Fuel Cell Research Activities at the University of Leoben Focus: Solid Oxide Fuel Cells Werner Sitte Chair of Physical Chemistry, University of Leoben, Austria IEA Workshop Advanced Fuel Cells, TU Graz, 01.09.2010 1 State-of-the-art and motivation for research on IT-SOFCs h Lifetime/degradation Reduced degradation rate of thermally activated cell degradation mechanisms Reduced corrosion rate of chromium-based alloys and steels for interconnects Metal, metal-ceramic (compressible) seals and non crystallizing glass Stability of contact coatings Lower sensitivity for combined thermal-redox cycles h Costs Lifetime Cheap interconnect chromium alloys / steels and BOP materials Industrial, cost effective manufacturing processes h Fuel flexibility and high efficiency H2 and reformates Internal reforming of NG (simplest and most efficient system) - Low catalytic activity for carbon deposition IEA Workshop Advanced Fuel Cells, TU Graz, 01.09.2010 2 Participation of University of Leoben in the Integrated Project SOFC600 (2006-2010) Project Consortium 7 Universities 11 R&D organisations 3 Industrial companies, all SMEs ECN HTceramix CEA EMPA FZJ Imperial College Netherlands Switzerland France Switzerland Germany United Kingdom Uni Karlsruhe Uni St.Andrews Uni Oxford Uni Leoben CNRS Bordeaux TOFC AECA (NTDA-SOFC) NRC DICP IPMS SJTU BIC PMI VTT Risø - DTU IEA Workshop Advanced Fuel Cells, TU Graz, 01.09.2010 Germany United Kingdom United Kingdom Austria France Denmark Spain Canada China Ukraine China Russia Belarus Finland Denmark 3 SOFC600: Component and cell development J-V curve Cell housing Porosity PSCF LN Phase transition Wet deposition Catalyst Ceria PN LNF PVD Grain size LSC-GCO LSCF Powder 20GCO Impedance Sintering Barrier Layer Ni-salt Lateral conductivity Reactivity Cr-resistance Coking Ni/YSZ Anode substrate MgO S-tolerance Thin film Internal reforming Polarisation Milling Redox Ni/ScZ Microstructure Impregnation 8YSZ LiMOCVD Ni/GCO Expansion Oxide anode Ce-reduction Grain size YDC Layer Thickness Aging Partial oxygen pressure 10-100 cm2 cell ASR < 0.5 ohm.cm2 Degradation rate < 1 mohm.cm2/khr Nano-LSC LSC Hf-Zr Cell composition Sealing Screen printing CO2 Yb-Zr 10Sc1CeZr Grain boundary Cell integration Co-firing Stability Y-Ce-Sc-Zr Dopant Gas flow Kinetics Oxygen ionic conductivity Ionic radius EB-PVD Area specific resistance Contacting NN Cell area Current collector grid Cell temperature Reference cells Cell housing LST © Integrated Project SOFC600 (SES6-2006-020089), F. van Berkel Robustness Particle size Poreformer Milling S/C SYT Dilatometry Overall Achievements Cell Development SOFC600 h SOFC cell at 600oC Area Specific Resistance (ASR) below 0,5 Ω.cm2 Degradation rate below 0.05% / 1000 hours (1 mohm.cm2/khr) Robustness: 200 redox cycles, internal reforming capability, reduced coke formation activity 2500 2250 Aim for components: Anode (WP1.1) < Cathode (WP1.2) < Electrolyte (WP1.3) < Cell (WP1.4) < status 2003/04 (CORE-SOFC) ASR / mΩ cm 2 2000 1750 1500 1250 tentative status 2005 (REALSOFC) 1000 750 500 0.3 ohm.cm2 0.15 ohm.cm2 0.1 ohm.cm2 0.5 ohm.cm2 project target 250 550 600 650 700 750 800 Temperature / °C IEA Workshop Advanced Fuel Cells, TU Graz, 01.09.2010 5 University of Leoben: SOFC Activities e- e- poröses NiO/YSZ H2 e- H 2O SOFC Cathodes Oxygen exchange properties of BSCF, LSCF, NDN including long time stability in real atmospheres O2- dichtes YSZ poröses dotiertes CeO2 SOFC Electrolytes Sc-ZrO2 bulk and grain boundary conductivity = f(T, pO2) ageing studies O2 e- poröses LSCF IEA Workshop Advanced Fuel Cells, TU Graz, 01.09.2010 e- eQuelle: ECN Niederlande 6 SOFC cathodes: BSCF BSCF in different atmospheres h CO2-free atmosphere: Reversible oxygen exchange of perovskite phase (ABO3-δ) 1 2 O 2 (g) + VO•• + 2e′ ⇔ OOx [ VO•• ] = δ = f (T, pO 2 ) h CO2-rich atmosphere: Onset of oxygen exchange shifted towards higher T E. Bucher et al., in Proc. 8th Eur. SOFC Forum, 2008, p. A0603. IEA Workshop Advanced Fuel Cells, TU Graz, 01.09.2010 7 SOFC cathodes: LSCF vs. NDN h Long term stability of the oxygen exchange kinetics of Nd2NiO4+δ (NDN) and La0.58Sr0.4Co0.2Fe0.8O3-δ (LSCF) in dry and wet atmospheres at 700°C T=700°C A. Egger et al., J. Electrochem. Soc., in press (2010) IEA Workshop Advanced Fuel Cells, TU Graz, 01.09.2010 8 Sc-doped zirconia electrolytes Impedance spectra in oxidizing and reducing atmospheres (300 C) Y0.2Sc0.6Zr3.2O7.60 Ce0.12Y0.08Sc0.6Zr3.2O7.66 2.5 2.5 Rbulk Lss Rgb Rel CPEgb CPEel -Z'' / MΩ cm -Z'' / MΩ cm CPEbulk p(O2) = 0.21 bar, T = 300°C 1%-H2/Ar , T = 300°C 1.0 Rel CPEbulk CPEgb CPEel 1.5 p(O2) = 0.21 bar, T = 300°C 1%-H2/Ar , T = 300°C 1.0 0.5 0.5 0.0 0.0 Rgb 2.0 2.0 1.5 Rbulk Lss 0.5 1.0 1.5 Z' / MΩ cm 2.0 2.5 0.0 0.0 0.5 1.0 1.5 2.0 2.5 Z' / MΩ cm [W. Preis, A. Egger, J. Waldhäusl, W. Sitte, E. de Carvalho, J.T.S. Irvine, SOFC XI, ECS Transactions 25 (2009) 1635-1642] IEA Workshop Advanced Fuel Cells, TU Graz, 01.09.2010 9 Sc-doped zirconia electrolytes Bulk conductivity as a function of temperature in oxidizing and reducing atmospheres Comparison between Y0.2Sc0.6Zr3.2O7.60 and Ce0.12Y0.08Sc0.6Zr3.2O7.66: heating in air (oxidizing conditions) and cooling in 1%-H2/Ar after reduction at 700°C for approx. 4 days Y0.2Sc0.6Zr3.2O7.60 Ce0.12Y0.08Sc0.6Zr3.2O7.66 heating in air (300 → 700°C) cooling in 1% - H2 / Ar (700 → 300°C) 4 heating in air (300 → 700°C) cooling in 1% - H2 / Ar (700 → 300°C) EA = (0.92 ± 0.02) eV 4 EA = (0.99 ± 0.03) eV 560 < T/°C < 700 560 < T/°C < 700 -2 EA = (1.27 ± 0.01) eV 560 < T/°C < 700 300 < T/°C < 560 -4 0 EA = (1.24 ± 0.01) eV -1 EA = (0.99 ± 0.03) eV ln(σT / S cm K) 2 0 -1 ln(σT / S cm K) 2 -2 560 < T/°C < 700 -4 EA = (1.27 ± 0.01) eV -6 EA = (1.27 ± 0.01) eV -6 300 < T/°C < 560 -8 300 < T/°C < 560 EA = (1.05 ± 0.02) eV 300 < T/°C < 560 -8 1.0 1.1 1.2 1.3 1.4 3 1.5 10 (T / K) -1 1.6 1.7 1.8 1.0 1.1 1.2 1.3 1.4 3 10 (T / K) IEA Workshop Advanced Fuel Cells, TU Graz, 01.09.2010 1.5 1.6 1.7 1.8 -1 10 Sc-doped zirconia electrolytes Grain boundary conductivity as a function of temperature in oxidizing and reducing atmospheres Comparison between Y0.2Sc0.6Zr3.2O7.60 and Ce0.12Y0.08Sc0.6Zr3.2O7.66: heating in air (oxidizing conditions) and cooling in 1%-H2/Ar after reduction at 700°C for approx. 4 days Y0.2Sc0.6Zr3.2O7.60 heating in air (300 → 700°C) cooling in 1% - H2 / Ar (700 → 300°C) 6 4 4 2 2 -1 EA = (1.27 ± 0.01) eV 0 -2 EA = (1.30 ± 0.01) eV -4 -2 -8 -8 1.2 1.3 1.4 3 1.5 10 (T / K) 1.6 1.7 1.8 EA = (1.28 ± 0.01) eV -4 -6 1.1 EA = (1.28 ± 0.01) eV 0 -6 1.0 heating in air (300 → 700°C) cooling in 1% - H2 / Ar (700 → 300°C) 6 ln(σT / S cm K) -1 ln(σT / S cm K) Ce0.12Y0.08Sc0.6Zr3.2O7.66 1.0 1.1 1.2 1.3 -1 IEA Workshop Advanced Fuel Cells, TU Graz, 01.09.2010 1.4 3 1.5 10 (T / K) 1.6 1.7 1.8 -1 11 Sc-doped zirconia electrolytes Electrical conductivity as a function of p(O2) at 700°C Bulk conductivity Total (bulk + gb) conductivity 0.1 0.1 -1 σtotal / S cm σbulk / S cm -1 T = 700°C Y0.20Sc0.6Zr3.2O7.60 Ce0.08Y0.12Sc0.6Zr3.2O7.64 0.01 Ce0.10Y0.10Sc0.6Zr3.2O7.65 Y0.20Sc0.6Zr3.2O7.60 Ce0.08Y0.12Sc0.6Zr3.2O7.64 0.01 Ce0.10Y0.10Sc0.6Zr3.2O7.65 Ce0.12Y0.08Sc0.6Zr3.2O7.66 Ce0.12Y0.08Sc0.6Zr3.2O7.66 Ce0.16Y0.042Sc0.6Zr3.2O7.68 Ce0.16Y0.042Sc0.6Zr3.2O7.68 Ce0.20Sc0.6Zr3.2O7.70 -24 -20 -16 -12 -8 log[p(O2) / bar] -4 Ce0.20Sc0.6Zr3.2O7.70 0 -24 -20 -16 -12 -8 -4 0 log [p(O2) / bar] All samples containing ceria show a remarkable decrease of the ionic conductivity at p (O2) < 10-15 bar This effect is even more pronounced for grain boundaries IEA Workshop Advanced Fuel Cells, TU Graz, 01.09.2010 12 Sc-doped zirconia electrolytes Aging study of (CeO2)0.01(Sc2O3)0.10(ZrO2)0.89 at 700° under 1%-H2/Ar 0.08 air 1%-H2/Ar 0.06 σ / S cm -1 0.04 0.02 bulk grain boundaries total (= bulk + gb) 0 1000 2000 3000 4000 5000 6000 t / hours [W. Preis, A. Egger, J. Waldhäusl, W. Sitte, E. de Carvalho, J.T.S. Irvine, SOFC XI, ECS Transactions 25 (2009) 1635-1642] IEA Workshop Advanced Fuel Cells, TU Graz, 01.09.2010 13 Outlook: Research on SOFC components for stationary and mobile applications SOFC Cathodes Cathodes for solid oxide fuel cells with respect to long term stability under real operating conditions including failure analysis of degraded cathodes - Partners: AVL List GmbH and FZ Jülich Structure-property relations of thin film SOFC cathodes (oxygen exchange properties, defect chemistry) - Partners: Joanneum Research Forschungsgesellschaft mbH, TU Wien SOFC Electrolytes Development of co-doped Sc-zirconia electrolytes (bulk and grain boundary conductivity as function of temperature and oxygen partial pressure, defect chemistry, ageing studies) - Partner: University of St. Andrews, UK IEA Workshop Advanced Fuel Cells, TU Graz, 01.09.2010 14 Acknowledgment Research Co-operations ... Financial Support ... IEA Workshop Advanced Fuel Cells, TU Graz, 01.09.2010 15 15 Thank you for your attention! IEA Workshop Advanced Fuel Cells, TU Graz, 01.09.2010 16
© Copyright 2026 Paperzz