EE4328, Section 005 Introduction to Digital Image Processing Linear Image Restoration Zhou Wang Dept. of Electrical Engineering The Univ. of Texas at Arlington Fall 2006 Blur out-of-focus blur motion blur Question 1: How do you know they are blurred? I’ve not shown you the originals! Question 2: How do I deblur an image? From Prof. Xin Li Linear Blur Model • Spatial domain x(m,n) h(m,n) y(m,n) blurring filter From Prof. Xin Li Gaussian blur motion blur Linear Blur Model • Frequency (2D-DFT) domain X(u,v) H(u,v) Y(u,v) blurring filter From Prof. Xin Li Gaussian blur motion blur Blurring Effect Gaussian blur motion blur From [Gonzalez & Woods] Image Restoration: Deblurring/Deconvolution x(m,n) h(m,n) blurring filter y(m,n) g(m,n) ^ x(m,n) deblurring/ deconvolution filter • Non-blind deblurring/deconvolution Given: observation y(m,n) and blurring function h(m,n) x(m,n) Design: g(m,n), such that the distortion between x(m,n) and ^ is minimized • Blind deblurring/deconvolution Given: observation y(m,n) ^ Design: g(m,n), such that the distortion between x(m,n) and x(m,n) is minimized Deblurring: Inverse Filtering x(m,n) h(m,n) y(m,n) blurring filter X(u,v) H(u,v) = Y(u,v) X(u,v) = Y(u,v) 1 = Y(u,v) H(u,v) H(u,v) g(m,n) ^ x(m,n) inverse filter 1 G(u,v) = H(u,v) Exact recovery! Deblurring: Pseudo-Inverse Filtering x(m,n) h(m,n) y(m,n) blurring filter 1 Inverse filter: G(u,v) = H(u,v) g(m,n) ^ x(m,n) deblur filter What if at some (u,v), H(u,v) is 0 (or very close to 0) ? 1 | H (u, v) | Pseudo-inverse filter: G(u, v) H (u, v) | H (u, v) | 0 small threshold Inverse and Pseudo-Inverse Filtering G (u, v) 1 H (u, v) blurred image 1 | H (u, v) | G(u, v) H (u, v) | H (u, v) | 0 Adapted from Prof. Xin Li = 0.1 More Realistic Distortion Model w(m,n) x(m,n) h(m,n) blurring filter + additive white Gaussian noise y(m,n) g(m,n) ^ x(m,n) deblur filter Y(u,v) = X(u,v) H(u,v) + W(u,v) • What happens when an inverse filter is applied? X (u , v) H (u , v) W (u , v) ˆ X (u , v) Y (u , v)G (u , v) H (u , v) W (u , v) close to zero at high frequencies X (u , v) H (u , v) Radially Limited Inverse Filtering Radially limited G ( u , v ) H (u, v) inverse filter: 1 u 2 v2 R 0 u 2 v2 R • Motivation R – Energy of image signals is concentrated at low frequencies – Energy of noise uniformly is distributed over all frequencies – Inverse filtering of image signal dominated regions only Radially Limited Inverse Filtering Image size: 480x480 Original Blurred Inverse filtered R = 40 R = 70 R = 85 Radially limited inverse filtering: From [Gonzalez & Woods] Wiener (Least Square) Filtering Wiener filter: G (u, v) H * (u, v) | H (u, v) |2 K W2 K 2 X noise power signal power • Optimal in the least MSE sense, i.e. G(u, v) is the best possible linear filter that minimizes 2 ˆ error energy E X (u, v) X (u, v) • Have to estimate signal and noise power Weiner Filtering Blurred image Inverse filtering Radially limited inverse filtering R = 70 Weiner filtering From [Gonzalez & Woods] Inverse vs. Weiner Filtering distorted inverse filtering Wiener filtering motion blur + noise less noise less noise From [Gonzalez & Woods] Weiner Image Denoising w(m,n) x(m,n) h(m,n) + y(m,n) • What if no blur, but only noise, i.e. h(m,n) is an impulse or H(u, v) = 1 ? Wiener filter: H * (u, v) G (u, v) | H (u, v) |2 K where W2 K 2 X for H(u,v) = 1 Wiener denoising filter: 1 1 X2 G (u, v) 2 2 2 1 K 1 W / X X W2 Typically applied locally in space Weiner Image Denoising adding noise noise var = 400 local Wiener denoising Summary of Linear Image Restoration Filters Inverse filter: Pseudo-inverse filter: Radially limited inverse filter: Wiener filter: Wiener denoising filter: 1 G(u,v) = H(u,v) 1 | H (u, v) | G(u, v) H (u, v) | H (u, v) | 0 1 G (u, v) H (u, v) 0 u 2 v2 R u 2 v2 R W2 H * (u, v) where K 2 G (u, v) 2 X | H (u, v) | K X2 G (u, v) 2 X W2 Examples • A blur filter h(m,n) has a 2D-DFT given by 1 0.3 0.3 j 0.3 0.3 j 0.1 j H (u, v) 0 0 0.1 0.3 0.3 j 0 0.3 0.3 j 0 0.1 0 0 0 0.1 j • Find the deblur filter G(u,v) using 1) The inverse filtering approach 2) The pseudo-inverse filtering approach, with = 0.05 3) The pseudo-inverse filtering approach, with = 0.2 2 4) Wiener filtering approach, with 625 and W 125 2 X Examples 1) Inverse filter 1 1.67 1.67 j 1.67 1.67 j 10 j 1 G (u, v) Inf Inf H (u, v) 10 1.67 1.67 j Inf Inf Inf Inf 1.67 1.67 j 10 Inf 10 j 2) Pseudo-inverse filter, with = 0.05 1 1.67 1.67 j 1 10 j | H (u, v) | 1.67 1.67 j G (u, v) H (u, v) 0 0 0 | H (u, v) | 10 1.67 1.67 j 0 1.67 1.67 j 0 10 0 0 0 10 j Examples 3) Pseudo-inverse filter, with = 0.2 1 1.67 1.67 j 1 0 | H (u, v) | 1.67 1.67 j G (u, v) H (u, v) 0 0 0 | H (u, v) | 0 1.67 1.67 j 0 1.67 1.67 j 0 0 0 0 0 0 4) Wiener filter, with X2 625 and W2 125 W2 125 K 2 0.2 X 625 0.83 0.79 0.79 j 0.79 0.79 j 0.48 j H * (u, v) G (u, v) 0 0 | H (u, v) |2 K 0.48 0.79 0.79 j 0 0.79 0.79 j 0 0.48 0 0 0 0.48 j Advanced Image Restoration • Adaptive Processing – Spatial adaptive – Frequency adaptive • Nonlinear Processing – Thresholding, coring … – Iterative restoration • Advanced Transformation / Modeling – Advanced image transforms, e.g., wavelet … – Statistical image modeling • Blind Deblurring / Deconvolution
© Copyright 2026 Paperzz