15 hours of studying could earn you 15% or more on your next test, so GET OUT 2008 AP EXAM D 2. B 3. C 4. B 5. E 6. A 7. E 8. E 9. D 10. D 1. 11.A 12.E 13.B 14.C 15.D 16.E 17.D 18.B 19.C 20.A 21.B 22.C 23.A 24.D 25.D 26.A 27.A 28.E 76.A 77.C 78.B 79.A 80.B 81.D 82.E 83.B 84.A 85.C 86.C 87.D 88.C 89.B 90.D 91.E 92.D Let’s Talk about Score Composite AP Grade 75-108 5 58-74 4 40-57 3 25-39 2 0-24 1 Multiple choice Sub-score Estimated AP Grade (ISH) 32-45 5 24-31 4 16-23 3 10-15 2 0-9 1 Let’s Talk about Score Composite AP Grade 75-108 5 58-74 4 40-57 3 Multiple choice Sub-score Estimated AP Grade 25-39 2 32-45 5 0-24 1 24-31 4 16-23 3 Our break down 10-15 2 11 and up 5 0-9 1 8-10 4 6-8 3 3-5 2 0-2 1 Estimated AP Grade SWBAT: apply an integral 5.1 Types of Approximations p.22 Riemann sums (3 types) Trapezoidal Riemann Sums Rectangular approximations LRAM “Left side” MRAM “Midpoint” RRAM “Right side” Put in 5.1 (but from 5.9) Trapezoidal Approximation (TrAM*) 1 𝐴 = 𝑏2 + 𝑏1 ℎ 2 5.2 Definite Integrals 𝒃 𝒏 lim 𝒏→∞ p.23 𝒇 𝒙𝒊 ∆𝒙 = 𝒊=𝟏 𝒃−𝒂 ∆𝒙 = 𝒏 𝒇 𝒙 𝒅𝒙 𝒂 𝒙𝒊 = 𝒂 + ∆𝒙𝒊 Integrals Definite integrals 6x 3 Indefinite integrals 9 x dx 2 4 dx 0 “definitely” know its interval. yields area under a curve No interval yields a function. Has a +c 5.3 Power rule for integrals p.24 Power Rule for integrals( xn for n ≠ –1) n1 x x dx c n1 n Basic Integral rules Trig. Integrals 5.3 FTOC 2 p. 25 ”Fundamental Theorem of Calculus Part 2” b f ( x )dx F (b) F (a) a Add F(a) to both sides. b F (a ) f ( x )dx F (b ) a (sometimes this seems tricky!) b Rate A(b) A(a) a OR, in terms of motion: b Velocity Position ( b ) Position ( a ) a Think integral is: “net change” Mapping Motion Copy this Diagram: Displacement: “how much the position changed” 𝑏 𝑣(𝑡) 𝑑𝑡 𝑎 Distance traveled: 𝒃 𝒗(𝒕) 𝒅𝒕 𝒂 This requires a few more steps. p. 26 5.4 FTOC1 General form: g x f t dt x a (this is viewed as an accumulator.) Note that g depends only on x (not t!) “Area So Far” FTOC 1, with derivative d u f ( t ) dt f ( u ) u ' f ( v ) v ' dx v Note: If v is a constant, then v’ is 0 ) How FTOC 1 fits in 𝑔 𝑥 = 𝑥 𝑓(𝑡) 𝑑𝑡 𝑎 𝑔′ 𝑥 = 𝑓 𝑥 𝑔′′ 𝑥 = 𝑓′ 𝑥 5.5 U-Substitution When integrating, ask yourself 3 ?’s: 1. Does it fit a formula? 2. Can it be simplified? 3. Can you use U-Sub? p. 27 5.5 U-Substitution Let u 1 x du 2x dx or , du 2 xdx 2 x 1 x dx 2 Substituing in : 1 2 udu u du 3 2 3 2 2 2 2 u C (1 x ) C 3 3 2 U-Sub. With Definite Integrals 4 0 2 x 1dx : Solution ASGN Work on ch. 5 at a glance ASGN 2002 1,2,5, 2002 3,4,6 Ch. 4 At a glance answers y' x 2 4x x2 x 2 x2 2 none ,0 4, 0,2 2,4 0, 2 4,6 x 2 2x 4 x 2 4 x 2 x 2 y '' 4 x 2 2 2, ,2
© Copyright 2026 Paperzz