Fluids-ID:----------------- Final Exam Time

Fluids-ID:-----------------
Final Exam
Time: 120 minutes
Name: -----------------Course: 58:160, Fall 2013
-----------------------------------------------------------------------------------------------------------------------------------------The exam is closed book and closed notes.
1. An incompressible, viscous fluid with density, 𝜌, flows past a solid flat plate which has a depth,
𝑏, into the page. The flow initially has a uniform velocity π‘ˆ before contacting the plate. The
2𝑦
𝑦 2
velocity profile at location π‘₯ is estimated to have a parabolic shape, 𝑒 = π‘ˆ οΏ½οΏ½ οΏ½ βˆ’ οΏ½ οΏ½ οΏ½, for
𝛿
𝛿
𝑦 ≀ 𝛿 and 𝑒 = π‘ˆ for 𝑦 β‰₯ 𝛿 where 𝛿 is the boundary layer thickness. (a) Write the continuity
equation and determine the upstream height from the plate, β„Ž, of a streamline which has a height,
𝛿, at the downstream location. Express your answer in terms of 𝛿. (b) Determine the force the
fluid exerts on the plate over the distance π‘₯. Express your answer in terms of 𝜌, π‘ˆ, 𝑏, and 𝛿. You
may assume that the pressure everywhere is atmospheric pressure.
2. An incompressible fluid flows between two porous, parallel flat plates as shown in the Figure
below. An identical fluid is injected at a constant speed V through the bottom plate and
simultaneously extracted from the upper plate at the same velocity. There is no gravity force in x
and y directions (gx=gy=0). Assume the flow to be steady, fully-developed, 2D, and the pressure
πœ•π‘
gradient in the x direction to be a constant ( = π‘π‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘). (a) Write the continuity equation and
πœ•π‘₯
show that the y velocity is constant at 𝑣 = 𝑉. (b) Simplify the x-momentum equation and find the
appropriate differential equation for the x velocity component, u. (c) To solve the differential
πœ•π‘ 1
equation, assume that the solution is 𝑒 = 𝐢1 𝑒 πœ†π‘¦ βˆ’ οΏ½ οΏ½ 𝑦 + 𝐢2 , where πœ† β‰  0. Replace and
πœ•π‘₯ πœŒπ‘‰
find λ in terms of ρ, V, and μ. (d) Apply boundary conditions and find C1 and C2.
V
y=h
y=0
3. A model scale of a glass sphere is suspended in an upward flow of water moving with a mean
velocity of 1 m/s. The density of the glass is 2360 kg/m3, water density is 1000 kg/m3, and water
viscosity is ΞΌ=0.001 kg/m-s. (a) If drag coefficient for sphere is CD β‰ˆ 0.2 for turbulent flow
(𝑅𝑒𝐷 > 5 × 105 ) and CD=0.47 for laminar flow (1 × 104 < 𝑅𝑒𝐷 < 5 × 105 ), calculate the
diameter of the model scale sphere. (b) What would be the water velocity and the drag force for 8
times larger prototype?
Fluids-ID:-----------------
Final Exam
Time: 120 minutes
Name: -----------------Course: 58:160, Fall 2013
-----------------------------------------------------------------------------------------------------------------------------------------4. The following data were obtained for flow of 20°C water (ρ=998 kg/m3, ΞΌ=0.001 kg/m-s) at 20
m3/hr through a badly corroded 5-cm-diameter pipe with slopes downward at an angle of 8°: p1 =
420 kPa, z1 = 12 m, p2 = 250 kPa, z2 = 3 m. Estimate: (a) the roughness of the pipe Ξ΅; and (b) the
percent change in head loss if the pipe were smooth and the flow rate the same.
βˆ†π‘§
(Hint: pipe length 𝐿 =
)
sin πœƒ
5. A small bug rests on the outside of a car side window as shown in the Figure below. The
surrounding air has a density of ρ=1.2 kg/m3 and viscosity of μ=1.8E-5 kg/m-s. Assume that the
flow can be approximated as flat plate flow with no pressure gradient and the start of the
boundary layer begins at the leading edge of the window. (a) Assuming that the flow is turbulent
where the bug is, determine the minimum speed at which the bug will be sheared off of the car
window if the bug can resist a shear stress of up to 1 N/m2. (b) Confirm the turbulent flow
assumption. (c) What is the total skin friction drag acting on the window at this speed?
2𝜏
0.027
0.031
(Turbulent BL: 𝑐𝑓 = πœŒπ‘ˆπ‘€2 β‰ˆ 1/7 ; 𝐢𝐷 β‰ˆ 1/7 )
𝑅𝑒π‘₯
𝑅𝑒𝐿
6. Potential flow against a flat plate (Fig. a) can be described with the stream function πœ“ = 𝐴π‘₯𝑦
where A is a constant. This type of flow is commonly called a β€œstagnation point” flow since it can
be used to describe the flow in the vicinity of the stagnation point at O. By adding a source of
strength m at O (πœ“ = π‘šπœƒ), stagnation point flow against a flat plate with a β€œbump” is obtained as
illustrated in Fig. b. Determine the bump height, h, as a function of the constant, A, and the source
strength, m.
𝐴
(Hint: πœ“ = 𝐴π‘₯𝑦 in Cylindrical Coordinates is πœ“ = 𝐴(π‘Ÿ cos πœƒ)(π‘Ÿ sin πœƒ) = π‘Ÿ 2 sin 2πœƒ)
2
Fluids-ID:-----------------
Final Exam
Time: 120 minutes
Name: -----------------Course: 58:160, Fall 2013
------------------------------------------------------------------------------------------------------------------------------------------
Fluids-ID:-----------------
Final Exam
Time: 120 minutes
Name: -----------------Course: 58:160, Fall 2013
------------------------------------------------------------------------------------------------------------------------------------------
Solution:
1.
(a) Continuity Equation:
β„Ž
𝛿
(3)
οΏ½ π‘ˆ 𝑏 𝑑𝑦 = οΏ½ 𝑒(𝑦) 𝑏 𝑑𝑦
0
0
𝛿
𝑦 2
2𝑦
π‘β„Žπ‘ˆ = οΏ½ π‘π‘ˆ οΏ½οΏ½ οΏ½ βˆ’ οΏ½ οΏ½ οΏ½ 𝑑𝑦
𝛿
𝛿
0
= π‘π‘ˆ οΏ½
𝛿
2𝛿
𝑦2 𝑦3
βˆ’ 2 οΏ½ = π‘π‘ˆ οΏ½ οΏ½
𝛿 3𝛿 0
3
(1.5)
(0.5)
2
2
π‘β„Žπ‘ˆ = π‘π‘ˆπ›Ώ β‡’ β„Ž = 𝛿 (0.5)
3
3
(b) Linear Momentum Equation in x Direction:
οΏ½ 𝐹π‘₯ = βˆ’ οΏ½ 𝑒(𝑦)𝜌[𝑒(𝑦)] 𝑏 𝑑𝑦 + οΏ½ 𝑒(𝑦)𝜌[𝑒(𝑦)] 𝑏 𝑑𝑦 (2)
1
β„Ž
𝛿
2
βˆ’πΉ = βˆ’ οΏ½ πœŒπ‘ˆ 2 𝑏 𝑑𝑦 + οΏ½ πœŒπ‘’2 (𝑦) 𝑏 𝑑𝑦
0
0
𝛿
βˆ’πΉ = βˆ’πœŒπ‘ˆ 2 π‘β„Ž + πœŒπ‘ οΏ½ 𝑒2 (𝑦)𝑑𝑦
𝛿
𝛿
2
= βˆ’πœŒπ‘ˆ2 π‘β„Ž + πœŒπ‘π‘ˆ 2 οΏ½ οΏ½
0
0
(1)
(0.5)
2
2𝑦 𝑦 2
(0.5)
βˆ’ 2 οΏ½ 𝑑𝑦
𝛿
𝛿
𝛿
𝛿
4𝑦 2 𝑦 4 4𝑦 3
4𝑦 3 𝑦 5 𝑦 4
4
1
8
2𝑦 𝑦 2
𝛿
οΏ½ οΏ½ βˆ’ 2 οΏ½ 𝑑𝑦 = οΏ½ οΏ½ 2 + 4 βˆ’ 3 οΏ½ 𝑑𝑦 = οΏ½ 2 + 4 βˆ’ 3 οΏ½ = 𝛿 + 𝛿 βˆ’ 𝛿 =
𝛿
𝛿
𝛿
𝛿
3𝛿
5𝛿
𝛿 0 3
5
15
𝛿
0
0
βˆ’πΉ = βˆ’πœŒπ‘ˆ 2 π‘β„Ž + πœŒπ‘π‘ˆ 2 οΏ½
8
𝛿�
15
2
8
= βˆ’πœŒπ‘ˆ 2 𝑏 οΏ½ 𝛿� + πœŒπ‘π‘ˆ 2 οΏ½ 𝛿�
3
15
∴ 𝐹=
2
πœŒπ‘ˆ 2 𝑏𝛿
15
(0.5)
Fluids-ID:-----------------
Final Exam
Time: 120 minutes
Name: -----------------Course: 58:160, Fall 2013
-----------------------------------------------------------------------------------------------------------------------------------------2.
Assumptions:
πœ•
1) Steady flow ( = 0)
πœ•π‘‘
2) Incompressible flow (ρ=constant)
πœ•π‘’
3) Fully developed ( = 0)
4) 2D flow (𝑀 = 0,
πœ•π‘₯
πœ•
πœ•π‘§
= 0)
πœ•π‘
5) Constant pressure gradient ( = π‘π‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘)
πœ•π‘₯
6) gx=gy=0
(a)
Continuity:
πœ•π‘’ πœ•π‘£ πœ•π‘€
+
+
=0
πœ•π‘₯ πœ•π‘¦ πœ•π‘§
πœ•π‘£
πœ•π‘¦
(b)
0(3) +
πœ•π‘£
πœ•π‘¦
(1.5)
+ 0(4) = 0
= 0 β‡’ 𝑣 = π‘π‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘
(0.5)
(0.5)
𝑣 = 𝑉 π‘Žπ‘‘ 𝑦 = 0 π‘Žπ‘›π‘‘ 𝑦 = β„Ž β‡’ 𝑣 = 𝑉 π‘’π‘£π‘’π‘Ÿπ‘¦π‘€β„Žπ‘’π‘Ÿπ‘’ (0.5)
x-momentum:
πœ•π‘’
πœ•π‘’
πœ•π‘’
πœ•π‘
πœ•2𝑒 πœ•2𝑒 πœ•2𝑒
πœ•π‘’
+𝑣
+ 𝑀 οΏ½ = πœŒπ‘”π‘₯ βˆ’
+ πœ‡ οΏ½ 2 + 2 + 2οΏ½
𝜌� +𝑒
πœ•π‘₯
πœ•π‘¦
πœ•π‘§
πœ•π‘₯
πœ•π‘₯
πœ•π‘¦
πœ•π‘§
πœ•π‘‘
𝜌 οΏ½0(1) + 0(3) + 𝑉
(c)
πœ•π‘’
πœ•π‘¦
+ 0(4)οΏ½ = 0(6) βˆ’
πœŒπ‘‰
πœ•π‘
πœ•π‘₯
+ πœ‡ οΏ½0(3) +
πœ•π‘
πœ•2𝑒
πœ•π‘’
=βˆ’
+πœ‡ 2
πœ•π‘₯
πœ•π‘¦
πœ•π‘¦
(0.5)
πœ•π‘ 1
𝑒 = 𝐢1 𝑒 πœ†π‘¦ βˆ’ οΏ½ οΏ½
𝑦 + 𝐢2
πœ•π‘₯ πœŒπ‘‰
πœ•π‘’
πœ•π‘¦
πœ•π‘ 1
πœ•π‘₯ πœŒπ‘‰
= 𝐢1 πœ†π‘’ πœ†π‘¦ βˆ’ οΏ½ οΏ½
πœ•2𝑒
= 𝐢1 πœ†2 𝑒 πœ†π‘¦
πœ•π‘¦ 2
(0.5)
πœ•2 𝑒
πœ•π‘¦ 2
+ 0(4)οΏ½
(2)
(0.5)
Fluids-ID:-----------------
Final Exam
Time: 120 minutes
Name: -----------------Course: 58:160, Fall 2013
-----------------------------------------------------------------------------------------------------------------------------------------Replace in the differential equation:
πœ•π‘
πœ•π‘ 1
πœŒπ‘‰ �𝐢1 πœ†π‘’ πœ†π‘¦ βˆ’ οΏ½ οΏ½ οΏ½ = βˆ’
+ πœ‡οΏ½πΆ1 πœ†2 𝑒 πœ†π‘¦ οΏ½
πœ•π‘₯
πœ•π‘₯ πœŒπ‘‰
β‡’ πœ†=
Therefore:
(d)
πœŒπ‘‰
πœ‡
(0.5)
πœŒπ‘‰
πœ•π‘ 1
𝑦
𝑒 = 𝐢1 𝑒 πœ‡ βˆ’ οΏ½ οΏ½
𝑦 + 𝐢2
πœ•π‘₯ πœŒπ‘‰
Boundary conditions:
𝑒 = 0 π‘Žπ‘‘ 𝑦 = 0 π‘Žπ‘›π‘‘ 𝑦 = β„Ž (1.5)
𝑦 = 0: 0 = 𝐢1 + 𝐢2 β‡’ 𝐢2 = βˆ’πΆ1
𝑦 = β„Ž: 0 = 𝐢1 𝑒
πœŒπ‘‰β„Ž
πœ‡
πœ•π‘ β„Ž
πœ•π‘₯ πœŒπ‘‰
βˆ’οΏ½ οΏ½
𝐢1 οΏ½1 βˆ’ 𝑒
β‡’ 𝐢1 = βˆ’
πœŒπ‘‰β„Ž
πœ‡ οΏ½
+ 𝐢2 = 𝐢1 𝑒
Replace find C1 and C2 to find the final solution:
πœ•π‘ β„Ž
πœ•π‘₯ πœŒπ‘‰
βˆ’οΏ½ οΏ½
βˆ’ 𝐢1
πœ•π‘ β„Ž
= βˆ’οΏ½ οΏ½
πœ•π‘₯ πœŒπ‘‰
πœ•π‘ β„Ž
οΏ½ οΏ½ πœŒπ‘‰
πœ•π‘₯
1βˆ’
πœŒπ‘‰β„Ž
πœ‡
(0.5)
πœŒπ‘‰β„Ž
𝑒 πœ‡
, 𝐢2 =
πœŒπ‘‰π‘¦
οΏ½
πœ•π‘ β„Ž
οΏ½
πœ•π‘₯ πœŒπ‘‰
1βˆ’
πœŒπ‘‰β„Ž
𝑒 πœ‡
β„Ž πœ•π‘ 1 βˆ’ 𝑒 πœ‡
𝑦
𝑒=
οΏ½ οΏ½οΏ½
βˆ’ οΏ½
πœŒπ‘‰β„Ž
πœŒπ‘‰ πœ•π‘₯
β„Ž
1βˆ’π‘’ πœ‡
(0.5)
(0.5)
Fluids-ID:-----------------
Final Exam
Time: 120 minutes
Name: -----------------Course: 58:160, Fall 2013
-----------------------------------------------------------------------------------------------------------------------------------------3.
(a)
B FD
π‘Š = πœŒπ‘”π‘™π‘Žπ‘ π‘  𝑔𝑉
(0.5)
𝐡 = πœŒπ‘€π‘Žπ‘‘π‘’π‘Ÿ 𝑔𝑉
1
𝐹𝐷 = 𝐢𝐷 πœŒπ‘€π‘Žπ‘‘π‘’π‘Ÿ π΄π‘ˆ 2 (0.5)
2
W
𝑉=
π‘Š = 𝐡 + 𝐹𝐷 β‡’ πœŒπ‘”π‘™π‘Žπ‘ π‘  𝑔
πœ‹π· 3
,
6
πœ‹π·3
6
οΏ½πœŒπ‘”π‘™π‘Žπ‘ π‘  βˆ’ πœŒπ‘€π‘Žπ‘‘π‘’π‘Ÿ �𝑔
𝐷=
Assume turbulent:
𝐷=
𝑅𝑒𝐷 =
(0.5)
𝐴=
πœ‹π· 2
4
= πœŒπ‘€π‘Žπ‘‘π‘’π‘Ÿ 𝑔
πœ‹π·3
6
1
2
+ 𝐢𝐷 πœŒπ‘€π‘Žπ‘‘π‘’π‘Ÿ
πœ‹π· 3
1
πœ‹π· 2 2
= 𝐢𝐷 πœŒπ‘€π‘Žπ‘‘π‘’π‘Ÿ
π‘ˆ
6
4
2
πœ‹π·2 2
π‘ˆ
4
(2)
3𝐢𝐷 πœŒπ‘€π‘Žπ‘‘π‘’π‘Ÿ π‘ˆ 2
4οΏ½πœŒπ‘”π‘™π‘Žπ‘ π‘  βˆ’ πœŒπ‘€π‘Žπ‘‘π‘’π‘Ÿ �𝑔
3(0.2)(1000)(1)2
= 0.0112 π‘š
4(2360 βˆ’ 1000)(9.81)
π‘ˆπ· (1)(0.0112)
=
= 11,200 = 1.12 × 104 < 5 × 105 β‡’ π‘‡π‘’π‘Ÿπ‘π‘’π‘™π‘’π‘›π‘‘ π‘Žπ‘ π‘ π‘’π‘šπ‘π‘‘π‘–π‘œπ‘› π‘›π‘œπ‘‘ π‘£π‘Žπ‘™π‘–π‘‘ (0.5)
(1𝐸 βˆ’ 6)
𝜈
Assume laminar:
(0.5)
𝐷=
(0.5)
𝑅𝑒𝐷 =
(b)
(1)
3(0.47)(1000)(1)2
= 0.0264 π‘š
4(2360 βˆ’ 1000)(9.81)
π‘ˆπ· (1)(0.0264)
=
= 264,000 = 2.64 × 105
(1𝐸 βˆ’ 6)
𝜈
𝐷𝑝
𝑅𝑒𝑝 = π‘…π‘’π‘š β‡’
π·π‘š
𝑢𝑲, π‘³π’‚π’Žπ’Šπ’π’‚π’“ (0.5)
π‘ˆπ‘ 𝐷𝑝 π‘ˆπ‘š π·π‘š
1
π·π‘š
=
β‡’ π‘ˆπ‘ = π‘ˆπ‘š
= (1.0) οΏ½ οΏ½ = 0.125 π‘š/𝑠 (0.5)
𝜈
𝜈
𝐷𝑝
8.0
(1) 𝐢 = 𝐢
𝐷𝑝
π·π‘š β‡’
𝐹𝐷 𝑝
= 8.0
(0.5)
𝐹𝐷 𝑝
1
𝜌𝐴 π‘ˆ 2
2 𝑝 𝑝
=
𝐹𝐷 π‘š
1
𝜌𝐴 π‘ˆ 2
2 π‘š π‘š
𝐷𝑝 2 π‘ˆπ‘ 2
𝐴𝑝 π‘ˆπ‘ 2
1 2
2
= 𝐹𝐷 π‘š
οΏ½ οΏ½ = 𝐹𝐷 π‘š οΏ½ οΏ½ οΏ½ οΏ½ = 𝐹𝐷 π‘š (8.0) οΏ½ οΏ½ = 𝐹𝐷 π‘š
π΄π‘š π‘ˆπ‘š
π·π‘š
π‘ˆπ‘š
8.0
(1)
πœ‹(0.0264)2
1
πœ‹π·π‘š 2
(1.0)2 = 0.13 𝑁 (0.5)
= 𝐢𝐷 πœŒπ‘€π‘Žπ‘‘π‘’π‘Ÿ
π‘ˆπ‘š 2 = (0.47)(0.5)(1000)
4
4
2
Fluids-ID:-----------------
Final Exam
Time: 120 minutes
Name: -----------------Course: 58:160, Fall 2013
-----------------------------------------------------------------------------------------------------------------------------------------4.
(a)
The flow rate:
(0.5)
20
𝑄 = 20 π‘š3 /β„Ž =
π‘š3 /𝑠 = 0.00556 π‘š3 /𝑠
3600
The average velocity:
(0.0056)
𝑄
𝑄
(0.5)
=πœ‹
= 2.83 π‘š/𝑠
𝑉= =πœ‹
𝐴
(0.05)2
𝑑2
4
4
The pipe length:
βˆ†π‘§
12 βˆ’ 3
(0.5)
𝐿=
=
= 64.7 π‘š
sin πœƒ
sin 8°
The steady flow energy equation:
οΏ½
𝑝
𝑉2
𝑝
𝑉2
+
+ 𝑧� = οΏ½ +
+ 𝑧� + β„Žπ‘“ (2)
πœŒπ‘” 2𝑔
πœŒπ‘” 2𝑔
1
2
𝑝
𝑝
(0.5)
𝑉1 = 𝑉2 β‡’ οΏ½ + 𝑧� = οΏ½ + 𝑧� + β„Žπ‘“
πœŒπ‘”
πœŒπ‘”
1
2
(420,000)
(250,000)
+ 12 =
+ 3 + β„Žπ‘“ (0.5)
(998)(9.81)
(998)(9.81)
(1)
β„Žπ‘“ = 𝑓
β„Žπ‘“ = 26.36 π‘š
(64.7) (2.83)2
𝐿 𝑉2
= 26.36 = 𝑓
β‡’ 𝑓 = 0.05 (0.5)
(0.05) 2(9.81)
𝑑 2𝑔
(0.5)
πœŒπ‘‰π‘‘ (998)(2.83)(0.05)
=
= 141,217 β‰ˆ 1.4 × 105
𝑅𝑒𝑑 =
(0.001)
πœ‡
From Moody chart, read: (1)
πœ€
β‰ˆ 0.021
𝑑
πœ€ = (0.021)(0.05) = 0.00105 π‘š = 1.05 π‘šπ‘š (0.5)
(b)
From Moody chart at the same 𝑅𝑒𝑑 = 1.4 × 105 the friction factor smooth pipe reads:
π‘“π‘ π‘šπ‘œπ‘œπ‘‘β„Ž = 0.017
Percent change is:
(1)
(0.5)
(64.7) (2.83)2
𝐿 𝑉2
= (0.017)
= 8.98 π‘š
οΏ½β„Žπ‘“ οΏ½π‘ π‘šπ‘œπ‘œπ‘‘β„Ž = 𝑓
(0.05) 2(9.81)
𝑑 2𝑔
(26.36) βˆ’ (8.98)
× 100 β‰ˆ 66% (0.5)
(26.36)
Fluids-ID:-----------------
Final Exam
Time: 120 minutes
Name: -----------------Course: 58:160, Fall 2013
-----------------------------------------------------------------------------------------------------------------------------------------5.
(a)
π‘ˆ2
(0.5)
𝑐
πœπ‘€ = 𝜌
2 𝑓
𝑐𝑓 β‰ˆ
πœπ‘€ = 𝜌
=𝜌
=
Re-arrange to find U:
(1)
(c)
𝑅𝑒π‘₯ =
(0.5)
1/7
𝑅𝑒π‘₯
π‘ˆ 2 0.027 (1)
2 𝑅𝑒 1/7
π‘₯
(1)
π‘ˆ 2 0.027
1/7
2 πœŒπ‘ˆπ‘₯
οΏ½
οΏ½
πœ‡
0.0135πœ‡ 1/7 𝜌6/7 π‘ˆ13/7
π‘₯ 1/7
πœπ‘€ π‘₯ 1/7
π‘ˆ=οΏ½
οΏ½
0.0135πœ‡ 1/7 𝜌6/7
(1.0)(0.4)1/7
=οΏ½
οΏ½
0.0135 (1.8𝐸 βˆ’ 5)1/7 (1.2)6/7
(b)
(1)
0.027
7/13
7/13
= 20.16 π‘š/𝑠
(0.5)
πœŒπ‘ˆπ‘₯ (1.2)(20.16)(0.4)
=
= 537,600 > 5 × 105 𝑂𝐾, π‘‘π‘’π‘Ÿπ‘π‘’π‘™π‘’π‘›π‘‘
(1.8𝐸 βˆ’ 5)
πœ‡
𝐢𝐷 β‰ˆ
0.031
1/7
𝑅𝑒𝐿
(1)
(1)
πœŒπ‘ˆπΏ (1.2)(20.16)(1.0)
𝑅𝑒𝐿 =
=
= 1,344,000
(1.8𝐸 βˆ’ 5)
πœ‡
𝐢𝐷 =
0.031
= 0.00413
(1344000)1/7
1
𝐷 = 𝐢𝐷 πœŒπ‘ˆ 2 𝑏𝐿 (1)
2
= (0.00413)(0.5)(1.2)(20.16)2 (0.7)(1.0) = 0.7 𝑁 (0.5)
(1)
Fluids-ID:-----------------
Final Exam
Time: 120 minutes
Name: -----------------Course: 58:160, Fall 2013
-----------------------------------------------------------------------------------------------------------------------------------------6.
𝐴
πœ“ = π‘Ÿ 2 sin 2πœƒ + π‘šπœƒ (2.5)
2
π‘£πœƒ = βˆ’
π‘£π‘Ÿ =
πœ•πœ“
= βˆ’π΄π‘Ÿ sin 2πœƒ (1)
πœ•π‘Ÿ
1 πœ•πœ“
π‘š
= π΄π‘Ÿ cos 2πœƒ + (1)
π‘Ÿ πœ•πœƒ
π‘Ÿ
For the bump, the stagnation point occurs at:
π‘Ÿ = β„Ž,
πœƒ=
πœ‹
2
(1)
(1) (𝑣 )
πœƒ π‘ π‘‘π‘Žπ‘” = βˆ’π΄β„Ž sin πœ‹ = βˆ’π΄β„Ž (0) = 0 (1)
(1) (π‘£π‘Ÿ )π‘ π‘‘π‘Žπ‘” = π΄β„Ž cos πœ‹ +
π΄β„Ž =
π‘š
π‘š
= π΄β„Ž (βˆ’1) + = 0 (1)
β„Ž
β„Ž
π‘š
π‘š
β‡’ β„Ž=οΏ½
β„Ž
𝐴
(0.5)