Array Design David Woody Owens Valley Radio Observatory presented at NRAO summer school 2002 Outline • • • • Statement of the problem UV metrics Imaging metrics Beam metrics – PSF and synthesized beam – Sidelobe statistics – Optimization • ALMA configurations Problem • Given a collection of antennas, what is the the best array configuration? • Considerations – – – – Best science output Geography Flexibility Costs • Need methods for evaluating configurations UV metrics • Brightness = FT of complex visibility • Resolution dj >l/max_baseline • Nyquist theorem – UV sample spacing < 1/FOV less than Nyquist sampling 1 0. 5 0 0. 5 1 0 200 400 600 800 1000 1200 1400 1600 1800 2000 • Simple DFT would seem to require complete sampling of the UV-plane Filled Disk First Arrays • Large telescopes on tracks – => linear, “Tee”, and star arrays – Often with regular spacing • Science was mostly small fields • Ryle strived for complete sampling Westerbork Minimum Redundancy • Possible in 1-D – Earth rotation gives good 2-D coverage for polar sources • Not solved for 2-D snapshots Early Configuration Design • • • • Layout antennas with some idea in mind Look at UV coverage Iterate Seemed OK for small numbers of antennas VLA VLA Zenith Snapshot VLA Tracks VLBA VLBA UV Coverage More Recent UV Designs • Optimize UV coverage • Good snapshot coverage • Uniform UV coverage – Reuleaux triangles (SMA) • Complete coverage – MMA circular configuration • Match image visibility distribution – Gaussian UV coverage Reuleaux Triangle Reuleaux Triangle Tracks Imaging Metrics • Use the imaging tools we have to evaluate configurations Image Evaluation • • • • Set of test pictures Generate model visibilities Process images Compare images to pictures – Dynamic range – Fidelity • Repeat for different configurations • Modify configuration? • Iterate General Results • More UV coverage gives better images • Guassian UV coverage gives better images, especially for wide fields Why are the images so good? • Small fields greatly relaxes the Nyquist sampling • Many algorithms are essentially model fitting • Complete Nyquist sampling is not necessary Generalized Nyquist Theorem • Uniform complete sampling not required average sampling exceeds Nyquist 1 0.5 0 0.5 1 0 200 400 600 800 1000 1200 1400 1600 1800 2000 • Just need the average number of samples to exceed Nyquist Imaging Approach to Array Design • • • • Selection of test pictures prejudices the design Multiple definitions of dynamic range and fidelity Time consuming Difficult to evolve to better configuration • But imaging is the bottom line for what we expect to get out of an array • Part of the ALMA configuration design process • Can we quantify the effect of the missing UV data? • Radio • Optical – Spectral sensitivity function – Optical transfer function • Autocorrelation of field • Transfer function or UV sampling Aperture Field esponse 1 0.5 0 20 15 10 5 0 distanc e 5 10 15 20 10 15 20 Spectral Sensitivity Function 3 response 2 1 0 20 15 10 5 0 U 5 Beam Metrics • Optical – Optical transfer function • Autocorrelation of field – Point Spread Function • FT of optical transfer function • Radio – Spectral response function • Transfer function or UV samples – Synthesized beam x Primary Beam • FT of spectral response function • The PSF is the optical image generated by a point source. It is a measure of the instrumental or array artifacts that the imaging algorithms must deal with. • A good PSF => good images PSF and Radio Astronomy • Voltage pattern of array beam 1 U PSF ( p) N . N U n ( p) exp i k p rn . n 1 • Point Spread Function = synthesized beam plus single antenna response 2 PSF ( p) U PSF ( p) 1 2 N N N Bmn ( p) exp i k p (rm rn ) m 1 n 1 • Same as the power from the array used as a transmitter Synthesized Beam and PSF Synthesized & Primary Beam 1 0.5 0 1 0.5 0 angle 0.5 1 0.5 1 Point Spread Function 1 0.5 0 1 0.5 0 angle Sidelobes • Near sidelobes from large scale distribution • Far sidelobes from small scale distribution and gaps • Visibility data can be weighted to improve the sidelobes at the expense of S/N • At mm and sub-mm, sensitivity is a dominant design criteria and data weighting should be avoided Near Sidelobes for Cylindrical Antenna Distributions 0 .01 1 0 .01 10 Antenna distribution Point Spread Function 1 1 0.5 0.1 0 0 0.2 0.4 0.6 0.8 1 radius 0 .01 1.5 UV distribution 0.01 1 0.5 1 10 0 0 0.2 0.4 0.6 0.8 baseline 1 1.2 1.4 3 0.1 1 angle 10 Far Sidelobes • Caused by gaps in UV coverage • Average of PSF – Including single dish measurements • PSF > 0 • Average = 1/(N-1) – Interferometric data only • PSF > -1/(N-1) • Average = 0 • Standard deviation – s > 1/N for Magnification >> N – N = number of antennas – Magnification = (primary beam width)/(synthesized beam width) Standard Deviation vs. Magnification x 1 1.02 3 minimum s for bell shaped and uniform UV distributions for N =64 Standard Deviation of PSF Sidelobes Standard Deviation 0.1 1.6% 0.01 1 10 3 10 100 Array Magnification 1 10 3 Sidelobe Calculation N 1 PSF( p) 2 B( p) exp i k p rn N n 1 2 • Sidelobes are sum of N unit vectors of different orientations 2 Vector rotation = pr l fr 0 Vector Random Walk field vector sum 1 0.5 0 0.5 1 1 0.5 0 0.5 1 fr 1 Vector Random Walk field vector sum 1 0.5 0 0.5 1 1 0.5 0 0.5 1 fr 2 Vector Random Walk field vector sum 1 0.5 0 0.5 1 1 0.5 0 0.5 1 fr 100 Vector Random Walk field vector sum 1 0.5 0 0.5 1 1 0.5 0 0.5 1 fr 101 Vector Random Walk field vector sum 1 0.5 0 0.5 1 1 0.5 0 0.5 1 Statistical Distribution of Sidelobes • Should have a Rayleigh distribution g ( s ) N exp Ns • Expected maximum sidelobe 2 s max ln( mag) N • Test against three configurations – UV coverage optimized circular array – Random Gaussian array – Systematic Gaussian array X Re( config ) Y Im( config ) Circular uvdata UV( config ) Antenna positions Antenna distribution U Re( uvdata ) V Im( uvdata ) UV coverage UV distribution 1 0.5 0.5 V 0 0 0.5 0.5 1 0.5 psfplot PSFlog( psf .05 .15) 0 PSF plot 0.5 LPlot Rbeam( p sf ) 1 0.5 X 0 i 00.5 1000 1 U PSF Peak sidelobe vs. radius PSF peak, average and rms Y 0.15 0.1 0.05 0 psfplot 1 10 100 Angle/P SF_HW HM 1 10 3 X Re( config ) Y Im( config ) Pseudo Random uvdata UV( config ) Antenna positions Antenna distribution U Re( uvdata ) V Im( uvdata ) UV coverage UV distribution 1 0.5 0.5 V 0 0 0.5 0.5 1 0.5 psfplot PSFlog( psf .05 .15) 0 PSF plot 0.5 LPlot Rbeam( p sf ) 1 0.5 X 0 i 00.5 1000 1 U PSF Peak sidelobe vs. radius PSF peak, average and rms Y 0.15 0.1 0.05 0 psfplot 1 10 100 Angle/P SF_HWHM 1 10 3 X Re( config ) Y Im( config ) Systematic uvdata UV( config ) Antenna positions Antenna distribution U Re( uvdata ) V Im( uvdata ) UV coverage UV distribution 1 0.5 0.5 V 0 0 0.5 0.5 1 0.5 psfplot PSFlog( psf .05 .15) 0 PSF plot 0.5 LPlot Rbeam( p sf ) 1 0.5 0 i 0.5 0 1000 1 U X PSF Peak sidelobe vs. radius PSF peak, average and rms Y 0.15 0.1 0.05 0 psfplot 1 10 100 Angle/P SF_HWHM 1 10 3 j 0 200 Distribution of Sidelobes 100 number of samples, normalized Number of sidelobes vs. magnitude 10 1 0.1 0.01 1 10 3 0 0.05 0.1 sidelobe magnit ude 0.15 Histograms of the PSF sidelobe amplitudes for the initial circular array (dotted), pseudo-random (dashed) and systematic (dot-dash). The solid line is the theoretical distribution for pseudo-random configurations. Optimization fr 100 • Minimize peak sidelobe field vector sum – – – – Find1 peak sidelobe Adjust a single antenna to reduce this peak Check that no other peak now exceeds new peak 0.5 Repeat 0 0.5 1 1 0.5 0 0.5 1 Sequential Optimization 2 • Rotation of the antenna unit vectors is pr l • • Near sidelobes require large antenna shifts • Farther sidelobes require small shifts that don’t effect the near sidelobes • You can start by minimizing the near sidelobes and then progress outward without degrading nearer sidelobes • Expected maximum sidelobe after optimization is 1 s max, opt 1 2 ln( mag ) ln( N ) N Re( config ) Y Im( config ) Optimized Arrays X Re( config ) Y Im( config ) Antenna positions Antenna distribution Y 0.5 0 Y 0 0.5 0.5 0.5 0 X Re( confi g ) Y Im( confi g ) 0.5 0.5 0.5 0 X Re( confi g ) Y Im( confi g ) X positions Ante nna UV distribution 0.5 X positions Ante nna 0.5 Y 0.5 0.5 0 Y 0.5 0.5 0 X 0.5 0.5 X positions Ante nna UV distribution 0.5 0 0 X Re( confi g ) Y Im( confi g ) UV distribution 0.5 Antenna positions Antenna distribution 0.5 0 Y X Re( config ) Y Im( config ) Antenna distribution 0.5 Y Antenna positions 0 0.5 0.5 0 X 0.5 0.5 0 X 0.5 LPlot Rbeam( p sf ) Optimized Sidelobe Distribution LPlot Rbeam( p sf ) i 0 1000 Peak sidelobe vs. radius PSF peak, average and rms PSF peak, average and rms Peak sidelobe vs. radius 0.15 0.1 0.05 0 1 Plot Rbeam( p sf ) 10 100 i 0 1000 i 0 1000 1 10 0.15 0.1 0.05 0 3 1 10 j 0 200 Angle/P SF_HWHM 1 10 3 100 Angle/PSF_HWHM 100 number of samples, normalized PSF peak, average and rms Peak sidelobe vs. radius 0.15 0.1 0.05 0 1 10 100 Angle/PSF_HWHM 1 10 3 Number of sidelobes vs. magnitude 10 1 0.1 0.01 1 10 3 0 0.05 0.1 sidelobe magnit ude 0.15 Add more short spacings X Re( config ) Y Im( config ) Antenna pos itions uvrdist Nrdist ( uvdata nbins 1.5) 2 Antenna distribution Radial UV distribution UV density 0.5 Y 0 1 0 0 0.2 0.4 psfp lot PSFlog( psf .001 .05) 0.5 LPlot Rbeam( p sf ) 0.5 0 X i 0 1000 0.5 PSF peak, average and rms Peak sidelobe vs. radius 0.15 0.1 0.05 0 1 10 100 Angle/PSF_HWHM j 0 nbins 1 10 3 0.6 UV radius PSF plot PSF 0.8 1 Results for several design studies 0.25 Circle random #1 Random #2 Systematic ln(mag)*2/N Circle, opt Random #1, opt Random #2, opt Systematic, opt Opt for 2.5% [2*ln(mag)-ln(N)]/N [1+2*ln(mag)-ln(N)]/N Sidelobe Peak 0.2 0.15 0.1 0.05 0 10 100 Magnification 1000 Earth Rotation Standard Deviation of PSF Sidelobes Standard Deviation 0.1 0.01 1 10 3 3 100 1 10 Array Magnification Lower limit to the standard deviation for bell shaped (red curves) and uniform UV coverage (blue curves) for 64 antenna arrays for snapshot (solid), 6 min (dashed) and 1 hr tracks (dotted). 10 PSF Metric • • • • • Simple to calculate Gives quantifiable results Can be compared to idealized expectations Directly related to imaging artifacts Easy to evolve into better configurations – Can easily incorporate physical constraints • Major part of ALMA configuration design ALMA configurations • Geography and boundaries are significant constraints • Design approach – Large scale Gaussian UV distribution – Logarithmic spiral for zooming – Finally sidelobe optimization • Multiple configurations – Start in compact, close packed – Transition to self similar logarithmic spiral – Largest configuration circle or star • Final design in progress Conway: Mag=14, XYscale=168m file "Conways configs ascii.txt" ifig 20 X Re( config ) Y Im( config ) mag 14 uvdata UV( config ) U Re( uvdata) Antenna positions 1 normalized V [m/Dant*mag] normalized Y [N/Dant*mag] 0.5 0 0.5 0 1 0.5 mag 14 V Im( uvdata) UV coverage 0 0.5 normalized X [E/Dant*mag] N3dB 1 grdext 2 N3dB * psf PSFin ( aconfig samp grdext mag ) psfplot PSFlog ( psf .02 .06) psfplot PSF plot 1 samp 2 mag 0 normalized U [m/Dant*mag] 1 Conway: Mag=14, peak sidelobe=5.8% file "Conways configs as cii.txt" ifig 20 His tPlot PSFhis to ps f 1.5 grdext 1 grdext mag nbins 50 mag 14 2 100 uvrdis t Nrdis t ( uvdata nbins 1.5) random perturbation. LPlot Rbeam( ps f ) j 0 nbins UV radial dis tribution LargeSL( LPlot grdext ) 0.0581 His togram of PSF s idelobes 100 number of samples, normalized UV density nles s 0 k 0 200 1.5 1 0.5 0 fRan Dant 0 0 0.5 UV radius 10 1 0.1 0.01 1 10 1 3 0 0.05 0.1 sidelobe magnitude 0.15 i 0 1000 Array Beam maximum vs . angle PSF peak and average 0.15 0.1 0.05 0 3 1 10 0.01 0.1 Angle/Primary Beam_HWHM 1 10 Conway: Mag=70, XYscale=840m file "Conways configs ascii.txt" ifig 9 X Re( config ) Y Im( config ) mag 70 uvdata UV( config ) U Re( uvdata) Antenna positions 1 normalized V [m/Dant*mag] normalized Y [N/Dant*mag] 0.5 0 0.5 0 1 0.5 mag 70 V Im( uvdata) UV coverage 0 0.5 normalized X [E/Dant*mag] N3dB 1 grdext 2 N3dB * psf PSFin ( aconfig samp grdext mag ) psfplot PSFlog ( psf .02 .15) psfplot PSF plot 1 samp 2 mag 0 normalized U [m/Dant*mag] 1 Conway: Mag=70, peak sidelobe=13.2% file "Conways configs as cii.txt" ifig 9 His tPlot PSFhis to ps f 1.5 grdext 1 grdext mag 70 mag nbins 50 2 100 uvrdis t Nrdis t ( uvdata nbins 1.5) random perturbation. LPlot Rbeam( ps f ) j 0 nbins UV radial dis tribution LargeSL( LPlot grdext ) 0.13248 His togram of PSF s idelobes 100 number of samples, normalized UV density nles s 0 k 0 200 1.5 1 0.5 0 fRan Dant 0 0 0.5 UV radius 10 1 0.1 0.01 1 10 1 3 0 0.05 0.1 sidelobe magnitude 0.15 i 0 1000 Array Beam maximum vs . angle PSF peak and average 0.15 0.1 0.05 0 3 1 10 0.01 0.1 Angle/Primary Beam_HWHM 1 10 Conway: Mag=240, XYscale=2,880m file "Conways configs ascii.txt" ifig 2 X Re( config ) Y Im( config ) mag 240 uvdata UV( config ) U Re( uvdata) Antenna positions 1 normalized V [m/Dant*mag] normalized Y [N/Dant*mag] 0.5 0 0.5 0 1 0.5 mag 240 V Im( uvdata) UV coverage 0 0.5 normalized X [E/Dant*mag] N3dB 1 grdext 2 N3dB * psf PSFin ( aconfig samp grdext mag ) psfplot PSFlog ( psf .02 .15) psfplot PSF plot 1 samp 2 mag 0 normalized U [m/Dant*mag] 1 Conway: Mag=240, peak sidelobe=16.0% file "Conways configs as cii.txt" ifig 2 His tPlot PSFhis to ps f 1.5 grdext 1 grdext mag 240 mag nbins 50 2 100 uvrdis t Nrdis t ( uvdata nbins 1.5) random perturbation. LPlot Rbeam( ps f ) j 0 nbins UV radial dis tribution LargeSL( LPlot grdext ) 0.16048 His togram of PSF s idelobes 100 number of samples, normalized UV density nles s 0 k 0 200 1.5 1 0.5 0 fRan Dant 0 0 0.5 UV radius 10 1 0.1 0.01 1 10 1 3 0 0.05 0.1 sidelobe magnitude 0.15 i 0 1000 Array Beam maximum vs . angle PSF peak and average 0.15 0.1 0.05 0 3 1 10 0.01 0.1 Angle/Primary Beam_HWHM 1 10
© Copyright 2026 Paperzz