equivalence of Conversion
 [And] Assume (bool-eval expr1 env) = (ite-eval
(bool2ite expr1)) and (bool-eval expr2 env) = (iteeval (bool2ite expr2))
 (ite-eval (bool2ite ‘(and expr1 expr2)) env)
 (ite-eval ‘(ite (bool2ite expr1) (bool2ite expr2) nil)
env) [by def of bool2ite]
 (and (ite-eval (bool2ite expr1) env) (ite-eval (bool2ite
expr2) env)) [by Lemma ite part 3]
 (and (bool-eval expr1 env) (bool-eval expr2 env)) [by
IH]
 (bool-eval ‘(and expr1 expr2) env) [by def of booleval]
Exercise
 Implement a recursive function to convert
ite expressions to boolean expressions
 (ite2bool iexpr)
 Use and define the following helper functions
 (is-ite expr)
 Check for ‘(ite … )
 (is-itenot iexpr)
 Check for ‘(ite iexpr nil t)
 (is-iteor iexpr)
 Check for ‘(ite iexpr t iexpr)
 (is-iteand iexpr)
 Check for ‘(ite iexpr iexpr nil)
Solution
(defun is-itenot (iexpr)
(and (equal (op2 iexpr) nil) (equal (op3 iexpr) t)))
(defun is-iteor (iexpr)
(equal (op2 iexpr) t))
(defun is-iteand (iexpr)
(equal (op3 iexpr) nil))
Solution
(defun ite2bool (iexpr)
(cond
( (is-constant iexpr) iexpr )
( (is-variable iexpr) iexpr )
( (is-ite iexpr)
(cond
( (is-itenot iexpr) (list 'not (ite2bool (op1 iexpr))) )
( (is-iteor iexpr) (list 'or (ite2bool (op1 iexpr))
(ite2bool (op3 iexpr))) )
( (is-iteand iexpr) (list 'and (ite2bool (op1 iexpr))
(ite2bool (op2 iexpr))) ) ))))
Solution Remark
Note that there is one overlap in
Not (ite p nil t)
Or (ite p t q)
And (ite p q nil)
(ite p t nil) = (and p t) = (or p nil) = p
This implies (ite2bool (bool2ite ‘(and p t)) = (or
p t) not equal to the initial expression
However, (ite2bool (bool2ite expr))  expr,
i.e. (booleval expr) = (ite2bool (bool2ite
expr))
Correctness of ite2bool
 Use induction to prove





(equiv (ite2bool (bool2ite expr)) expr)
Base case: expr is a constant or variable
(not expr)
(or expr1 expr2)
(and expr1 expr2)
Solution
 Show (equiv (ite2bool (bool2ite expr)) expr)
 Base case: if expr is a constant or variable then
(ite2bool (bool2ite expr)) = (ite2bool expr) = expr
[by def]
 [Not] Assume (equiv (ite2bool (bool2ite expr))
expr)
 (ite2bool (bool2ite (not expr)))
 (ite2bool (list ‘ite (bool2ite expr) nil t))) [by def b2ite]
 (not (ite2bool (bool2ite expr))) [by def ite2bool and
Lemma ite ]
 (not expr) [by IH]
Solution
 [Or] Assume (equiv (ite2bool (bool2ite
expr1)) expr1) and (equiv (ite2bool
(bool2ite expr2) expr2)
 (ite2bool (bool2ite (or expr1 expr2)))
 (ite2bool (list ‘ite (bool2ite expr1) t (bool2ite
expr2))) [by def of bool2ite]
 (or (ite2bool (bool2ite expr1)) (ite2bool
(bool2ite expr2))) [by def of ite2bool and
Lemma ite]
 (or expr1 expr2) [by IH]
Solution
 [And] Assume (equiv (ite2bool (bool2ite
expr1)) expr1) and (equiv (ite2bool
(bool2ite expr2) expr2)
 (ite2bool (bool2ite (and expr1 expr2)))
 (ite2bool (list ‘ite (bool2ite expr1) (bool2ite
expr2) nil)) [by def of bool2ite]
 (and (ite2bool (bool2ite expr1)) (ite2bool
(bool2ite expr2))) [by def of ite2bool and
Lemma ite]
 (and expr1 expr2) [by IH]
Boolean Algebra Laws
 Boolean expressions can be simplified using rules of Boolean
algebra
 Identity law: A + 0 = A and A ● 1 = A.
 Zero and One laws: A + 1 = 1 and A ● 0 = 0
 Inverse laws:
 Idempotent laws: A + A = A = A ● A
 Commutative laws: A + B = B + A and A ● B = B ● A.
 Associative laws:
A + (B + C) = (A + B) + C and A ● (B ● C) = (A ● B) ● C.
 Distributive laws: A ● (B + C) = (A ● B) + (A ● C) and
A + (B ● C) = (A + B) ● (A + C)
 Double Negation: 𝐴 = 𝐴
 DeMorgan’s laws:
Simplifying Expression Trees
 Constant folding



p
1
p

q
p
1
Exercise
 Implement and test (bool-simp expr)
 (bool-simp expr) returns a simplified boolean
expression using the following simplifications
1.
evaluate all constant subexpressions
2.
(not (not expr)) -> expr
3.
(and t expr) -> expr
4.
(and expr t) -> expr
5.
(and nil expr) -> nil
6.
(and expr nil) -> nil
7.
(or t expr) -> t
8.
(or expr t) -> t
9.
(or nil expr) -> expr
10. (or expr nil) -> expr
Exercise
 Simplification (2) is done through the helper
routine not-simp. Simplifications (3)-(6) are done
through the helper routine and-simp.
Simplifications (7)-(10) are done through the
helper routine or-simp.
 bool-simp traverses the boolean expression and
recursively simplifies all operands to not, or and
and and calls the appropriate helper routineto
perform operator specific simplifiations and
constant evaluation.
Exercise
 Prove the following lemmas
1. (bool-eval '(not expr) env) = (bool-eval (notsimp expr) env)
2. (bool-eval '(and expr1 expr2) env) = (bool-eval
(and-simp expr1 expr2) env)
3. (bool-eval '(or expr1 expr2) env) = (bool-eval
(or-simp expr1 expr2) env)
4. (bool-eval expr env) = (bool-eval (bool-simp
expr) env)
Exercise
 Prove using induction on expr that
 (bool-eval expr env) = (bool-eval (bool-simp
expr) env)
 Prove by induction that (bool-simp expr)
 Has no double negations
 Is either a constant or an expression with no
constants
 Write an is-simplified function to test whether the
output of (bool-simp expr) satisfies this property
Tautology Checker
 A program can be written to check to see if a Boolean
expression is a tautology.
 Simply generate all possible truth assignments for the
variables occurring in the expression and evaluate the
expression with its variables set to each of these assignments.
If the evaluated expressions are always true, then the given
Boolean expression is a tautology.
 A similar program can be written to check if any two Boolean
expressions E1 and E2 are equivalent, i.e. if E1  E2. Such a
program has been provided.
32
Satisfiability
 A formula is satisfiable if there is an assignment
to the variables that make the formula true
 A formula is unsatisfiable if all assignments to
variables eval to false
 A formula is falsifiable if there is an assignment
to the variables that make the formula false
 A formula is valid if all assignments to variables
eval to true (a valid formula is a theorem or
tautology)
Satisfiability
 Checking to see if a formula f is satisfiable can be
done by searching a truth table for a true entry
 Exponential in the number of variables
 Does not appear to be a polynomial time algorithm
(satisfiability is NP-complete)
 There are efficient satisfiability checkers that work
well on many practical problems
 Checking whether f is satisfiable can be
done by checking if  f is a tautology
 An assignment that evaluates to false
provides a counter example to validity
Propositional Logic in ACL2
 In beginner mode and above
ACL2S B !>QUERY
(thm (implies (and (booleanp p) (booleanp q))
(iff (implies p q) (or (not p) q))))
<< Starting proof tree logging >>
Q.E.D.
Summary
Form: ( THM ...)
Rules: NIL
Time: 0.00 seconds (prove: 0.00, print: 0.00, proof tree: 0.00, other: 0.00)
Proof succeeded.
Propositional Logic in ACL2
ACL2 >QUERY
(thm (implies (and (booleanp p) (booleanp q))
(iff (xor p q) (or p q))))
…
**Summary of testing**
We tested 500 examples across 1 subgoals, of which 1 (1 unique) satisfied
the hypotheses, and found 1 counterexamples and 0 witnesses.
We falsified the conjecture. Here are counterexamples:
[found in : "Goal''"]
(IMPLIES (AND (BOOLEANP P) (BOOLEANP Q) P) (NOT Q))
-- (P T) and (Q T)