GYLA PEUM MIPU CRER HUKU OOMA CHAC CRMA QULA KICO

(Semi-) Automatic Recognition
of Microorganisms in Water
K. Rodenacker, P. Gais2, U. Jütting
and B. A. Hense
GSF-IBB, 2GSF-Patho, Neuherberg,
Germany
Content





Introduction
Material
Methods
Results
Summary and Discussion
Karsten Rodenacker GSF-IBB AG2
2
Introduction

Studies on the
effects of toxicants
on the biocenosis of
aquatic model
ecosystem

Characterization of
plankton commun.
(identification,
counting of phytoplankton)
Karsten Rodenacker GSF-IBB AG2
3
Material

Preparation


Container of semipermeable LDPE
tubes containing the
test substance
Water column
Karsten Rodenacker GSF-IBB AG2
4
Material

Data gathering



Sedimentation
Slide preparation
Microscopy
Karsten Rodenacker GSF-IBB AG2
5
Material

Data processing
with QWin, QUIPS


Scan path and
autofocus
Digitization and
storage
~45 sec/image
Karsten Rodenacker GSF-IBB AG2
6
Material

Some organisms to
be classified
Karsten Rodenacker GSF-IBB AG2
7
GYLA
PEUM
HUKU
OOMA
QULA
KICO
CLSA
PLGE
MIPU
CRER
CHAC
CRMA
ZIGA
ACMX
ZIGA
Methods

Data processing
with IDL




Image segmentation
Feature extraction
Classification
Re-classification
and training
Karsten Rodenacker GSF-IBB AG2
8
Methods

Image
segmentation:
(two-step method)

Rough
segmentation
image threshold


Fine
segmentation
object threshold
(RATS)
Unbiased count
(forbidden line)
Karsten Rodenacker GSF-IBB AG2
9
Methods

Feature extraction

Shape




geometrical
analytical (Fourier,
curvature)
topological (convex
hull, distance map)
algebraic (moments,
PCA)
Karsten Rodenacker GSF-IBB AG2
10
Methods

Feature extraction

Extinction
(optical density)


transmitted light
optical density
histogram features
mean (M1), SD (M2),
skewness (M3) etc.
moments (algebraic)
Karsten Rodenacker GSF-IBB AG2
11
Histogram of values of transmitted light
ALL
Methods

Classification

Hierarchical tree
classifier based on
stepwise linear
discriminance
analysis
KICO
CLSA
CHAC
Artefacts
Karsten Rodenacker GSF-IBB AG2
12
OOMA
CRER
GYLA
PEUM
Methods

Re-Classification

Interaction



Control
Correction
Training
Karsten Rodenacker GSF-IBB AG2
13
Preliminary Results

Comparison of
manual and
automatic
procedure
Karsten Rodenacker GSF-IBB AG2
15
Summary and Discussion

Difficulties or failures




Separate softwares
(Qwin, IDL)
Autofocus automized
microscope
Segmentation
Unlimited number of
organism groups
Karsten Rodenacker GSF-IBB AG2
16
Summary and Discussion

Successes


Effective training
system for biologists
AND computer
scientists
Very good
collaboration
between the
different faculties
Karsten Rodenacker GSF-IBB AG2
17
Summary and Discussion

Outlook




Fluorescence
Multiple focal depth
Type specific object
shape features
(dominant feature
points)
Texture object
features
Karsten Rodenacker GSF-IBB AG2
18