Lesson 23: Modeling Video Game Motion with Matrices

Lesson 23
NYS COMMON CORE MATHEMATICS CURRICULUM
M1
PRECALCULUS AND ADVANCED TOPICS
Lesson 23: Modeling Video Game Motion with Matrices
Student Outcomes
๏‚ง
Students use matrix transformations to model circular motion.
๏‚ง
Students use coordinate transformations to represent a combination of motions.
Lesson Notes
Students have recently learned how to represent rotations as matrix transformations. In this lesson, they apply that
knowledge to represent dynamic motion, as seen in video games. Students analyze circular motion that involves a time
๐œ‹
2
parameter such as ๐บ(๐‘ก) = (
๐œ‹
sin ( โˆ™ ๐‘ก)
2
cos ( โˆ™ ๐‘ก)
๐œ‹
2
). The second part of the lesson involves modeling a combination
๐œ‹
cos ( โˆ™ ๐‘ก)
2
โˆ’ sin ( โˆ™ ๐‘ก)
of motions. For instance, students model motion along a circle followed by a translation or motion along a line followed
by a translation.
Classwork
The Opening Exercise allows students to practice matrix transformations and plot the results. This prepares students for
skills needed in this lesson. Work through this as a whole class, asking questions to assess student understanding.
Use this as a way to clear up misconceptions.
Opening Exercise (5 minutes)
Opening Exercise
๐…
๐…
๐Ÿ‘
๐Ÿ‘
๐œ๐จ๐ฌ ( ) โˆ’๐ฌ๐ข๐ง ( ) ๐’™
๐’™
๐Ÿ‘
๐Ÿ‘
Let ๐‘น (๐’š) = (
๐…
๐… ) (๐’š).
๐ฌ๐ข๐ง ( ) ๐œ๐จ๐ฌ ( )
a.
๐’™
๐’™
Describe the geometric effect of performing the transformation (๐’š) โ†’ ๐‘น (๐’š).
Applying ๐‘น rotates each point in the plane about the origin through
b.
๐…
๐Ÿ‘
radians in a counterclockwise direction.
๐Ÿ
๐Ÿ
Plot the point ( ), and then find ๐‘น ( ) and plot it.
๐ŸŽ
๐ŸŽ
๐…
๐œ๐จ๐ฌ ( )
๐Ÿ
๐Ÿ‘
๐‘น( ) = (
๐… )
๐ŸŽ
๐ฌ๐ข๐ง ( )
๐Ÿ‘
Lesson 23:
Modeling Video Game Motion with Matrices
This work is derived from Eureka Math โ„ข and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from PreCal-M1-TE-1.3.0-07.2015
309
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 23
NYS COMMON CORE MATHEMATICS CURRICULUM
M1
PRECALCULUS AND ADVANCED TOPICS
c.
๐Ÿ
If we want to show that ๐‘น has been applied twice to (๐Ÿ, ๐ŸŽ), we can write ๐‘น๐Ÿ ( ), which represents
๐ŸŽ
๐Ÿ
๐Ÿ
๐Ÿ
๐Ÿ
๐‘น (๐‘น ( )). Find ๐‘น๐Ÿ ( ) and plot it. Then, find ๐‘น๐Ÿ‘ ( ) = ๐‘น (๐‘น (๐‘น ( ))), and plot it.
๐ŸŽ
๐ŸŽ
๐ŸŽ
๐ŸŽ
๐Ÿ๐…
๐œ๐จ๐ฌ ( )
๐œ๐จ๐ฌ(๐…)
๐Ÿ
๐Ÿ
๐Ÿ‘
๐‘น๐Ÿ ( ) = (
)
); ๐‘น๐Ÿ‘ ( ) = (
๐Ÿ๐…
๐ฌ๐ข๐ง(๐…)
๐ŸŽ
๐ŸŽ
๐ฌ๐ข๐ง ( )
๐Ÿ‘
d.
๐’™
๐’™
Describe the matrix transformation (๐’š) โ†’ ๐‘น๐Ÿ (๐’š) using a single matrix.
๐’™
๐’™
๐…
๐‘น๐Ÿ (๐’š) is the transformation that rotates points through ๐Ÿ โˆ™ radians, so a formula for ๐‘น๐Ÿ (๐’š) is
MP.7
๐Ÿ๐…
๐Ÿ๐…
๐Ÿ‘
๐Ÿ‘
๐Ÿ‘
๐œ๐จ๐ฌ ( ) โˆ’ ๐ฌ๐ข๐ง ( ) ๐’™
๐Ÿ‘
๐Ÿ‘
(
) (๐’š).
๐Ÿ๐…
๐Ÿ๐…
๐ฌ๐ข๐ง ( ) ๐œ๐จ๐ฌ ( )
Discussion (3 minutes): Circular Motion over Time
Let ๐‘…(๐‘ก) = (
cosโก(๐‘ก)
sinโก(๐‘ก)
โˆ’sinโก(๐‘ก) 1
) ( ).
cosโก(๐‘ก) 0
Suppose that ๐‘ก is measured in degrees. Letโ€™s place several input-output pairs for this function on a graph:
๏‚ง
๏‚ง
๐‘…(30) = (0.87,0.50)
๐‘…(90) = โก (0,1)
Lesson 23:
๐‘…(45) = (0.71,0.71)
๐‘…(180) = โก (โˆ’1,0)
๐‘…(60) = (0.50,0.87)
๐‘…(270) = โก (0, โˆ’1)
Modeling Video Game Motion with Matrices
This work is derived from Eureka Math โ„ข and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from PreCal-M1-TE-1.3.0-07.2015
๐‘…(360) = โก (1,0)
310
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 23
NYS COMMON CORE MATHEMATICS CURRICULUM
M1
PRECALCULUS AND ADVANCED TOPICS
๏‚ง
What do you notice about the points on the graph?
๏ƒบ
๏‚ง
The points appear to lie on a circle.
How could we be sure the points are actually on a circle?
๏ƒบ
๏‚ง
If each point is the same distance from the origin, then the points form a circle.
Now check and see if this is, in fact, the case. Have different students find the distance to the origin from given
points.
๏ƒบ
Students check the distance from a given point to the origin and confirm using the distance formula.
For example, ๐‘…(30) = (0.87, 0.50). Its distance from the origin is โˆš(0.87 โˆ’ 0)2 + (0.5 โˆ’ 0)2 = 1.
๏‚ง
What is the result of R(t)?
cosโก(๐‘ก) โˆ’sinโก(๐‘ก) 1
cos(๐‘ก)
๏ƒบ ๐‘…(๐‘ก) = (
)( ) = (
)
sinโก(๐‘ก) cosโก(๐‘ก) 0
sin(๐‘ก)
๏‚ง
Does this result ensure points lie on a circle?
Yes, this would confirm that the points lie on the unit circle because the ๐‘ฅ-valueโกcorresponds to cosine
of an angle ๐‘ก and the ๐‘ฆ-value corresponds to sine of the same angle on the unit circle.
๏ƒบ
Exercise 1 (4 minutes)
This exercise provides students more practice with matrices representing rotations. This time, the angle is different in
each function, allowing them to compare the results. Give students time to work on the following problems
independently; then, call on students to share their responses with the class.
Exercises
1.
๐’•
๐’•
๐Ÿ
๐Ÿ
๐œ๐จ๐ฌ ( ) โˆ’๐ฌ๐ข๐ง ( ) ๐Ÿ
๐œ๐จ๐ฌโก(๐Ÿ๐’•) โˆ’๐ฌ๐ข๐ง(๐Ÿ๐’•) ๐Ÿ
๐Ÿ
๐Ÿ
Let ๐’‡(๐’•) = (
) ( ), and let ๐’ˆ(๐’•) = (
๐’•
๐’• ) (๐ŸŽ).
๐ฌ๐ข๐ง(๐Ÿ๐’•) ๐œ๐จ๐ฌ(๐Ÿ๐’•) ๐ŸŽ
๐ฌ๐ข๐ง ( ) ๐œ๐จ๐ฌ ( )
a.
Suppose ๐’‡(๐’•) represents the position of a moving object that starts at (๐Ÿ, ๐ŸŽ). How long does it take for this
object to return to its starting point? When the argument of the trigonometric function changes from ๐’• to ๐Ÿ๐’•,
what effect does this have?
The object will return to (๐Ÿ, ๐ŸŽ) when ๐Ÿ๐’• = ๐Ÿ๐…. Thus, it will take ๐’• = ๐… seconds for this to happen. Changing
the argument from ๐’• to ๐Ÿ๐’• causes the object to move twice as fast.
b.
If the position is given instead by ๐’ˆ(๐’•),โกhow long would it take the object to return to its starting point?
๐’•
When the argument of the trigonometric function changes from ๐’• to , what effect does this have?
๐Ÿ
The object will return to (๐Ÿ, ๐ŸŽ) when
Changing the argument from ๐’• to
Lesson 23:
๐’•
๐Ÿ
๐’•
๐Ÿ
= ๐Ÿ๐…. Thus, it will take ๐’• = ๐Ÿ’๐… seconds for this to happen.
causes the object to move half as fast.
Modeling Video Game Motion with Matrices
This work is derived from Eureka Math โ„ข and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from PreCal-M1-TE-1.3.0-07.2015
311
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 23
NYS COMMON CORE MATHEMATICS CURRICULUM
M1
PRECALCULUS AND ADVANCED TOPICS
Example 1 (4 minutes)
cosโก(๐‘ก) โˆ’sinโก(๐‘ก) 3
Let ๐น(๐‘ก) = (
) ( ).
sinโก(๐‘ก) cosโก(๐‘ก) 2
๏‚ง
๐œ‹
2
This time, weโ€™ll measure ๐‘ก in radians. Find ๐น ( ), ๐น(๐œ‹), ๐น (
๐œ‹
2
๐œ‹
2
๐œ‹
sin ( )
2
๐œ‹
3
0
2
๐œ‹ ) ( 2) = ( 1
cos ( )โก
2
cos ( )
โˆ’ sin ( )
๏ƒบ
๐น ( ) =โก(
๏ƒบ
๐น(๐œ‹) = โก (
๏ƒบ
3๐œ‹
cos ( )
3๐œ‹
2
๐น ( ) =โก(
3๐œ‹
2
sin ( )
2
cos(ฯ€)
sin(๐œ‹)
โˆ’ sin(๐œ‹) 3
โˆ’1
)( ) = (
2
0
cos(๐œ‹)
3๐œ‹
), and ๐น(2๐œ‹).
2
0โˆ’2
โˆ’1 3
โˆ’2
)( ) = (
)=( )
3+0
0
2
3
0
3
โˆ’3 + 0
โˆ’3
)( ) = (
)=( )
โˆ’1 2
0โˆ’2
โˆ’2
3๐œ‹
) 3
0
2
)( ) = (
3๐œ‹
2
โˆ’1
cos ( )โก
2
โˆ’ sin (
0+2
1 3
2
)( ) = (
)=( )
โˆ’3 + 0
0 2
โˆ’3
cos(2ฯ€) โˆ’ sin(2๐œ‹) 3
3+0
1 0 3
3
๐น(2๐œ‹) = โก (
)( ) = (
)( ) = (
)=( )
0+2
2
0 1 2
2
sin(2๐œ‹) cos(2๐œ‹)
When we plot points, we see once again that they appear to lie on a circle. Make sure this is really true.
cosโก(๐‘ก) โˆ’sinโก(๐‘ก) 3
3โ€Šcos(๐‘ก) โˆ’ 2โ€Šsin(๐‘ก)
๏ƒบ ๐น(๐‘ก) = (
)( ) = (
)
sinโก(๐‘ก) cosโก(๐‘ก) 2
3โ€Šsin(๐‘ก) + 2โ€Šcos(๐‘ก)
๏ƒบ
๏‚ง
(3โ€Šcos(๐‘ก) โˆ’ 2โ€Šsin(๐‘ก))2 + (โ€Š3โ€Šsin(๐‘ก) + 2โ€Šcos(๐‘ก))2
9โ€Šcos 2(๐‘ก) โˆ’ 12โ€Šcos(๐‘ก) sin(๐‘ก) + 4โ€Šsin2 (๐‘ก)โก + 9โ€Šsin2 (๐‘ก) + 12โ€Šcos(๐‘ก) sin(๐‘ก) + 4โ€Šcos 2(๐‘ก)
9(cos 2(๐‘ก) + sin2 (๐‘ก)) + 4(sin2 (๐‘ก) + cos 2 (๐‘ก))
9(1) + 4(1) = 9 + 4 = 13
Thus, each point is โˆš13 units from the origin, which confirms that the outputs lie on a circle.
Lesson 23:
Modeling Video Game Motion with Matrices
This work is derived from Eureka Math โ„ข and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from PreCal-M1-TE-1.3.0-07.2015
312
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
NYS COMMON CORE MATHEMATICS CURRICULUM
Lesson 23
M1
PRECALCULUS AND ADVANCED TOPICS
Discussion (4 minutes): Rotations That Use a Time Parameter
๐œ‹
2
Let ๐น(๐‘ก) = (
๐œ‹
sin ( โˆ™ ๐‘ก)
2
cos ( โˆ™ ๐‘ก)
๏‚ง
๏‚ง
Draw the path that ๐‘ƒ = ๐น(๐‘ก) traces out as ๐‘ก varies within each of the following intervals:
๏ƒบ
0โ‰ค๐‘กโ‰ค1
๏ƒบ
1โ‰ค๐‘กโ‰ค2
๏ƒบ
2โ‰ค๐‘กโ‰ค3
๏ƒบ
3โ‰ค๐‘กโ‰ค4
Where will the object be located at ๐‘ก = 0.5 second?
๏ƒบ
๏‚ง
๐œ‹
1
2
) ( ).
๐œ‹
0
cos ( โˆ™ ๐‘ก)
2
โˆ’ sin ( โˆ™ ๐‘ก)
๐œ‹
4
๐œ‹
4
๐‘“(0.5) = (cos ( ) , sin ( )) โ‰ˆ (0.71,0.71)
How long will it take the object to reach (0.71, โˆ’0.71)?
๏ƒบ
These coordinates represent (cos (
location at ๐‘ก =
7
= 3.5 seconds.
2
7๐œ‹
7๐œ‹
๐œ‹ 7
๐œ‹ 7
) , sin ( )), so (cos ( โˆ™ ) , sin ( โˆ™ )). The object reaches this
4
4
2 2
2 2
Exercises 2โ€“3 (5 minutes)
Give students time to complete the following exercises; then, ask them to compare their responses with a partner.
Call on students to share their responses with the class.
Lesson 23:
Modeling Video Game Motion with Matrices
This work is derived from Eureka Math โ„ข and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from PreCal-M1-TE-1.3.0-07.2015
313
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 23
NYS COMMON CORE MATHEMATICS CURRICULUM
M1
PRECALCULUS AND ADVANCED TOPICS
2.
๐…
๐…
๐Ÿ
๐Ÿ
๐œ๐จ๐ฌ ( โˆ™ ๐’•) โˆ’๐ฌ๐ข๐ง ( โˆ™ ๐’•) ๐ŸŽ
๐Ÿ
๐Ÿ
Let ๐‘ฎ(๐’•) = (
) ( ).
๐…
๐…
๐Ÿ
๐ฌ๐ข๐ง ( โˆ™ ๐’•) ๐œ๐จ๐ฌ ( โˆ™ ๐’•)
a.
Draw the path that ๐‘ท = ๐‘ฎ(๐’•) traces out as ๐’• varies within the interval ๐ŸŽ โ‰ค ๐’• โ‰ค ๐Ÿ.
b.
Where will the object be at ๐’• = ๐Ÿ‘ seconds?
๐‘ฎ(๐Ÿ‘) = (๐Ÿ, ๐ŸŽ)
c.
How long will it take the object to reach (๐ŸŽ, โˆ’๐Ÿ)?
๐…
๐Ÿ
๐…
๐Ÿ
These coordinates represent (๐œ๐จ๐ฌ(๐…) , ๐ฌ๐ข๐ง(๐…)), so (๐œ๐จ๐ฌ ( โˆ™ ๐Ÿ) , ๐ฌ๐ข๐ง ( โˆ™ ๐Ÿ)); the object reaches this location
at ๐’• = ๐Ÿ seconds. ๐‘ฎ(๐Ÿ) = (๐ŸŽ, โˆ’๐Ÿ), so it will take ๐Ÿ seconds to reach that location.
3.
๐…
๐…
๐Ÿ
๐Ÿ
๐œ๐จ๐ฌ ( โˆ™ ๐’•) โˆ’๐ฌ๐ข๐ง ( โˆ™ ๐’•) ๐Ÿ
๐Ÿ
๐Ÿ
Let ๐‘ฏ(๐’•) = (
) ( ).
๐…
๐…
๐Ÿ’
๐ฌ๐ข๐ง ( โˆ™ ๐’•) ๐œ๐จ๐ฌ ( โˆ™ ๐’•)
a.
Draw the path that ๐‘ท = ๐‘ฏ(๐’•) traces out as ๐’• varies within the interval ๐ŸŽ โ‰ค ๐’• โ‰ค ๐Ÿ.
b.
Where will the object be at ๐’• = ๐Ÿ second?
๐‘ฏ(๐Ÿ) = (โˆ’๐Ÿ’, ๐Ÿ)
c.
How long will it take the object to return to its starting point?
๐‘ฏ(๐Ÿ’) = (๐Ÿ, ๐Ÿ’), so it will take ๐Ÿ’ seconds to return to its starting point.
Lesson 23:
Modeling Video Game Motion with Matrices
This work is derived from Eureka Math โ„ข and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from PreCal-M1-TE-1.3.0-07.2015
314
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 23
NYS COMMON CORE MATHEMATICS CURRICULUM
M1
PRECALCULUS AND ADVANCED TOPICS
Example 2 (4 minutes)
๐œ‹
6
Let ๐‘“(๐‘ก) = (
๐œ‹
sin ( โˆ™ ๐‘ก)
6
cos ( โˆ™ ๐‘ก)
๏‚ง
๏‚ง
๐œ‹
6
6
) ( ).
๐œ‹
2
cos ( โˆ™ ๐‘ก)
6
โˆ’ sin ( โˆ™ ๐‘ก)
Draw the path that ๐‘ƒ = ๐‘“(๐‘ก) traces out as ๐‘ก varies within each of the following intervals:
๏ƒบ
0โ‰ค๐‘กโ‰ค1
1โ‰ค๐‘กโ‰ค2
2โ‰ค๐‘กโ‰ค3
๏ƒบ
3โ‰ค๐‘กโ‰ค4
4โ‰ค๐‘กโ‰ค5
5โ‰ค๐‘กโ‰ค6
As an example, can you describe what happens to the object as ๐‘ก varies within the interval 0 โ‰ค ๐‘ก โ‰ค 1?
๏ƒบ
Since ๐‘“(0) = (6,2), the object starts its trajectory there. When ๐‘ก = 1, the object will have moved
through
๐œ‹
6
radians. So, in the time interval 0 โ‰ค ๐‘ก โ‰ค 1, the object moves along a circular arc as shown
below.
Exercises 4โ€“5 (3 minutes)
Give students time to complete the following exercises; then ask them to compare their responses with a partner.
Call on students to share their responses with the class, and use this as an opportunity to check for understanding.
4.
Suppose you want to write a program that takes the point (๐Ÿ‘, ๐Ÿ“) and rotates it about the origin to the point
(โˆ’๐Ÿ‘, โˆ’๐Ÿ“) over a ๐Ÿ-second interval. Write a function ๐‘ท = ๐’‡(๐’•) that encodes this rotation.
๐œ๐จ๐ฌโก(๐… โˆ™ ๐’•) โˆ’๐ฌ๐ข๐งโก(๐… โˆ™ ๐’•) ๐Ÿ‘
Let ๐’‡(๐’•) = (
) ( ). We have ๐’‡(๐ŸŽ) = (๐Ÿ‘, ๐Ÿ“) and ๐’‡(๐Ÿ) = (โˆ’๐Ÿ‘, โˆ’๐Ÿ“), as required.
๐ฌ๐ข๐งโก(๐… โˆ™ ๐’•) ๐œ๐จ๐ฌโก(๐… โˆ™ ๐’•) ๐Ÿ“
5.
If instead you wanted the rotation to take place over a ๐Ÿ. ๐Ÿ“-second interval, how would your function change?
๐’•
๐’•
๐Ÿ
๐Ÿ
๐œ๐จ๐ฌ (๐… โˆ™ โˆ™ ๐Ÿ“) โˆ’๐ฌ๐ข๐ง (๐… โˆ™ โˆ™ ๐Ÿ“) ๐Ÿ‘
๐Ÿ
๐Ÿ
Let ๐’‡(๐’•) = (
) ( ).โกโกWe have ๐’‡(๐ŸŽ) = (๐Ÿ‘, ๐Ÿ“) and ๐’‡(๐Ÿ. ๐Ÿ“) = (โˆ’๐Ÿ‘, โˆ’๐Ÿ“), as required.
๐’•
๐’•
๐Ÿ“
๐ฌ๐ข๐ง (๐… โˆ™ โˆ™ ๐Ÿ“) ๐œ๐จ๐ฌ (๐… โˆ™ โˆ™ ๐Ÿ“)
Lesson 23:
Modeling Video Game Motion with Matrices
This work is derived from Eureka Math โ„ข and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from PreCal-M1-TE-1.3.0-07.2015
315
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 23
NYS COMMON CORE MATHEMATICS CURRICULUM
M1
PRECALCULUS AND ADVANCED TOPICS
Example 3 (4 minutes)
๐œ‹
2
Letโ€™s analyze the transformation ๐‘”(๐‘ก) = (
๐œ‹
3 sin ( โˆ™ ๐‘ก)
2
3 cos ( โˆ™ ๐‘ก)
and ๐‘”(1).
๐œ‹
1
2
) ( ). In particular, we will compare ๐‘”(0)
๐œ‹
2
3 cos ( โˆ™ ๐‘ก)
2
โˆ’3 sin ( โˆ™ ๐‘ก)
๏‚ง
What is ๐‘”(0)? What geometric effect does ๐‘”(๐‘ก) have on (1, 2) initially?
๏‚ง
What is ๐‘”(1)? Describe what is going on.
๏ƒบ
๏ƒบ
๏‚ง
We have ๐‘”(3) = (6, โˆ’3), which represents a quarter turn of the point (โˆ’3, โˆ’6) about the origin in a
counterclockwise direction.
What is ๐‘”(4)? Describe what is going on.
๏ƒบ
๏‚ง
We have ๐‘”(2) = (โˆ’3, โˆ’6), which represents a quarter turn of the point (โˆ’6, 3) about the origin in a
counterclockwise direction.
What is ๐‘”(3)? Describe what is going on.
๏ƒบ
๏‚ง
This transformation combines a quarter turn about the origin with a scaling by a factor of 3.
What is ๐‘”(2)? Describe what is going on.
๏ƒบ
๏‚ง
We have ๐‘”(1) = (โˆ’6, 3), which represents a quarter turn of the point (3, 6) about the origin in a
counterclockwise direction.
Can you summarize the geometric effect of applying ๐‘”(๐‘ก) to the point (1, 2) during the time interval
0 โ‰ค ๐‘ก โ‰ค 1?
๏ƒบ
๏‚ง
We have ๐‘”(0) = (3, 6), which is a dilation of (1, 2) using scale factor 3.
We have ๐‘”(1) = (3, 6), which represents a quarter turn of the point (6, โˆ’3) about the origin in a
counterclockwise direction.
Compare ๐‘”(0) and ๐‘”(4). Does this make sense?
๏ƒบ
๐‘”(0) = ๐‘”(4) This makes sense because 4 quarter turns would be a full rotation, so this would bring
you back to the starting point.
Lesson 23:
Modeling Video Game Motion with Matrices
This work is derived from Eureka Math โ„ข and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from PreCal-M1-TE-1.3.0-07.2015
316
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
NYS COMMON CORE MATHEMATICS CURRICULUM
Lesson 23
M1
PRECALCULUS AND ADVANCED TOPICS
Closing (4 minutes)
๏‚ง
Write one to two sentences in your notebook describing what you learned in todayโ€™s lesson; then, share your
response with a partner.
๏ƒบ
We learned how to use matrices to describe rotations that happen over a specific time interval. We
also discussed how to model multiple transformations, such as a rotation followed by a translation.
Exit Ticket (5 minutes)
Lesson 23:
Modeling Video Game Motion with Matrices
This work is derived from Eureka Math โ„ข and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from PreCal-M1-TE-1.3.0-07.2015
317
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 23
NYS COMMON CORE MATHEMATICS CURRICULUM
M1
PRECALCULUS AND ADVANCED TOPICS
Name
Date
Lesson 23: Modeling Video Game Motion with Matrices
Exit Ticket
Write a function ๐‘“(๐‘ก) that incorporates the following actions. Make a drawing of the path the point follows during the
time interval 0 โ‰ค ๐‘ก โ‰ค 3.
a.
During the time interval 0 โ‰ค ๐‘ก โ‰ค 1, move the point (8, 6) through
๐œ‹
4
radians about the origin in a
counterclockwise direction.
b.
During the time interval 1 < ๐‘ก โ‰ค 3, move the image along a straight line to (6, โˆ’8).
Lesson 23:
Modeling Video Game Motion with Matrices
This work is derived from Eureka Math โ„ข and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from PreCal-M1-TE-1.3.0-07.2015
318
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 23
NYS COMMON CORE MATHEMATICS CURRICULUM
M1
PRECALCULUS AND ADVANCED TOPICS
Exit Ticket Sample Solutions
Write a function ๐’‡(๐’•) that incorporates the following actions. Make a drawing of the path the point follows during the
time interval ๐ŸŽ โ‰ค ๐’• โ‰ค ๐Ÿ‘.
a.
During the time interval ๐ŸŽ โ‰ค ๐’• โ‰ค ๐Ÿ, move the point (๐Ÿ–, ๐Ÿ”) through
๐…
๐Ÿ’
radians about the origin in a
counterclockwise direction.
โก๐…๐’•โก
โก๐…๐’•โก
๐œ๐จ๐ฌ (
)โก โˆ’๐ฌ๐ข๐ง (
)
๐Ÿ–
โก๐Ÿ’โก
โก๐Ÿ’โก
๐’‡(๐’•) = (
โก๐…๐’•โก
โก๐…๐’•โก ) (๐Ÿ”) ,โกโกโกโกโกโก๐ŸŽ โ‰ค ๐’• โ‰ค ๐Ÿ
๐ฌ๐ข๐ง (
) ๐œ๐จ๐ฌ (
)
โก๐Ÿ’โก
โก๐Ÿ’โก
๐œ๐จ๐ฌ(๐ŸŽ)โก โˆ’๐ฌ๐ข๐ง(๐ŸŽ) ๐Ÿ–
๐Ÿโก ๐ŸŽ ๐Ÿ–
๐Ÿ–
๐’‡(๐ŸŽ) = (
)( ) = (
)( ) = ( )
๐ฌ๐ข๐ง(๐ŸŽ) ๐œ๐จ๐ฌ(๐ŸŽ) ๐Ÿ”
๐ŸŽ ๐Ÿ ๐Ÿ”
๐Ÿ”
โก๐…โก
โก๐…โก
๐œ๐จ๐ฌ ( )โก โˆ’๐ฌ๐ข๐ง ( )
๐Ÿ–
โก๐Ÿ’โก
โก๐Ÿ’โก
๐’‡(๐Ÿ) = (
โก๐…โก
โก๐…โก ) (๐Ÿ”) =
๐ฌ๐ข๐ง ( ) ๐œ๐จ๐ฌ ( )
โก๐Ÿ’โก
โก๐Ÿ’โก
b.
โˆš๐Ÿ โˆ’โˆš๐Ÿ
โก
๐Ÿ–
๐Ÿ. ๐Ÿ’๐Ÿ
๐Ÿ
๐Ÿ
( ) = ( โˆš๐Ÿ ) โก โ‰ˆ (
)โก
๐Ÿ”
๐Ÿ—. ๐Ÿ—๐ŸŽ
๐Ÿ•โˆš๐Ÿ
โˆš๐Ÿ โˆš๐Ÿ
๐Ÿ )
( ๐Ÿ
During the time interval ๐Ÿ < ๐’• โ‰ค ๐Ÿ‘, move the image along a straight line to (๐Ÿ”, โˆ’๐Ÿ–).
๐Ÿ”
The image is ( โˆš๐Ÿ ) โ†’ ( ) in ๐Ÿ seconds from ๐Ÿ < ๐’• โ‰ค ๐Ÿ‘.
โˆ’๐Ÿ–
๐Ÿ•โˆš๐Ÿ
โˆš๐Ÿ โˆ’ ๐’Œ๐’• = ๐Ÿ”
โกโˆš๐Ÿ•๐Ÿ โˆ’ ๐’Ž๐’• = โˆ’๐Ÿ–
โˆš๐Ÿ โˆ’ ๐Ÿ๐’Œ = ๐Ÿ”
๐Ÿ•โˆš๐Ÿ โˆ’ ๐Ÿ๐’Ž = โˆ’๐Ÿ–
๐’Œ=
๐’‰(๐’•) =
โˆš๐Ÿ โˆ’ ๐Ÿ”โก
๐Ÿ
๐’Ž=
๐Ÿ•โˆš๐Ÿ + ๐Ÿ–โก
๐Ÿ
(โˆš๐Ÿ โˆ’ ๐Ÿ”)๐’•โก
๐Ÿ‘
(๐Ÿ•โˆš๐Ÿ + ๐Ÿ–)๐’•โก
๐Ÿ•โˆš๐Ÿ โˆ’
๐Ÿ‘
(
)
โˆš๐Ÿ โˆ’
Problem Set Sample Solutions
1.
โก๐…โก
โก๐…โก
๐Ÿ’
๐Ÿ’
๐œ๐จ๐ฌ ( ) โˆ’๐ฌ๐ข๐ง ( ) ๐’™
๐’™
๐Ÿ’
๐Ÿ’
Let ๐‘น (๐’š) = (
) (๐’š). Find the following.
โก๐…โก
โก๐…โก
๐ฌ๐ข๐ง ( ) ๐œ๐จ๐ฌ ( )
a.
๐‘น๐Ÿ (โˆš๐Ÿ)
โˆš๐Ÿ
๐…
๐…
โˆš๐Ÿ
โˆš๐Ÿ
๐œ๐จ๐ฌ ( ) โˆ’๐ฌ๐ข๐ง ( )
โˆ’
โˆš๐Ÿ
โˆš๐Ÿ
โˆš๐Ÿ
๐Ÿ’
๐Ÿ’
๐Ÿ
๐Ÿ (โˆš๐Ÿ)
๐‘น ( ) = ๐‘น (๐‘น ( )) = ๐‘น (
๐…
๐… )( ) = ๐‘น
โˆš๐Ÿ โˆš๐Ÿ
โˆš๐Ÿ
โˆš๐Ÿ
โˆš๐Ÿ
โˆš๐Ÿ
๐ฌ๐ข๐ง ( ) ๐œ๐จ๐ฌ ( )
๐Ÿ’
๐Ÿ’
๐Ÿ )
(
)
(( ๐Ÿ
)
๐Ÿ
๐…
๐…
๐œ๐จ๐ฌ ( ) โˆ’๐ฌ๐ข๐ง ( )
๐ŸŽ
๐ŸŽ
๐Ÿ’
๐Ÿ’
= ๐‘น( ) = (
๐…
๐… ) (๐Ÿ) =
๐Ÿ
๐ฌ๐ข๐ง ( ) ๐œ๐จ๐ฌ ( )
๐Ÿ’
๐Ÿ’
Lesson 23:
โˆš๐Ÿ
โˆš๐Ÿ
โˆ’
๐Ÿ
๐Ÿ (๐ŸŽ) = (โˆ’โˆš๐Ÿ)
๐Ÿ
โˆš๐Ÿ โˆš๐Ÿ
โˆš๐Ÿ
๐Ÿ )
(๐Ÿ
Modeling Video Game Motion with Matrices
This work is derived from Eureka Math โ„ข and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from PreCal-M1-TE-1.3.0-07.2015
319
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 23
NYS COMMON CORE MATHEMATICS CURRICULUM
M1
PRECALCULUS AND ADVANCED TOPICS
b.
How many transformations do you need to take so that the image returns to where it started?
It rotates by
๐…
๐Ÿ’
radians for each transformation; therefore, it takes ๐Ÿ– times to get to ๐Ÿ๐…, which is where it
started.
c.
๐’™
๐’™
๐’™
Describe the matrix transformation (๐’š) โ†’ ๐‘น๐Ÿ (๐’š)โกโกand ๐‘น๐’ (๐’š) using a single matrix.
๐’™
๐’™
๐…
๐‘น๐Ÿ = (๐’š) is the transformation that rotates the point through ๐Ÿ × radian, so a formula forโก๐‘น๐Ÿ (๐’š) is
๐Ÿ’
๐Ÿ๐…
๐Ÿ๐…
๐…
๐›‘
๐…
๐…
๐œ๐จ๐ฌ ( ) โˆ’๐ฌ๐ข๐ง ( ) ๐’™
๐œ๐จ๐ฌ ( ) โˆ’๐ฌ๐ข๐ง ( ) ๐’™
๐’™ โˆ™ ๐œ๐จ๐ฌ ( ) โˆ’ ๐’š โˆ™ ๐ฌ๐ข๐ง ( )
๐Ÿ’
๐Ÿ’
๐Ÿ
๐Ÿ
๐Ÿ
๐Ÿ
(
) (๐’š) = (
๐…
๐… ) (๐’š) = (
๐…
๐… ).
๐Ÿ๐…
๐Ÿ๐…
๐ฌ๐ข๐ง
(
)
๐œ๐จ๐ฌ
(
)
๐’™
โˆ™
๐ฌ๐ข๐ง
(
)
+
๐’š
โˆ™
๐œ๐จ๐ฌ
(
)
๐ฌ๐ข๐ง ( ) ๐œ๐จ๐ฌ ( )
๐Ÿ
๐Ÿ
๐Ÿ
๐Ÿ
๐Ÿ’
๐Ÿ’
๐’๐…
๐’๐…
๐’™ โˆ™ ๐œ๐จ๐ฌ ( ) โˆ’ ๐’š โˆ™ ๐ฌ๐ข๐ง ( )
๐’™
๐Ÿ’
๐Ÿ’
โก๐‘น = (๐’š) โกis โก (
๐’๐…
๐’๐… ) .
๐’™ โˆ™ ๐ฌ๐ข๐ง ( ) + ๐’š โˆ™ ๐œ๐จ๐ฌ ( )
๐Ÿ’
๐Ÿ’
๐’
2.
๐œ๐จ๐ฌ(๐’•) โˆ’๐ฌ๐ข๐ง(๐’•) ๐Ÿ
๐Ÿ
For ๐’‡(๐’•) = (
) ( ), it takes ๐Ÿ๐… to transform the object at ( ) back to where it starts. How long
๐ฌ๐ข๐ง(๐’•) ๐œ๐จ๐ฌ(๐’•) ๐Ÿ
๐Ÿ
does it take the following functions to return to their starting point?
a.
๐œ๐จ๐ฌ(๐Ÿ‘๐’•) โˆ’๐ฌ๐ข๐ง(๐Ÿ‘๐’•) ๐Ÿ
๐’‡(๐’•) = (
)( )
๐ฌ๐ข๐ง(๐Ÿ‘๐’•) ๐œ๐จ๐ฌ(๐Ÿ‘๐’•) ๐Ÿ
๐Ÿ‘๐’• = ๐Ÿ๐…,
๐’•=
๐Ÿ๐…
๐Ÿ‘
โก๐’•โก
b.
โก๐’•โก
๐œ๐จ๐ฌ ( ) โˆ’๐ฌ๐ข๐ง ( ) ๐Ÿ
๐Ÿ‘
๐Ÿ‘
๐’‡(๐’•) = (
) ( )โก
โก๐’•โก
โก๐’•โก
๐Ÿ
๐ฌ๐ข๐ง ( ) ๐œ๐จ๐ฌ ( )
๐Ÿ‘
๐’•
= ๐Ÿ๐…,
๐Ÿ‘
๐Ÿ‘
๐’• = ๐Ÿ”๐…
โก๐Ÿ๐’•โก
c.
โก๐Ÿ๐’•โก
๐œ๐จ๐ฌ ( ) โˆ’๐ฌ๐ข๐ง ( ) ๐Ÿ
๐Ÿ“
๐Ÿ“
๐’‡(๐’•) = (
)( )
โก๐Ÿ๐’•โก
โก๐Ÿ๐’•โก
๐Ÿ
๐ฌ๐ข๐ง ( ) ๐œ๐จ๐ฌ ( )
๐Ÿ“
๐Ÿ๐’•
= ๐Ÿ๐…,
๐Ÿ“
Lesson 23:
๐Ÿ“
๐’• = ๐Ÿ“๐…
Modeling Video Game Motion with Matrices
This work is derived from Eureka Math โ„ข and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from PreCal-M1-TE-1.3.0-07.2015
320
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 23
NYS COMMON CORE MATHEMATICS CURRICULUM
M1
PRECALCULUS AND ADVANCED TOPICS
3.
๐œ๐จ๐ฌ(๐’•) โˆ’๐ฌ๐ข๐ง(๐’•) ๐Ÿ
Let ๐‘ญ(๐’•) = (
) ( ), where ๐’•โกis measured in radians. Find the following:
๐ฌ๐ข๐ง(๐’•) ๐œ๐จ๐ฌ(๐’•) ๐Ÿ
a.
๐‘ญ(
โก๐Ÿ‘๐…โก
โก๐Ÿ•๐…โก
),๐‘ญ(
), and the radius of the path
๐Ÿ
๐Ÿ”
๐Ÿ‘๐…
๐Ÿ‘๐…
๐œ๐จ๐ฌ ( ) โˆ’๐ฌ๐ข๐ง ( )
๐Ÿ‘๐…
๐Ÿ
๐Ÿ ) (๐Ÿ) = ( ๐ŸŽ ๐Ÿ) (๐Ÿ) = ( ๐Ÿ )
๐‘ญ( ) = (
๐Ÿ‘๐…
๐Ÿ‘๐…
โˆ’๐Ÿ ๐ŸŽ ๐Ÿ
๐Ÿ
โˆ’๐Ÿ
๐Ÿ
๐ฌ๐ข๐ง ( ) ๐œ๐จ๐ฌ ( )
๐Ÿ
๐Ÿ
๐Ÿ•๐…
๐Ÿ•๐…
๐œ๐จ๐ฌ ( ) โˆ’๐ฌ๐ข๐ง ( )
๐Ÿ•๐…
๐Ÿ”
๐Ÿ” ) (๐Ÿ) =
๐‘ญ( ) = (
๐Ÿ•๐…
๐Ÿ•๐…
๐Ÿ
๐Ÿ”
๐ฌ๐ข๐ง ( ) ๐œ๐จ๐ฌ ( )
๐Ÿ”
๐Ÿ”
๐Ÿ
๐Ÿ
โˆš๐Ÿ‘
โˆ’โˆš๐Ÿ‘ +
๐Ÿ
๐Ÿ
๐Ÿ
๐Ÿ
( )=
โˆš๐Ÿ‘
๐Ÿ
โˆš๐Ÿ‘ ๐Ÿ
โˆ’๐Ÿ โˆ’
โˆ’
โˆ’
(
๐Ÿ)
๐Ÿ)
( ๐Ÿ
โˆ’
The path of the point from ๐ŸŽ โ‰ค ๐’• โ‰ค ๐Ÿ๐… is a circle with a center at (๐ŸŽ, ๐ŸŽ).
Thus, the radius = โˆš๐’™๐Ÿ + ๐’š๐Ÿ = โˆš(๐Ÿ)๐Ÿ + (๐Ÿ)๐Ÿ = โˆš๐Ÿ“โก or
๐Ÿ
๐Ÿ
๐Ÿ
the radius = โˆš๐’™๐Ÿ + ๐’š๐Ÿ = โˆš(โˆ’โˆš๐Ÿ‘ + ) + (โˆ’๐Ÿ โˆ’
b.
โˆš๐Ÿ‘
๐Ÿ
๐Ÿ
) = โˆš๐Ÿ“.
๐œ๐จ๐ฌ(๐’•) โˆ’๐ฌ๐ข๐ง(๐’•) ๐’™
Show that the radius is always โˆš๐’™๐Ÿ + ๐’š๐Ÿ for the path of this transformation (๐’•) = (
) ( ).
๐ฌ๐ข๐ง(๐’•) ๐œ๐จ๐ฌ(๐’•) ๐’š
๐œ๐จ๐ฌ(๐’•) โˆ’๐ฌ๐ข๐ง(๐’•) ๐’™
๐’™โ€Š๐œ๐จ๐ฌ(๐’•) โˆ’ ๐’šโ€Š๐ฌ๐ข๐ง(๐’•)
๐‘ญ(๐’•) = (
)( ) = (
)
๐ฌ๐ข๐ง(๐’•) ๐œ๐จ๐ฌ(๐’•) ๐’š
๐’™โ€Š๐ฌ๐ข๐ง(๐’•) + ๐’šโ€Š๐œ๐จ๐ฌ(๐’•)
๐Ÿ
โกThe radius = โˆš(๐’™โ€Š๐œ๐จ๐ฌ(๐’•) โˆ’ ๐’šโ€Š๐ฌ๐ข๐ง(๐’•))๐Ÿ + (๐’™โ€Š๐ฌ๐ข๐ง(๐’•) + ๐’šโ€Š๐œ๐จ๐ฌ(๐’•))
= โˆš๐’™๐Ÿ ๐œ๐จ๐ฌ ๐Ÿ (๐’•) โˆ’ ๐Ÿ๐’™๐’šโ€Š๐œ๐จ๐ฌ(๐’•)๐ฌ๐ข๐ง(๐’•) + ๐’š๐Ÿ ๐ฌ๐ข๐ง๐Ÿ (๐’•) + ๐’™๐Ÿ ๐ฌ๐ข๐ง๐Ÿ (๐’•) + ๐Ÿ๐’™๐’šโ€Š๐ฌ๐ข๐ง(๐’•)๐œ๐จ๐ฌ(๐’•) + ๐’š๐Ÿ ๐œ๐จ๐ฌ ๐Ÿ (๐’•)โก
= โˆš๐’™๐Ÿ ๐œ๐จ๐ฌ ๐Ÿ (๐’•) + ๐’™๐Ÿ ๐ฌ๐ข๐ง๐Ÿ (๐’•) + ๐’š๐Ÿ ๐ฌ๐ข๐ง๐Ÿ (๐’•) + ๐’š๐Ÿ ๐œ๐จ๐ฌ๐Ÿ (๐’•)
= โˆš๐’™๐Ÿ (๐œ๐จ๐ฌ ๐Ÿ (๐’•) + ๐ฌ๐ข๐ง๐Ÿ (๐’•)) + ๐’š๐Ÿ (๐œ๐จ๐ฌ๐Ÿ (๐’•) + ๐ฌ๐ข๐ง๐Ÿ (๐’•))โก
= โˆš๐’™๐Ÿ + ๐’š๐Ÿ .
โก๐…๐’•โก
4.
โก๐…๐’•โก
๐œ๐จ๐ฌ ( ) โˆ’๐ฌ๐ข๐ง ( ) ๐Ÿ’
๐Ÿ
๐Ÿ
Let ๐‘ญ(๐’•) = (
) ( ), where ๐’•โกis a real number.
โก๐…๐’•โก
โก๐…๐’•โก
๐Ÿ’
๐ฌ๐ข๐ง ( ) ๐œ๐จ๐ฌ ( )
๐Ÿ
a.
๐Ÿ
Draw the path that ๐‘ท = ๐‘ญ(๐’•) traces out as ๐’• varies within each of the following intervals:
i.
๐ŸŽ โ‰ค ๐’• โ‰ค ๐Ÿโกโก
ii.
๐Ÿ โ‰ค ๐’• โ‰ค ๐Ÿโกโก
iii.
๐Ÿ โ‰ค ๐’• โ‰ค ๐Ÿ‘โกโก
iv.
๐Ÿ‘ โ‰ค ๐’• โ‰ค ๐Ÿ’โกโก
Lesson 23:
Modeling Video Game Motion with Matrices
This work is derived from Eureka Math โ„ข and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from PreCal-M1-TE-1.3.0-07.2015
321
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 23
NYS COMMON CORE MATHEMATICS CURRICULUM
M1
PRECALCULUS AND ADVANCED TOPICS
b.
Where will the object be located at ๐’• = ๐Ÿ. ๐Ÿ“ seconds?
๐Ÿ“๐…
๐Ÿ“๐…
โˆ’โˆš๐Ÿ โˆš๐Ÿ
๐œ๐จ๐ฌ ( ) โˆ’๐ฌ๐ข๐ง ( )
๐ŸŽ
๐Ÿ’
๐Ÿ’
๐Ÿ’
๐Ÿ’
๐Ÿ
๐Ÿ
๐‘ญ(๐Ÿ. ๐Ÿ“) = (
)( ) =
( )=(
)
๐Ÿ“๐…
๐Ÿ“๐…
๐Ÿ’
โˆ’๐Ÿ’โˆš๐Ÿ
โˆ’โˆš๐Ÿ โˆ’โˆš๐Ÿ ๐Ÿ’
๐ฌ๐ข๐ง ( ) ๐œ๐จ๐ฌ ( )
๐Ÿ’
๐Ÿ’
๐Ÿ )
( ๐Ÿ
c.
โˆ’๐Ÿ–โˆš๐Ÿ”
How long does it take the object to reach (
)?
๐Ÿ–โˆš๐Ÿ
๐…๐’•
โก๐Ÿ–โˆš๐Ÿโก
๐… ๐…๐’•
๐…
๐Ÿ
โˆ’๐Ÿ–โˆš๐Ÿ”โก
The point (
) is in Quadrant II; the reference angle is
= ๐š๐ซ๐œ๐ญ๐š๐ง (
) = ๐Ÿ”, ๐Ÿ = ๐Ÿ”,๐’• = ๐Ÿ‘
๐Ÿ
๐Ÿ–โˆš๐Ÿ”
๐Ÿ–โˆš๐Ÿโก
second.
It takes ๐Ÿ. ๐Ÿ“ seconds to rotate the point to ๐…; therefore, ๐Ÿ. ๐Ÿ“ โˆ’
โก๐…๐’•โก
5.
โก๐Ÿโก โก๐Ÿ•โก
= second.
๐Ÿ‘
๐Ÿ”
โก๐…๐’•โก
๐œ๐จ๐ฌ ( ) โˆ’๐ฌ๐ข๐ง ( )
โˆ’๐Ÿ
๐Ÿ‘
๐Ÿ‘
Let ๐‘ญ(๐’•) = (
).
)(
โก๐…๐’•โก
โก๐…๐’•โก
โˆ’โˆš๐Ÿ‘
๐ฌ๐ข๐ง ( ) ๐œ๐จ๐ฌ ( )
๐Ÿ‘
๐Ÿ‘
a.
Draw the path that ๐‘ท = ๐‘ญ(๐’•) traces out as ๐’• varies within the interval ๐ŸŽ โ‰ค ๐’• โ‰ค ๐Ÿ.
b.
How long does it take the object to reach (โˆš๐Ÿ‘, ๐ŸŽ)?
The point (โˆš๐Ÿ‘, ๐ŸŽ) lies on the ๐’™-axis. Therefore, ๐’• = ๐Ÿ seconds to rotate to the point (โˆ’๐Ÿ, โˆ’โˆš๐Ÿ‘).
c.
How long does it take the object to return to its starting point?โก
It takes ๐Ÿ”โกseconds.
6.
Find the function that will rotate the point (๐Ÿ’, ๐Ÿ) about the origin to the point (โˆ’๐Ÿ’, โˆ’โก๐Ÿ) over the following time
intervals.
a.
Over a ๐Ÿ-second interval
๐œ๐จ๐ฌ(๐…๐’•) โˆ’๐ฌ๐ข๐ง(๐…๐’•) ๐Ÿ’
๐’‡(๐’•) = (
)( )
๐ฌ๐ข๐ง(๐…๐’•) ๐œ๐จ๐ฌ(๐…๐’•) ๐Ÿ
b.
Over a ๐Ÿ-second interval
๐…๐’•
๐…๐’•
๐œ๐จ๐ฌ ( ) โˆ’๐ฌ๐ข๐ง ( )
๐Ÿ’
๐Ÿ
๐Ÿ
๐’‡(๐’•) = (
๐…๐’•
๐…๐’• ) (๐Ÿ)
๐ฌ๐ข๐ง ( ) ๐œ๐จ๐ฌ ( )
๐Ÿ
๐Ÿ
Lesson 23:
Modeling Video Game Motion with Matrices
This work is derived from Eureka Math โ„ข and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from PreCal-M1-TE-1.3.0-07.2015
322
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 23
NYS COMMON CORE MATHEMATICS CURRICULUM
M1
PRECALCULUS AND ADVANCED TOPICS
c.
๐Ÿ
Over a -second interval
๐Ÿ‘
๐œ๐จ๐ฌ(๐Ÿ‘๐…๐’•) โˆ’๐ฌ๐ข๐ง(๐Ÿ‘๐…๐’•) ๐Ÿ’
๐’‡(๐’•) = (
)( )
๐ฌ๐ข๐ง(๐Ÿ‘๐…๐’•) ๐œ๐จ๐ฌ(๐Ÿ‘๐…๐’•) ๐Ÿ
d.
๐Ÿ’
How about rotating it back to where it starts over a -second interval?
๐Ÿ“
๐Ÿ“๐…๐’•
๐Ÿ“๐…๐’•
๐œ๐จ๐ฌ (
) โˆ’๐ฌ๐ข๐ง (
)
๐Ÿ
๐Ÿ ) (๐Ÿ’)
๐’‡(๐’•) = (
๐Ÿ“๐…๐’•
๐Ÿ“๐…๐’•
๐Ÿ
๐ฌ๐ข๐ง (
) ๐œ๐จ๐ฌ (
)
๐Ÿ
๐Ÿ
7.
Summarize the geometric effect of the following function at the given point and the time interval.
โก๐…๐’•โก
a.
โก๐…๐’•โก
๐Ÿ“โ€Š๐œ๐จ๐ฌ ( ) โˆ’๐Ÿ“โ€Š๐ฌ๐ข๐ง ( ) ๐Ÿ’
๐Ÿ’
๐Ÿ’
๐‘ญ(๐’•) = (
)( ),๐ŸŽ โ‰ค ๐’• โ‰ค ๐Ÿ
โก๐…๐’•โก
โก๐…๐’•โก
๐Ÿ‘
๐Ÿ“โ€Š๐ฌ๐ข๐ง ( ) ๐Ÿ“โ€Š๐œ๐จ๐ฌ ( )
๐Ÿ’
๐Ÿ’
๐Ÿ’
๐Ÿ๐ŸŽ
At ๐’• = ๐ŸŽ, the point ( ) is dilated by a factor of ๐Ÿ“ to ( ).
๐Ÿ‘
๐Ÿ๐Ÿ“
๐…
๐Ÿ๐ŸŽ
At ๐’• = ๐Ÿ, the image ( ) then is rotated by radians counterclockwise about the origin.
๐Ÿ๐Ÿ“
๐Ÿ’
b.
๐Ÿ
โก๐…๐’•โก
๐œ๐จ๐ฌ ( )
๐Ÿ
๐Ÿ”
๐‘ญ(๐’•) = (
๐Ÿ
โก๐…๐’•โก
๐ฌ๐ข๐ง ( )
๐Ÿ
๐Ÿ”
๐Ÿ
โก๐…๐’•โก
) ๐Ÿ”
๐Ÿ
๐Ÿ”
)( ),๐ŸŽ โ‰ค ๐’• โ‰ค ๐Ÿ
๐Ÿ
โก๐…๐’•โก
๐Ÿ
๐œ๐จ๐ฌ ( )
๐Ÿ
๐Ÿ”
โˆ’ ๐ฌ๐ข๐ง (
๐Ÿ
๐Ÿ”
๐Ÿ‘
At ๐’• = ๐ŸŽ, the point ( ) is dilated by a factor of to ( ).
๐Ÿ
๐Ÿ
๐Ÿ
๐…
๐Ÿ‘
At ๐’• = ๐Ÿ, the image ( ) then is rotated by radians counterclockwise about the origin.
๐Ÿ
๐Ÿ”
8.
In programming a computer video game, Grace coded the changing location of a rocket as follows:
๐’™
At the time ๐’• second between ๐’• = ๐ŸŽ seconds and ๐’• = ๐Ÿ’ seconds, the location (๐’š) of the rocket is given by
๐…
๐…
๐œ๐จ๐ฌ ( ๐’•)โก โˆ’๐ฌ๐ข๐ง ( ๐’•)
โˆš๐Ÿ
๐Ÿ’
๐Ÿ’
(
๐…
๐… )( ).
โˆš๐Ÿ
๐ฌ๐ข๐ง ( ๐’•) ๐œ๐จ๐ฌ ( ๐’•)
๐Ÿ’
๐Ÿ’
At a time of ๐’• seconds between ๐’• = ๐Ÿ’ and ๐’• = ๐Ÿ– seconds, the location of the rocket is given by
โˆš๐Ÿ
โก(๐’• โˆ’ ๐Ÿ’)
๐Ÿ
.
โˆš๐Ÿ
โˆ’โˆš๐Ÿ +
โก(๐’• โˆ’ ๐Ÿ’)
๐Ÿ
(
)
โˆ’โˆš๐Ÿ +
a.
What is the location of the rocket at time ๐’• = ๐ŸŽ? What is its location at time ๐’• = ๐Ÿ–?
๐œ๐จ๐ฌ(๐ŸŽ) โˆ’๐ฌ๐ข๐ง(๐ŸŽ)โก โˆš๐Ÿ
๐Ÿ ๐ŸŽ โˆš๐Ÿ
At ๐’• = ๐ŸŽ, (
)( ) = (
) ( ) = (โˆš๐Ÿ).
๐ฌ๐ข๐ง(๐ŸŽ) ๐œ๐จ๐ฌ(๐ŸŽ)
๐ŸŽ ๐Ÿ โˆš๐Ÿ
โˆš๐Ÿ
โˆš๐Ÿ
โˆš๐Ÿ
โˆ’โˆš๐Ÿ + (๐Ÿ– โˆ’ ๐Ÿ’)
โˆ’โˆš๐Ÿ + ๐Ÿโˆš๐Ÿ
๐Ÿ
At ๐’• = ๐Ÿ’, (
)=(
) = (โˆš๐Ÿ).
โˆš๐Ÿ
โˆ’โˆš๐Ÿ
+
๐Ÿโˆš๐Ÿ
โˆš๐Ÿ
(๐Ÿ–
โˆ’โˆš๐Ÿ +
โˆ’ ๐Ÿ’)
๐Ÿ
Lesson 23:
Modeling Video Game Motion with Matrices
This work is derived from Eureka Math โ„ข and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from PreCal-M1-TE-1.3.0-07.2015
323
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 23
NYS COMMON CORE MATHEMATICS CURRICULUM
M1
PRECALCULUS AND ADVANCED TOPICS
b.
Mason is worried that Grace may have made a mistake and the location of the rocket is unclear at time
๐’• = ๐Ÿ’โก seconds. Explain why there is no inconsistency in the location of the rocket at this time.
๐œ๐จ๐ฌ(๐…) โˆ’๐ฌ๐ข๐ง(๐…)โก ๐Ÿ
โˆ’๐Ÿ ๐ŸŽ
โˆ’โˆš๐Ÿ
At ๐’• = ๐Ÿ’, (
)( ) = (
) (โˆš๐Ÿ) = (
).
๐ฌ๐ข๐ง(๐…) ๐œ๐จ๐ฌ(๐…)
๐ŸŽ โˆ’๐Ÿ โˆš๐Ÿ
๐Ÿ
โˆ’โˆš๐Ÿ
โˆš๐Ÿ
โˆ’โˆš๐Ÿ + (๐Ÿ’ โˆ’ ๐Ÿ’)
โˆ’โˆš๐Ÿ
๐Ÿ
At ๐’• = ๐Ÿ’, (
)=(
).
โˆš๐Ÿ
โˆ’โˆš๐Ÿ
(๐Ÿ’
โˆ’โˆš๐Ÿ +
โˆ’ ๐Ÿ’)
๐Ÿ
These are consistent.
c.
What is the area of the region enclosed by the path of the rocket from time ๐’• = ๐ŸŽ to ๐’• = ๐Ÿ–?
The path traversed is a semicircle with a radius of ๐Ÿ; the area enclosed is ๐‘จ =
Lesson 23:
Modeling Video Game Motion with Matrices
This work is derived from Eureka Math โ„ข and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from PreCal-M1-TE-1.3.0-07.2015
๐…๐’“๐Ÿ ๐Ÿ’๐…
=
= ๐Ÿ๐… square units.
๐Ÿ
๐Ÿ
324
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.