Optimization of Sensor Response Functions for Colorimetry of Reflective and Emissive Objects Mark Wolski*, Charles A. Bouman, Jan P. Allebach Purdue University, School of Electrical and Computer Engineering, West Lafayette, IN 47907 Eric Walowit Color Savvy Systems Inc., Springboro, OH 45066 *now with General Motors Research and Development Center, Warren, MI 48090-9055. Purdue University Overall Goal Design components (color filters) for an inexpensive device to perform colorimetric measurements from surfaces of different types Purdue University Device Operation Highlights Output: XYZ tristimulus values 3 modes of operation Emissive Reflective/EE EE n Reflective/D65 D65 n Purdue University n Computation of Tristimulus Values Stimulus Vector – n n 31 samples taken at 10 nm intervals 400 l ne Emissive Mode Reflective Mode n diag[i EE/D65 ] r Purdue University 700 Tristimulus Vector Tristimulus vector t m [Xm ,Ym , Zm ]T A mn˜ , m = EM, EE, D65 Color matching matrix – Am (3x31) Effective stimulus m = EM e, n˜ r, m = EE or D65 Purdue University Color Matching Matrix z 1.8 1.6 x y T T z T A EM 3x31 matrix of color matching functions 1.4 1.2 x y 1.0 0.8 0.6 0.4 0.2 0 400 450 500 550 l 600 A EE A EMdiag[i EE ] A D65 A EMdiag[i65 ] Purdue University 650 700 Device Architecture Detectors LED’s LED’s Filters Purdue University Computational Model X Z Y matrix multiply d ... d d ... d ... d ... d ... f1 f2 ... f2 ... f 4 ... f4 l5 l1 f1 l1 ... r Tm r ... r ... l5 r l1 ... l5 r Purdue University r Estimate of Tristimulus Vector Estimate ˆt TmF mn, m = EM, EE, D65 Channel matrix emissive mode F EM diag[f 1 ]d diag[f 4 ]d T reflective modes F EE/D65 diag[l1 ]diag[f 1 ]d diag[l1 ]diag[f 2 ]d diag[l1 ]diag[f 4 ]d diag[l5 ]diag[f 1 ]d diag[l5 ]diag[f 2 ]d diag[l5 ]diag[f 4 ]d , T Purdue University Error Metric Tristimulus error t t ˆt (A m T mF m )˜n CIE uniform color space 1/3 L * 116(Y / Y ) 16 w u a * 500[(X / Xw )1/3 (Y / Yw )1/3 ] b * 200[(Y / Y )1/3 (Z / Z )1/3 ] w w Purdue University Error Metric (cont.) Linearize about nominal tristimulus value t = t0 u0 J0 t 0 116 0 J 0 13 500 500 0 200 0 Xw-1/3 X0-2/3 0 0 0 Y w-1/3Y0-2/3 200 0 0 0 Zw-1/3Z0-2/3 0 Linearized error norm E 0 u0 2 J 0 (A m T mF m )n0 Purdue University 2 Error Metric (cont.) Consider ensemble of 752 real stimuli nk E 2EM 1 N 2 Jk (A m T mF m )nk 2 k Rearrange and sum over k E 2EM Beq vec(Am ) Beq vec(T mF m ) Purdue University 2 2 Regularization Filter feasbility Roughness cost s Ks 4 Df 2 k 1 2 k 2 Design robustness Effect of noise and/or component variations ˜ F F F m m m Augment error metric m B eq vec(A m ) Beq FTm I3 vec(Tm ) 2 2 K r2 Purdue University 2 vec(T m ) 2 Design Problem Overall cost function h(f 1 , f 2 ,f 3 ,f 4 ,T EM ,T EE ,T D65 ; Kr , Ks ) Solution procedure EM , EE , D65 20 s For any fixed F = [f1, f2, f3, f4]T determine optimal coefficient matrices TEM, TEE, and TD65 as solution to least-squares problem Minimize partially optimized cost via gradient search h* (F; Kr , Ks ) min TEM ,TEE ,TD65 h(F,TEM , TEE ,TD65 ;Kr , Ks ) Purdue University Experimental Results Optimal filter set for Kr = 0.1 and Ks = 1.0 1 1 transmittance 400 1 400 700 400 700 1 700 400 wav elength 700 Purdue University Experimental Results (cont.) Effect of system tolerance Won meansquared error 1.5 avg 1.0 E rms 3 limits 0.5 0 10 -5 10 -4 10 -3 10 -2 W (log s cale) Purdue University Experimental Results (cont.) Error performance in true L*a*b* for set of 752 spectral samples mode avg L*a*b* E max L*a*b* E % E's > 1 emissive 0.27 1.56 1.5 reflective / EE 0.18 1.00 0.2 reflective / D65 0.15 0.91 0 Purdue University Experimental Results (cont.) Emissive mode L*a*b* error surface 1.2311 1 E 0.5 0 100 50 b* 0 -50 -60 -40 -20 0 20 40 a* Purdue University 60 Approximation of Color Matching Matrix emissive mode 1.5 1.0 0.5 0 400 450 1.5 500 550 600 700 D65 reflective mode EE reflective mode 1.5 1.0 1.0 0.5 0.5 0 400 450 650 500 550 600 650 700 0 400 450 500 550 600 Purdue University 650 700 Conclusions For given device architecture, it is possible to design components that will yield satisfactory performance filters are quite smooth device is robust to noise excellent overall accuracy Solution method is quite flexible independent of size of sample ensemble Vector space methods provide a powerful tool for solving problems in color imaging Purdue University
© Copyright 2026 Paperzz