A spectroscopic study of the linear-bent electronic transitions of jet-cooled HBCl and BCl2 And The electronic spectra of jet-cooled BC Ramya Nagarajan, Jie Yang and Dennis J. Clouthier Why study? BCl2 & HBCl * Reactive intermediates: CVD (BCl3(NH3/H2)) and plasma etching (BCl3/Ar ) processess * Spectroscopically interesting: Linear-Bent systems & RennerTeller effect BC * Boron carbide (B4C): extremely hard, chemically inert, high neutron absorbing cross section * Used in bulletproof vests, nuclear reactor control rods, abrasive for cutting * High resolution gas phase study of B-X and C-X transitions in BC Pulsed Discharge Source BCl3/H2/Ar BCl2, HBCl BC B(CH3)3/Ar Pulsed valve Ring electrodes Experimental Setup Pumping Laser Tunable Dye laser Monochromator PMT PMT Computer Oscilloscope + Gated integrators Synchronous-scan LIF Technique Pump Laser PMT Tunable Dye laser cm-1 Laser: 24000 23000 22000 21000 20000 19000 18000 17000 16000 15000 Offset: 450 cm-1 Background BCl2 * Matrix isolation studies: IR spectra showing activity in sym stretch ν1 and asym stretch ν3 Hassanzadeh and Andrews, J. Phys. Chem. 97, 4910 (1993) * VUV photoexcitation spectroscopy of BCl3: Emissions from BCl2 in 400-650nm and 200-500nm region Jochims et al, J. Phys. B: At. Mol. Opt. Phys. 32. 2569 (1999) HBCl * Gas phase emission spectra recorded Clouthier et al, J. Am. Chem. Soc. 127, 10814 (2005) Walsh diagram BCl2: 17 valence electrons HBCl: 11 valence electrons b2 a' a1 σu σ σg πu π a" b1 b2 a2 b2 a' a' a1 πg a1 b1 a1 πu σu σg a1 b2 σg σu <XBX GS: (a2)2 (b2)2 (a1)1 (b2)0 : 2A1 ES: (a2)2 (b2)2 (a1)0 (b2)1 : 2B1 π a" a' a' σ σ σ a' <HBX GS: (a”)2 (a’)2 (a’)1 (a”)0 : 2A’ ES: (a”)2 (a’)2 (a’)0 (a”)1 : 2A” Renner-Teller effect in Linear-Bent systems K=l+ v2 0 2 3 S D G 4 G 2 0 D S P 1 2 3 F F 1 P 2Π 0 2A 1 1 0 0 180 160 140 120 100 <XBX/HBX 2 1 S D D S P P HBCl LIF spectrum A~2A"П←X~2A′ system 14000 14500 15000 15500 -1 WAVENUMBER (cm ) 16000 16500 Emission spectra: HBCl 00 31 21 02 H11B35Cl ν2 : HBCl bend ν3 : BCl stretch F(J,Ka) = (A-B)Ka2 + BJ(J+1) Σ Ka' = 1 DKa = ±1 Π 00 21 31 H10B35Cl Ka" = 2 Ka" = 0 0 500 1000 1500 2000 -1 WAVENUMBER (cm ) 2500 Sync-scan LIF: HBCl Σ Π Σ Π Σ Π Σ Π H11B35Cl H10B35Cl 13000 14000 15000 16000 17000 18000 -1 WAVENUMBER (cm ) 19000 20000 BCl2 LIF spectrum ~2A system A~2B1П ← X 1 16000 18000 20000 -1 WAVENUMBER (cm ) 22000 BCl2 LIF spectrum ~2A system A~2B1П ← X 1 16000 18000 20000 -1 WAVENUMBER (cm ) 22000 Sync-scan LIF: BCl2 Total LIF 11BCl 2 10BCl 2 19000 19500 20000 20500 21000 -1 WAVENUMBER (cm ) 21500 22000 Emission spectra: BCl2 ν1: sym stretch ν2 : bend 10 11 35 B Cl2 35 B Cl2 11 12 21 21 22 11 22 23 22 1123 12 23 0 500 1000 11 12 22 13 11 21 1500 2000 2500 0 11B37Cl37Cl 25 26 10B35Cl35Cl 27 24 500 1000 1500 -1 WAVENUMBER (cm ) WAVENUMBER (cm ) 11B35Cl37Cl 1122 23 -1 11B35Cl35Cl 1121 10B35Cl37Cl 2000 10B37Cl37Cl ω10 700.17(24) 695.87(24) 692.31(37) 723.28(41) 719.56(42) 716.57(29) ω20 282.81(11) 278.81(8) 276.74(17) 285.13(16) 281.84(16) 278.46(13) x110 -3.28(6) -3.17(8) -2.87(13) -3.58(11) -3.46(12) -3.15(11) x220 0.25(2) 0.26(1) 0.34(3) 0.28(2) 0.28(2) 0.41(3) x120 -1.55(4) -1.45(4) -1.30(9) -1.59(6) -1.54(7) -1.38(6) Boron Carbide Fourier Transform emission study of B-X transition of BC Bernath et al, J. Chem. Phys. 93, 8482 (1990) Matrix isolation studies of B-X and C-X transitions Maier et al, J. Phys. Chem A. 102, 9107 (1998) LIF study of B-X system of BC (MF10) Cheung et al, Chem. Phys. Lett. 16, 509 (2011) GS: 3σ24σ25σ11π2 : X4Σ– ES: 3σ24σ15σ21π2 : B4Σ– 3σ24σ25σ01π22π1 + 3σ24σ15σ11π22π1 : C4Π B4Σ–← X4Σ– 17900 cm-1 C4Π ← X4Σ– 34000 cm-1 Sync-scan LIF: 4 4 B Σ ←X Σ system 11 10 BC+ BC 11 0-0 BC 1-1 2-2 3-3 10 17800 18000 18200 -1 WAVENUMBER (cm ) BC 18400 B4Σ-(b)←X4Σ-(b) : Sync-scan LIF R(N) P(N) 11 9 7 5 3 1 0 2 4 6 8 10 Experimental ** ** Simulated * Feature due to 10BC 17880 17895 17910 -1 WAVENUMBER (cm ) 17925 17940 Spin -splitting 44 17920 55 17922 66 17924 -1 WAVENUMBER (cm ) 17926 R1(N)+R4(N) R2(N)+R3(N) Molecular parameters Molecular Constants B0 λ0 r0 X4Σ– 11 BC 1.31119(22) 0.0282a B4Σ– 10 BC 1.37957(38) 1.4963(2) T0 (11BC) = 17904.8966(26) T0 (10BC) = 17906.2710(41) a Bernath et al, J. Chem. Phys. 93, 8482 (1990) 11 BC 1.36811(21) -0.0050(11) 10 BC 1.44023(57) 1.4647(3) Molecular parameters Molecular Constants B0 λ0 X4Σ– 11 BC 1.31119(22) 0.0282a B4Σ– 10 11 BC 1.37957(38) BC 1.36811(21) -0.0050(11) 1.4963(2) r0 T0 (10BC) = 17906.2710(41) a Bernath et al, J. Chem. Phys. 93, 8482 (1990) 1π 1π X4Σ– BC 1.44023(57) 1.4647(3) T0 (11BC) = 17904.8966(26) 5σ 5σ 4σ* 4σ* 3σ 3σ B4Σ– 10 LIF spectrum: 4 4 C П←X Σ system 0-0 0-2 0-3 0-1 0-4 0-5 1-0 0-0 1-3 1-4 1-5 1-1 1-6 1-2 0 1-0 33500 34000 2000 4000 6000 -1 WAVENUMBER (cm ) 34500 35000 35500 36000 -1 WAVENUMBER (cm ) 36500 8000 37000 4 4 C П(b)←X Σ (b): Total LIF spectrum Experimental Simulated 34300 34310 34320 34330 34340 34350 34360 34370 -1 WAVENUMBER (cm ) THANK YOU!
© Copyright 2026 Paperzz