The impact of temperature on marine phytoplankton resource allocation and metabolism Thomas Mock School of Environmental Sciences University of East Anglia Norwich Research Park UK Missing slide (animation) Latitudinal gradient in the optimal temperature for growth of phytoplankton strains (n=194, R2 = 0.55, p-value < 0.0001) Mridul K. Thomas et al. (2012), Science 338, 1085 The predicted impact of global warming on phytoplankton diversity Mridul K. Thomas et al. (2012), Science 338, 1085 Loss of phytoplankton biomass due to global warming DG Boyce et al. Nature 466, 591-596 (2010) doi:10.1038/nature09268 Physical drivers of phytoplankton trends DG Boyce et al. Nature 466, 591-596 (2010) doi:10.1038/nature09268 How does global warming impact phytoplankton resource allocation and biogeochemical cycles in the ocean? 1) Identify how temperature impacts metabolism and resource allocation in phytoplankton on a global scale 2) Identify whether there are species-specific differences in temperature-dependent metabolism and resource allocation 3) Linking temperature-dependent algal subcellular physiology to the global scale to predict future trends in biogeochemical cycling in the surface ocean Eukaryotic phytoplankton metatranscriptomes Strong seasonality Medium nutrient conc. -1°C Strong seasonality +1°C Medium nutrient conc. Strong seasonality +12°C High nutrient conc. Low seasonality +27°C HNLC NPAC EPAC Strong seasonality -2°C HNLC ANT ARC NATL Sampling and libraries Toseland et al., 2013, Nature Climate Change, 3:979-984 temperate cluster polar cluster PhymmBL taxonomy GO: biological processes Canonical Correspondence Analysis Ribosomal transcripts (mRNA) Temperature-dependence of translation in eukaryotic phytoplankton Andrew Toseland Experimental validation of the temperature-dependence of translation in eukaryotic phytoplankton A) Ribosomes Eukaryotic ribosomal protein S14 (Western Blots) Temperature experiments with F. cylindrus (qPCRs) Amy Kirkham, Jan Strauss N=3 B) “Translation efficiency” experiment with inducible (NO3) GFP in T. pseudonana mGFP 20°C = 0.260 %/min mGFP 11°C = 0.094 %/min 20°C % GFP 11°C 20°C Lag 11°C Lag Time (minutes after the addition of nitrate) Amy Kirkham B) Synthesis of RNA (rRNA) Purine and Pyrimidine metabolism in metatranscriptomes Jan Strauss Temperature impact on phytoplankton Cold temperature Warm temperature Plastid Ribosome Mitochondrion Nucleus Any impact on biogeochemical cycles? • Translation machinery: ribosomes rRNA Single largest pool of phosphorous in a cell N:P ratio Linking temperature-dependent algal subcellular physiology to the global scale A) Cell model Stuart Daines, James Clark GO-term Term Clouds Overrepresented in EPAC (hot) vs ANT (cold) Overrepresented in ANT (cold) vs EPAC (hot) Linking temperature-dependent algal subcellular physiology to the global scale B) Coupling the cell model with a global circulation model (MIT) Stuart Daines, James Clark Making predictions Stuart Daines, James Clark Conclusions • First study that links Omics with resource allocation and global biogeochemical cycles • First study on phytoplankton that shows that temperature is as significant as nutrients and light for metabolism and resource allocation Challenges Fundamental biochemical data (such as peptide elongation rates in phytoplankton) Acknowledgements My group in Norwich: Dr. Jan Strauss Dr. Amy Kirkham Dr. Bobbie Lyon Dr. Andrew Curson Andrew Toseland (PhD student) Katrin Schmidt (PhD student) Krisztina Sarkozi (PhD student) Matt Beckers (PhD student) Amanda Hopes (PhD student) Rob Utting (Technician) NRP, Uni. Exeter, AWI, Faro, PML Vincent Moulton (CMP) Mario Caccamo (TGAC) Tim Lenton (Exeter) Stuart Daines (Exeter) Klaus Valentin, Christiane Uhlig (AWI) Gareth Pearson (Faro) Jim Clark (PML)
© Copyright 2026 Paperzz