Boolean Algebra (Binary Logic) Theorem A+0=A A+1=1 A+A=A A + A’ = 1 A*0=0 A*1=A A*A=A A * A’ = 0 A+B=B+A (A + B) + C = A + (B + C) AB + AC = A(B + C) A*B=B*A (A * B) * C = A * (B * C) (A + B)*(A B) (A + C) = A + BC Boolean Algebra (Binary Logic) A’B’ + A’B + AB = A’ + B = Z A’ B’ => A’ B Z A’ B Z A B A+0=A A+1=1 A+A=A A + A’ = 1 A*0=0 A*1=A A*A=A A * A’ = 0 A+B=B+A (A + B) + C = A + (B + C) AB + AC = A(B + C) A*B=B*A (A * B) * C = A * (B * C) (A + B)*(A + C) = A + BC Boolean Algebra (Binary Logic) More Theorem (DeMorgan) (A + B)’ = A’ * B’ Boolean Algebra (Binary Logic) More Theorem (DeMorgan) (A + B)’ = A’ * B’ (A * B)’ = A’ + B’ Boolean Algebra (Binary Logic) More Theorem (DeMorgan) (A + B)’ = A’ * B’ (A * B)’ = A’ + B’ A B A B AB + AC A C AB + AC A C Boolean Algebra (Binary Logic) More Theorem (DeMorgan) (A + B)’ = A’ * B’ (A * B)’ = A’ + B’ Why NAND and NOR gates? Why NAND and NOR gates? A B A B AB + AC A C AB + AC A C Boolean Algebra (Binary Logic) More Function (Exclusive‐OR) Z = AB’ + A’B Boolean Algebra (Binary Logic) More Function (Exclusive‐OR) Z = AB’ + A’B Z=A A B B Z Boolean Algebra (Binary Logic) More Function (Exclusive‐OR) Z = AB’ + A’B Z=A A B A B’ Z A’ B B Z Boolean Algebra (Binary Logic) Parity circuits: even/odd Z ASCII Table (7-bit) (ASCII = American Standard Code for Information Interchange) Decimal ------- Octal ----- Hex --- Binary ------ Value (Keyboard) ----- ASCII Table (7-bit) (ASCII = American Standard Code for Information Interchange) Decimal ------- Octal ----- Hex --- Binary ------ Choi = $43 $68 $6F $69 Value (Keyboard) ----- ASCII Table (7-bit) (ASCII = American Standard Code for Information Interchange) Decimal ------- Octal ----- Hex --- Binary ------ Choi = $43 $68 $6F $69 0100 0011 => ‘C’ C = $43 0100 0011 => MSB odd parity Value (Keyboard) ----- ASCII Table (7-bit) (ASCII = American Standard Code for Information Interchange) Decimal ------- Octal ----- Hex --- Binary ------ Choi = $43 $68 $6F $69 0100 0011 => ‘C’ C = $43 0100 0011 => MSB odd parity 1100 0011 => MSB even parity Value (Keyboard) ----- ASCII Table (7-bit) (ASCII = American Standard Code for Information Interchange) Decimal ------- Octal ----- Hex --- Binary ------ Value (Keyboard) ----- Choi = $43 $68 $6F $69 0100 0011 => ‘C’ C = $43 0100 0011 => MSB odd parity 1100 0011 => MSB even parity 0110 1111 => ‘o’ o = $6F 1110 1111 => MSB odd parity 0110 1111 => MSB even parity 100 0011 => ‘C’ = $43 0100 0011 => MSB odd parity 1100 0011 => MSB even parity 110 1111 => ‘o’ = $6F 1110 1111 => MSB odd parity 0110 1111 => MSB even parity P it Circuit Parity Ci it D7 D6 D5 D4 D3 D2 D1 D0 = P 0100 0011 => ‘C’ = $43 0100 0011 => MSB odd parity 1100 0011 => MSB even parity D6 D5 D4 D3 D2 D1 D0 =P 1 0 0 0 0 1 1 =P Even Parity 1 1 0 0 0 0 1 1 D7 D6 D5 D4 D3 D2 D1 D0 Z=A B
© Copyright 2025 Paperzz