Fluids-ID:----------------- Final Exam Time: 120 minutes Name: -----------------Course: 58:160, Fall 2013 -----------------------------------------------------------------------------------------------------------------------------------------The exam is closed book and closed notes. 1. An incompressible, viscous fluid with density, π, flows past a solid flat plate which has a depth, π, into the page. The flow initially has a uniform velocity π before contacting the plate. The 2π¦ π¦ 2 velocity profile at location π₯ is estimated to have a parabolic shape, π’ = π οΏ½οΏ½ οΏ½ β οΏ½ οΏ½ οΏ½, for πΏ πΏ π¦ β€ πΏ and π’ = π for π¦ β₯ πΏ where πΏ is the boundary layer thickness. (a) Write the continuity equation and determine the upstream height from the plate, β, of a streamline which has a height, πΏ, at the downstream location. Express your answer in terms of πΏ. (b) Determine the force the fluid exerts on the plate over the distance π₯. Express your answer in terms of π, π, π, and πΏ. You may assume that the pressure everywhere is atmospheric pressure. 2. An incompressible fluid flows between two porous, parallel flat plates as shown in the Figure below. An identical fluid is injected at a constant speed V through the bottom plate and simultaneously extracted from the upper plate at the same velocity. There is no gravity force in x and y directions (gx=gy=0). Assume the flow to be steady, fully-developed, 2D, and the pressure ππ gradient in the x direction to be a constant ( = ππππ π‘πππ‘). (a) Write the continuity equation and ππ₯ show that the y velocity is constant at π£ = π. (b) Simplify the x-momentum equation and find the appropriate differential equation for the x velocity component, u. (c) To solve the differential ππ 1 equation, assume that the solution is π’ = πΆ1 π ππ¦ β οΏ½ οΏ½ π¦ + πΆ2 , where π β 0. Replace and ππ₯ ππ find Ξ» in terms of Ο, V, and ΞΌ. (d) Apply boundary conditions and find C1 and C2. V y=h y=0 3. A model scale of a glass sphere is suspended in an upward flow of water moving with a mean velocity of 1 m/s. The density of the glass is 2360 kg/m3, water density is 1000 kg/m3, and water viscosity is ΞΌ=0.001 kg/m-s. (a) If drag coefficient for sphere is CD β 0.2 for turbulent flow (π ππ· > 5 × 105 ) and CD=0.47 for laminar flow (1 × 104 < π ππ· < 5 × 105 ), calculate the diameter of the model scale sphere. (b) What would be the water velocity and the drag force for 8 times larger prototype? Fluids-ID:----------------- Final Exam Time: 120 minutes Name: -----------------Course: 58:160, Fall 2013 -----------------------------------------------------------------------------------------------------------------------------------------4. The following data were obtained for flow of 20°C water (Ο=998 kg/m3, ΞΌ=0.001 kg/m-s) at 20 m3/hr through a badly corroded 5-cm-diameter pipe with slopes downward at an angle of 8°: p1 = 420 kPa, z1 = 12 m, p2 = 250 kPa, z2 = 3 m. Estimate: (a) the roughness of the pipe Ξ΅; and (b) the percent change in head loss if the pipe were smooth and the flow rate the same. βπ§ (Hint: pipe length πΏ = ) sin π 5. A small bug rests on the outside of a car side window as shown in the Figure below. The surrounding air has a density of Ο=1.2 kg/m3 and viscosity of ΞΌ=1.8E-5 kg/m-s. Assume that the flow can be approximated as flat plate flow with no pressure gradient and the start of the boundary layer begins at the leading edge of the window. (a) Assuming that the flow is turbulent where the bug is, determine the minimum speed at which the bug will be sheared off of the car window if the bug can resist a shear stress of up to 1 N/m2. (b) Confirm the turbulent flow assumption. (c) What is the total skin friction drag acting on the window at this speed? 2π 0.027 0.031 (Turbulent BL: ππ = πππ€2 β 1/7 ; πΆπ· β 1/7 ) π ππ₯ π ππΏ 6. Potential flow against a flat plate (Fig. a) can be described with the stream function π = π΄π₯π¦ where A is a constant. This type of flow is commonly called a βstagnation pointβ flow since it can be used to describe the flow in the vicinity of the stagnation point at O. By adding a source of strength m at O (π = ππ), stagnation point flow against a flat plate with a βbumpβ is obtained as illustrated in Fig. b. Determine the bump height, h, as a function of the constant, A, and the source strength, m. π΄ (Hint: π = π΄π₯π¦ in Cylindrical Coordinates is π = π΄(π cos π)(π sin π) = π 2 sin 2π) 2 Fluids-ID:----------------- Final Exam Time: 120 minutes Name: -----------------Course: 58:160, Fall 2013 ------------------------------------------------------------------------------------------------------------------------------------------ Fluids-ID:----------------- Final Exam Time: 120 minutes Name: -----------------Course: 58:160, Fall 2013 ------------------------------------------------------------------------------------------------------------------------------------------ Solution: 1. (a) Continuity Equation: β πΏ (3) οΏ½ π π ππ¦ = οΏ½ π’(π¦) π ππ¦ 0 0 πΏ π¦ 2 2π¦ πβπ = οΏ½ ππ οΏ½οΏ½ οΏ½ β οΏ½ οΏ½ οΏ½ ππ¦ πΏ πΏ 0 = ππ οΏ½ πΏ 2πΏ π¦2 π¦3 β 2 οΏ½ = ππ οΏ½ οΏ½ πΏ 3πΏ 0 3 (1.5) (0.5) 2 2 πβπ = πππΏ β β = πΏ (0.5) 3 3 (b) Linear Momentum Equation in x Direction: οΏ½ πΉπ₯ = β οΏ½ π’(π¦)π[π’(π¦)] π ππ¦ + οΏ½ π’(π¦)π[π’(π¦)] π ππ¦ (2) 1 β πΏ 2 βπΉ = β οΏ½ ππ 2 π ππ¦ + οΏ½ ππ’2 (π¦) π ππ¦ 0 0 πΏ βπΉ = βππ 2 πβ + ππ οΏ½ π’2 (π¦)ππ¦ πΏ πΏ 2 = βππ2 πβ + πππ 2 οΏ½ οΏ½ 0 0 (1) (0.5) 2 2π¦ π¦ 2 (0.5) β 2 οΏ½ ππ¦ πΏ πΏ πΏ πΏ 4π¦ 2 π¦ 4 4π¦ 3 4π¦ 3 π¦ 5 π¦ 4 4 1 8 2π¦ π¦ 2 πΏ οΏ½ οΏ½ β 2 οΏ½ ππ¦ = οΏ½ οΏ½ 2 + 4 β 3 οΏ½ ππ¦ = οΏ½ 2 + 4 β 3 οΏ½ = πΏ + πΏ β πΏ = πΏ πΏ πΏ πΏ 3πΏ 5πΏ πΏ 0 3 5 15 πΏ 0 0 βπΉ = βππ 2 πβ + πππ 2 οΏ½ 8 πΏοΏ½ 15 2 8 = βππ 2 π οΏ½ πΏοΏ½ + πππ 2 οΏ½ πΏοΏ½ 3 15 β΄ πΉ= 2 ππ 2 ππΏ 15 (0.5) Fluids-ID:----------------- Final Exam Time: 120 minutes Name: -----------------Course: 58:160, Fall 2013 -----------------------------------------------------------------------------------------------------------------------------------------2. Assumptions: π 1) Steady flow ( = 0) ππ‘ 2) Incompressible flow (Ο=constant) ππ’ 3) Fully developed ( = 0) 4) 2D flow (π€ = 0, ππ₯ π ππ§ = 0) ππ 5) Constant pressure gradient ( = ππππ π‘πππ‘) ππ₯ 6) gx=gy=0 (a) Continuity: ππ’ ππ£ ππ€ + + =0 ππ₯ ππ¦ ππ§ ππ£ ππ¦ (b) 0(3) + ππ£ ππ¦ (1.5) + 0(4) = 0 = 0 β π£ = ππππ π‘πππ‘ (0.5) (0.5) π£ = π ππ‘ π¦ = 0 πππ π¦ = β β π£ = π ππ£πππ¦π€βπππ (0.5) x-momentum: ππ’ ππ’ ππ’ ππ π2π’ π2π’ π2π’ ππ’ +π£ + π€ οΏ½ = πππ₯ β + π οΏ½ 2 + 2 + 2οΏ½ ποΏ½ +π’ ππ₯ ππ¦ ππ§ ππ₯ ππ₯ ππ¦ ππ§ ππ‘ π οΏ½0(1) + 0(3) + π (c) ππ’ ππ¦ + 0(4)οΏ½ = 0(6) β ππ ππ ππ₯ + π οΏ½0(3) + ππ π2π’ ππ’ =β +π 2 ππ₯ ππ¦ ππ¦ (0.5) ππ 1 π’ = πΆ1 π ππ¦ β οΏ½ οΏ½ π¦ + πΆ2 ππ₯ ππ ππ’ ππ¦ ππ 1 ππ₯ ππ = πΆ1 ππ ππ¦ β οΏ½ οΏ½ π2π’ = πΆ1 π2 π ππ¦ ππ¦ 2 (0.5) π2 π’ ππ¦ 2 + 0(4)οΏ½ (2) (0.5) Fluids-ID:----------------- Final Exam Time: 120 minutes Name: -----------------Course: 58:160, Fall 2013 -----------------------------------------------------------------------------------------------------------------------------------------Replace in the differential equation: ππ ππ 1 ππ οΏ½πΆ1 ππ ππ¦ β οΏ½ οΏ½ οΏ½ = β + ποΏ½πΆ1 π2 π ππ¦ οΏ½ ππ₯ ππ₯ ππ β π= Therefore: (d) ππ π (0.5) ππ ππ 1 π¦ π’ = πΆ1 π π β οΏ½ οΏ½ π¦ + πΆ2 ππ₯ ππ Boundary conditions: π’ = 0 ππ‘ π¦ = 0 πππ π¦ = β (1.5) π¦ = 0: 0 = πΆ1 + πΆ2 β πΆ2 = βπΆ1 π¦ = β: 0 = πΆ1 π ππβ π ππ β ππ₯ ππ βοΏ½ οΏ½ πΆ1 οΏ½1 β π β πΆ1 = β ππβ π οΏ½ + πΆ2 = πΆ1 π Replace find C1 and C2 to find the final solution: ππ β ππ₯ ππ βοΏ½ οΏ½ β πΆ1 ππ β = βοΏ½ οΏ½ ππ₯ ππ ππ β οΏ½ οΏ½ ππ ππ₯ 1β ππβ π (0.5) ππβ π π , πΆ2 = πππ¦ οΏ½ ππ β οΏ½ ππ₯ ππ 1β ππβ π π β ππ 1 β π π π¦ π’= οΏ½ οΏ½οΏ½ β οΏ½ ππβ ππ ππ₯ β 1βπ π (0.5) (0.5) Fluids-ID:----------------- Final Exam Time: 120 minutes Name: -----------------Course: 58:160, Fall 2013 -----------------------------------------------------------------------------------------------------------------------------------------3. (a) B FD π = πππππ π ππ (0.5) π΅ = ππ€ππ‘ππ ππ 1 πΉπ· = πΆπ· ππ€ππ‘ππ π΄π 2 (0.5) 2 W π= π = π΅ + πΉπ· β πππππ π π ππ· 3 , 6 ππ·3 6 οΏ½πππππ π β ππ€ππ‘ππ οΏ½π π·= Assume turbulent: π·= π ππ· = (0.5) π΄= ππ· 2 4 = ππ€ππ‘ππ π ππ·3 6 1 2 + πΆπ· ππ€ππ‘ππ ππ· 3 1 ππ· 2 2 = πΆπ· ππ€ππ‘ππ π 6 4 2 ππ·2 2 π 4 (2) 3πΆπ· ππ€ππ‘ππ π 2 4οΏ½πππππ π β ππ€ππ‘ππ οΏ½π 3(0.2)(1000)(1)2 = 0.0112 π 4(2360 β 1000)(9.81) ππ· (1)(0.0112) = = 11,200 = 1.12 × 104 < 5 × 105 β ππ’πππ’ππππ‘ ππ π π’πππ‘πππ πππ‘ π£ππππ (0.5) (1πΈ β 6) π Assume laminar: (0.5) π·= (0.5) π ππ· = (b) (1) 3(0.47)(1000)(1)2 = 0.0264 π 4(2360 β 1000)(9.81) ππ· (1)(0.0264) = = 264,000 = 2.64 × 105 (1πΈ β 6) π π·π π ππ = π ππ β π·π πΆπ², π³ππππππ (0.5) ππ π·π ππ π·π 1 π·π = β ππ = ππ = (1.0) οΏ½ οΏ½ = 0.125 π/π (0.5) π π π·π 8.0 (1) πΆ = πΆ π·π π·π β πΉπ· π = 8.0 (0.5) πΉπ· π 1 ππ΄ π 2 2 π π = πΉπ· π 1 ππ΄ π 2 2 π π π·π 2 ππ 2 π΄π ππ 2 1 2 2 = πΉπ· π οΏ½ οΏ½ = πΉπ· π οΏ½ οΏ½ οΏ½ οΏ½ = πΉπ· π (8.0) οΏ½ οΏ½ = πΉπ· π π΄π ππ π·π ππ 8.0 (1) π(0.0264)2 1 ππ·π 2 (1.0)2 = 0.13 π (0.5) = πΆπ· ππ€ππ‘ππ ππ 2 = (0.47)(0.5)(1000) 4 4 2 Fluids-ID:----------------- Final Exam Time: 120 minutes Name: -----------------Course: 58:160, Fall 2013 -----------------------------------------------------------------------------------------------------------------------------------------4. (a) The flow rate: (0.5) 20 π = 20 π3 /β = π3 /π = 0.00556 π3 /π 3600 The average velocity: (0.0056) π π (0.5) =π = 2.83 π/π π= =π π΄ (0.05)2 π2 4 4 The pipe length: βπ§ 12 β 3 (0.5) πΏ= = = 64.7 π sin π sin 8° The steady flow energy equation: οΏ½ π π2 π π2 + + π§οΏ½ = οΏ½ + + π§οΏ½ + βπ (2) ππ 2π ππ 2π 1 2 π π (0.5) π1 = π2 β οΏ½ + π§οΏ½ = οΏ½ + π§οΏ½ + βπ ππ ππ 1 2 (420,000) (250,000) + 12 = + 3 + βπ (0.5) (998)(9.81) (998)(9.81) (1) βπ = π βπ = 26.36 π (64.7) (2.83)2 πΏ π2 = 26.36 = π β π = 0.05 (0.5) (0.05) 2(9.81) π 2π (0.5) πππ (998)(2.83)(0.05) = = 141,217 β 1.4 × 105 π ππ = (0.001) π From Moody chart, read: (1) π β 0.021 π π = (0.021)(0.05) = 0.00105 π = 1.05 ππ (0.5) (b) From Moody chart at the same π ππ = 1.4 × 105 the friction factor smooth pipe reads: ππ ππππ‘β = 0.017 Percent change is: (1) (0.5) (64.7) (2.83)2 πΏ π2 = (0.017) = 8.98 π οΏ½βπ οΏ½π ππππ‘β = π (0.05) 2(9.81) π 2π (26.36) β (8.98) × 100 β 66% (0.5) (26.36) Fluids-ID:----------------- Final Exam Time: 120 minutes Name: -----------------Course: 58:160, Fall 2013 -----------------------------------------------------------------------------------------------------------------------------------------5. (a) π2 (0.5) π ππ€ = π 2 π ππ β ππ€ = π =π = Re-arrange to find U: (1) (c) π ππ₯ = (0.5) 1/7 π ππ₯ π 2 0.027 (1) 2 π π 1/7 π₯ (1) π 2 0.027 1/7 2 πππ₯ οΏ½ οΏ½ π 0.0135π 1/7 π6/7 π13/7 π₯ 1/7 ππ€ π₯ 1/7 π=οΏ½ οΏ½ 0.0135π 1/7 π6/7 (1.0)(0.4)1/7 =οΏ½ οΏ½ 0.0135 (1.8πΈ β 5)1/7 (1.2)6/7 (b) (1) 0.027 7/13 7/13 = 20.16 π/π (0.5) πππ₯ (1.2)(20.16)(0.4) = = 537,600 > 5 × 105 ππΎ, π‘π’πππ’ππππ‘ (1.8πΈ β 5) π πΆπ· β 0.031 1/7 π ππΏ (1) (1) πππΏ (1.2)(20.16)(1.0) π ππΏ = = = 1,344,000 (1.8πΈ β 5) π πΆπ· = 0.031 = 0.00413 (1344000)1/7 1 π· = πΆπ· ππ 2 ππΏ (1) 2 = (0.00413)(0.5)(1.2)(20.16)2 (0.7)(1.0) = 0.7 π (0.5) (1) Fluids-ID:----------------- Final Exam Time: 120 minutes Name: -----------------Course: 58:160, Fall 2013 -----------------------------------------------------------------------------------------------------------------------------------------6. π΄ π = π 2 sin 2π + ππ (2.5) 2 π£π = β π£π = ππ = βπ΄π sin 2π (1) ππ 1 ππ π = π΄π cos 2π + (1) π ππ π For the bump, the stagnation point occurs at: π = β, π= π 2 (1) (1) (π£ ) π π π‘ππ = βπ΄β sin π = βπ΄β (0) = 0 (1) (1) (π£π )π π‘ππ = π΄β cos π + π΄β = π π = π΄β (β1) + = 0 (1) β β π π β β=οΏ½ β π΄ (0.5)
© Copyright 2025 Paperzz