Chapter 9: Issues Relevant to Statistical Process Control by Variables Learning Objectives Discuss the importance of measurement processes to the effective control of quality. Differentiate between the concepts of accuracy and precision, and describe how measurement processes can be evaluated with respect to each. Test for linearity in a measurement process and explain why linearity is important. Conduct a measurement study to compute the components of measurement error, including bias, repeatability, and reproducibility. Learning Objectives Conduct a measurement study using Minitab software. Compute the signal-to-noise ratio (SNR) and the ratio r and apply to the evaluation of measurement variation. Differentiate between resolution and discrimination and compute a discrimination ratio to evaluate the suitability of any measurement process. Discuss the three fundamental reasons for collecting data from industrial processes and how each reason impacts quality improvement programs. Learning Objectives Describe how different sampling schemes can affect a process analysis and conclusions concerning process behavior. Determine process capability for one-sided and twosided specifications for normally distributed data and interpret the results. Determine process capability for one-sided and twosided specifications for when data are not normally distributed and interpret the results. Learning Objectives Use Minitab software to conduct capability analyses. Use control charts to isolate and separate sources of process variation. Accuracy and Precision The average measurement corresponds to the true value Truth Truth . .. . . .. . . . truth time Figure 9-1: An Accurate Measurement Process . . . . . Truth .. . . . truth . time Imprecise Measurement Process Truth . . . . ... .. . . .. Precise Measurement Process Figure 9-2: Measurement Precision truth time Biconical Disc Upper Die Upper Heating Platen Gate Tolerances Sample 3 (large) Die Cavity Where Samples Are Loaded j = torque Sample 2 (medium) Lower Die Lower Heating Platen Oscillating Rotor Shaft Output Measures for an Oscillating Disc Rheometer: Sample 1 (small) time t = 3 min • Elastic Modulus • Viscous Modulus • Tangent Delta • Cure Rate Rheometer Plots for One Batch of Rubber Figure 9-3: A Rheometer Test for Tire Rubber 10 Measuring Known Standard 1 458 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 456.71 453.29 455.24 453.84 455.45 455.25 455.66 455.36 455.40 453.74 456.42 454.91 455.21 457.86 456.59 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 453.85 454.74 455.67 453.18 454.82 457.69 455.41 454.35 454.28 455.63 456.31 455.94 454.75 454.62 453.81 1 UCL=457.452 457 456 Individual Value Weights Weights of 454 of 454 Measurement Measurement gm gm Standard Standard 455 _ X=454 454 453 452 451 LCL=450.548 450 1 4 7 10 13 16 19 Observation 22 25 28 31 Testing Whether Average = True Value Measuring Known Standard 459 UCL=458.608 458 Figure 9-4: A Test for Accuracy Individual Value 457 456 _ X=455.156 455 454 453 452 LCL=451.704 451 1 4 7 10 13 16 19 Observation 22 25 28 31 Actual Average of Process Linearity Bivariate Fit of Actual Average By Measured Standard 1250 Ac tual Av erage 1000 Plot of Average Measures Against Standards Measured 750 500 250 0 0 250 500 750 1000 1250 Meas ured Standar d Bivariate Fit of Actual Average By Measured Standard 1250 Actual Average 1000 750 500 250 Figure 9-5: Test for Linearity 0 0 250 500 750 Measured Standard Li near Fi t 1000 1250 How to Conduct a Measurement Study Measured Value = True Mean of the Process + Process Variability + Measurement Bias + Operator Effect (Reproduceability) + Replication Error (Repeatability) 2 2 x2 process measurement where 2 x2 = total observed variance = observed 2 x 2 process = variance due to process 2 measurement = variance due to measurement 2 2 2 2 measurement bias repeatability reproduceabil ity True Mean Figure 9-6: Anatomy of a Measurement Measurement Data; Jack and Jill Combined Sample Size: n = 4 UCL=455.861 _ _ X=454.001 454 LCL=452.141 452 1 4 7 10 13 16 Sample 19 22 25 28 6 Sample Range Sample Mean 456 UCL=5.824 4 _ R=2.553 2 0 LCL=0 1 4 7 10 13 16 Sample 19 22 25 28 2 bias 0 2 2 measurement R 2.553 2 2 1.2399 1.537 d 2.059 2 measurement 1.537 1.240 Figure 9-7: Measurement Study Measurement Data; Jack followed by Jane Sample Size: n = 2 UCL=456.548 Sample Mean 456 _ _ X=454.001 454 452 LCL=451.454 1 1 7 13 19 25 37 43 49 55 1 1 4.5 Sample Range 31 Sample UCL=4.425 Jane is more variable than Jack 3.0 _ R=1.354 1.5 0.0 LCL=0 1 7 13 19 25 31 Sample 37 43 49 55 Figure 9-8: Combining Two Operators on One Chart Jack Jane Measurement Data; Jack's Data Sample Size: n = 2 UCL=456.221 Sample Mean 456 _ _ X=453.923 454 452 LCL=451.626 1 4 7 10 13 16 Sample 19 22 25 28 4.5 Sample Range UCL=3.992 Jack 3.0 Jack R 1.222 1.08 d 2 1.128 in control _ R=1.222 1.5 0.0 LCL=0 1 4 7 10 13 16 Sample 19 22 25 28 Measurement Data; Jane's Data Sample Size: n = 2 UCL=456.873 Sample Mean 456 _ _ X=454.079 454 452 LCL=451.285 1 1 4 7 10 13 16 Sample 19 22 25 28 R 1.486 1.32 d 2 1.128 out of control UCL=4.854 4.5 Sample Range Jane Jane 3.0 _ R=1.486 1.5 0.0 LCL=0 1 4 7 10 13 16 Sample 19 22 25 28 Figure 9-9: Independent Charts for Measurement Data SNR observed 14.128 11.39 measurement 1.240 2 1.537 1 measurement 0.0077 2 2 SNR 14.128 observed 2 0.77% of observed variation is due to measurement error Production Data; Jack and Jane Combined Sample Mean Sample Size: n = 4 480 UCL=481.42 460 _ _ X=460.23 observed R 29.09 14.128 d 2 2.059 2 2 2 observed process measurement 440 LCL=439.04 1 7 13 19 25 31 Sample 37 43 49 55 UCL=66.36 2 process 14.128 1.537 198.06 2 process 198.06 14.07 Sample Range 60 40 _ R=29.09 20 0 LCL=0 1 7 13 19 25 31 Sample 37 43 49 55 Figure 9-10: Production Data; Jack and Jane Combined Variables Control Chart Variables Control Chart Variables Control Chart XBar of Nearest 1000 12.200 12.155 12.145 12.140 Avg=12.13950 12.135 Mean of Nearest 100 UCL=12.14810 LCL=12.13090 12.130 12.150 UCL=12.15020 12.145 12.140 Avg=12.14000 12.135 Mean of Nearest 10 12.150 Mean of Nearest 1000 XBar of Nearest 10 XBar of Nearest 100 12.175 UCL=12.17746 12.150 12.125 Avg=12.12500 12.100 12.075 12.130 LCL=12.12980 12.125 2 4 6 8 10 12 14 16 18 20 22 24 26 28 LCL=12.07254 12.050 2 4 6 8 10 12 14 16 18 20 22 24 26 28 2 4 6 8 10 12 14 16 18 20 22 24 26 28 Sample Sample Sample Note: Sigma used for limits based on range. Note: Sigma used for limits based on range. Note: Sigma used for limits based on range. R of Nearest 1000 0.035 0.020 0.015 Avg=0.01180 0.010 0.005 0.000 LCL=0.00000 -0.005 Range of Nearest 100 UCL=0.02693 0.025 UCL=0.03195 0.030 0.025 0.020 0.015 Avg=0.01400 0.010 0.005 Sample A Resolution to the Nearest 1000th of an Inch 13 Different Range Values 0.10 Avg=0.0720 0.05 0.00 0.000 LCL=0.0000 LCL=0.00000 -0.005 2 4 6 8 10 12 14 16 18 20 22 24 26 28 UCL=0.1643 0.15 Range of Nearest 10 0.030 Range of Nearest 1000 R of Nearest 10 R of Nearest 100 2 4 6 8 10 12 14 16 18 20 22 24 26 28 2 4 6 8 10 12 14 16 18 20 22 24 26 28 Sample Sample B Resolution to the Nearest 100th of an Inch 3 Different Range Values C Resolution to the Nearest 10th of an Inch 2 Different Range Values – 28% Zeroes Figure 9-11: Charts Showing Different Levels of Discrimination Figure 9-13: Pull Down Menu Sequence for Linearity and Bias Test Enter Column Names Then Click on “OK” Figure 9-14: Linearity and Bias Dialogue Box Gage Linearity and Bias Study for Process A G age name: D ate of study : Reported by : Tolerance: M isc: M easurement P rocess A 1.5 Regression 95% CI Data Avg Bias 1.0 Large p values mean that process provides linear results over range of reference values P redictor C onstant S lope S G age Linearity C oef S E C oef -0.2212 0.2077 0.0003536 0.0003424 0.756464 0.5 Bias 0.0 0 -0.5 -1.0 Reference A v erage 100 300 500 700 1000 R-S q G age Bias Bias -0.037351 -0.092200 -0.099472 -0.343129 0.206581 0.141467 P 0.292 0.307 2.2% P 0.731 0.599 0.619 0.312 0.413 0.591 Large p values mean that bias is not statistically significant -1.5 -2.0 0 200 400 600 800 Refer ence V alue 1000 Figure 9-15: Linearity and Bias Analysis for Measurement Process A Gage Linearity and Bias Study for Process B G age name: D ate of study : Reported by : Tolerance: M isc: M easurement P rocess B 3 Regression 95% CI Data Avg Bias Small p values mean that process is not linear over the range of reference values P redictor C onstant S lope S G age Linearity C oef S E C oef -1.1966 0.2530 0.0025251 0.0004171 0.921425 R-S q P 0.000 0.000 43.3% 2 Bias 1 0 0 Reference A v erage 100 300 500 700 1000 G age Bias Bias 0.11642 -1.03403 -0.25433 0.02079 0.48474 1.36491 P 0.394 0.001 0.302 0.957 0.204 0.002 -1 -2 0 200 400 600 800 Refer ence V alue 1000 Small p values mean that bias is statistically significant for large and small values Figure 9-16: Linearity and Bias Analysis for Measurement Process B Gauge R and R Study Figure 9-17: Minitab Worksheet for Gauge R & R Figure 9-18: Drop Down Menu Sequence for Gauge R & R Study Figure 9-19: Gauge R & R Dialogue Box Gage R&R (Xbar/R) for Meas G age name: D ate of study : Reported by : Tolerance: M isc: Jack and Jane M easurement P rocess Components of Variation Meas by Part 100 % Contribution 500 Percent % Study Var 475 50 450 0 Gage R&R Repeat Reprod 1 Part-to-Part 2 3 4 5 6 R Chart by Opr Sample Range Jack 10 11 12 13 14 15 UCL=4.529 500 475 2 _ R=1.386 0 LCL=0 450 Jack Jane Opr Xbar Chart by Opr 475 450 Jack Jane Opr * Part Interaction 500 _ _ UCL=466.49 X=463.89 LCL=461.28 Average 500 Sample Mean 8 9 Part Meas by Opr Jane 4 7 Opr Jack Jane 475 450 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Part Figure 9-20: Gauge R & R Minitab Report Form 1 4 Machine A 3 Machine B 2 Sampling Schemes 1. 1 Inspection Station 2. 3. Alternate between inspection stations 1 and 2 taking samples of size 4 from Machine A, then Machine B, and so on. Take samples of size 4 at inspection station 3 by selecting 2 items from Machine A and 2 items from Machine B. Take samples of size 4 at inspection station 4 by randomly selecting items from the combined output of Machines A and B. Figure 9-21: Various Sampling Schemes from a Two-Machine Production Process Histogram (with Normal Curve) of Machine A Mean StDev N 200 150 Frequency A 18.99 A 2.021 18.99 2.021 2000 100 50 0 12 14 16 18 20 Measurement 22 Histogram (with Normal Curve) of Machine B 200 Mean StDev N 12.05 1.747 2000 24 B 12.05 B 1.747 Frequency 150 100 50 0 6.4 8.0 9.6 11.2 12.8 Measurement LSL = 10mm 14.4 Figure 9-22: Machine Distributions 16.0 Target = 15mm USL = 20mm Xbar-R Chart of Sampling Scheme 1 1 20.0 Sample M ean Rules violations: Rule 1 – 23 points Rule 4 – 16 points Rule 8 – 23 points 1 1 1 1 1 1 17.5 1 1 1 1 4 U C L=18.26 8 _ _ X=15.46 15.0 8 12.5 1 1 1 10.0 1 1 1 4 7 10 1 13 16 Sample 1 1 19 1 22 LC L=12.67 4 1 1 25 1 28 U C L=8.741 Sample Range 8 6 _ R=3.832 4 2 0 LC L=0 1 4 7 10 13 16 Sample 19 22 25 28 R 3.832 1.86 d 2 2.059 Figure 9-23: Control Charts for Sampling Scheme 1 Xbar-R Chart of Sampling Scheme 2 Rules violations: Rule 7 – 5 points U C L=21.68 Sample M ean 20.0 17.5 7 7 15.0 7 12.5 7 _ _ X=15.47 7 10.0 LC L=9.25 1 4 7 10 13 16 Sample 19 22 25 28 Sample Range 20 U C L=19.46 15 10 _ R=8.53 5 0 LC L=0 1 4 7 10 13 16 Sample 19 22 25 28 R 8.53 4.14 d 2 2.059 Figure 9-24: Control Charts for Sampling Scheme 2 Xbar-R Chart of Sampling Scheme 3 Rules violations: None U C L=21.51 Sample M ean 20.0 17.5 _ _ X=15.37 15.0 12.5 10.0 LC L=9.23 1 4 7 10 13 16 Sample 19 22 25 28 Sample Range 20 U C L=19.23 15 10 _ R=8.43 5 0 LC L=0 1 4 7 10 13 16 Sample 19 22 25 28 R 8.43 4.09 d 2 2.059 Figure 9-25: Control Charts for Sampling Scheme 3 ET USL LSL ET USL LSL Capable and Meeting Requirements Not Capable of Meeting Requirements NT 6 x LSL NT 6 x USL Capable and Not Meeting Requirements LSL USL A process is capable if NT ET A process is not capable if NT > ET NT 6 x Figure 9-26: Process Capability Histogram of Trace Contaminants in PPM 30 Mean = 62.6 USL = 150 25 Target = 75 Frequency 20 15 s = 70.15 10 5 0 0 50 100 150 200 250 Parts Per Million 300 350 Figure 9-27: Histogram of Trace Contaminants Histogram of Box-Cox Transformed Trace Contaminant Data With Lambda = 0 20 Mean = 3.46 Target = 4.32 Frequency 15 USL = 5.01 10 s = 1.434 5 0 -1.5 0.0 1.5 3.0 4.5 Transformed Trace Contaminant Density 6.0 Figure 9-28: Transformed Data for Trace Contaminants Process Capability of Trace Contaminants Using Box-Cox Transformation With Lambda = 0 Target* U S L* transformed data P rocess Data LS L * Target 75 USL 150 S ample M ean 62.5975 S ample N 100 S tD ev (Within) 64.6625 S tD ev (O v erall) 70.1488 Within O v erall P otential (Within) C apability Cp * C PL * C P U 0.37 C pk 0.37 O v erall C apability A fter Transformation LS L* Target* U S L* S ample M ean* S tD ev (Within)* S tD ev (O v erall)* Pp * PPL * P P U 0.36 P pk 0.36 C pm 0.14 * 4.31749 5.01064 3.45993 1.41486 1.43437 -1.5 O bserv ed P erformance % < LS L * % > U S L 8.00 % Total 8.00 0.0 E xp. Within P erformance % < LS L* * % > U S L* 13.65 % Total 13.65 1.5 3.0 4.5 6.0 E xp. O v erall P erformance % < LS L* * % > U S L* 13.98 % Total 13.98 Figure 9-29: Minitab Capability Analysis Using Box-Cox Transformation Figure 9-30: Minitab Drop Down Sequence for Capability Analysis If Data is Non-normal Click on “Box-Cox” Enter Desired l Designate Where Data is Found Enter Specifications To Enter a Target Value Click on “Options” Then Enter Target Select Either PPM or % Figure 9-31: Minitab Capability Dialogue Boxes Process Capability of Acme Fastener Dimension LSL Target USL P rocess D ata LS L 11 Target 15.5 USL 20 S ample M ean 14.6492 S ample N 150 S tD ev (Within) 1.71459 S tD ev (O v erall) 1.71793 W ithin Ov erall P otential (Within) C apability Cp 0.87 C P L 0.71 C P U 1.04 C pk 0.71 O v erall C apability Pp PPL PPU P pk C pm 10.5 O bserv ed P erformance P P M < LS L 13333.33 PPM > USL 0.00 P P M Total 13333.33 12.0 13.5 E xp. Within P erformance P P M < LS L 16654.87 PPM > USL 901.95 P P M Total 17556.82 15.0 16.5 18.0 0.87 0.71 1.04 0.71 0.78 19.5 E xp. O v erall P erformance P P M < LS L 16827.53 PPM > USL 920.76 P P M Total 17748.29 Figure 9-32: Minitab Display of Capability Results for Acme Fasteners Figure 9-33: Dropdown Menu Sequence for Non-Normal Distributions Trace Contaminant Data Johnson Transformation with SB Distribution Type 2.461 + 0.874 * Ln( ( X + 5.772 ) / ( 791.123 - X ) ) Target* U S L* transformed data P rocess D ata LS L * Target 75 USL 150 S ample M ean 62.5975 S ample N 100 S tD ev 70.1488 S hape1 2.46109 S hape2 0.874114 Location -5.77218 S cale 796.895 O v erall C apability Pp * PPL * PPU 0.43 P pk 0.43 E xp. O v erall P erformance % < LS L * % > U S L 9.67 % Total 9.67 A fter Transformation LS L* Target* U S L* S ample M ean* S tD ev * * 0.553585 1.22437 0.0124166 0.931791 O bserv ed P erformance % < LS L * % > U S L 8.00 % Total 8.00 -1.6 -0.8 0.0 0.8 1.6 2.4 Figure 9-34: Capability Display Using Johnson Transformation Trace Contaminant Data Using Box-Cox Transformation With Lambda = 0 Xbar C har t C apability H istogr am Sample Mean Target* USL* UCL=5.358 5 Specifications _ _ X=3.460 3 1 3 5 7 9 11 13 15 17 19 -1.5 0.0 1.5 R C har t Sample Range 5.01064 3.0 4.5 6.0 Nor mal P r ob P lot 8 AD: 1.865, P: < 0.005 1 UCL=6.959 _ R=3.291 4 0 LCL=0 1 3 5 7 9 11 13 15 17 19 0 Last 2 0 Subgr oups 5 2.5 0.0 5 10 Sample 10 T r ansfor med C apa P lot Within Within 5.0 Values 4.31749 USL* LCL=1.562 1 15 StDev 1.41486 Cp Cpk * 0.37 Overall O v erall StDev 1.43437 Pp Ppk Cpm * 0.36 0.14 S pecs 20 Trace Contaminant Data Johnson Transformation with SB Distribution Type 2.461 + 0.874 * Ln( ( X + 5.772 ) / ( 791.123 - X ) ) Xbar C har t Sample Mean The Johnson Transformation Shows Better Stability Than the Box-Cox Transformation Target* C apability H istogr am USL* UCL=1.198 1 Specifications USL* _ _ X=0.012 0 -1 LCL=-1.173 1 3 5 7 9 11 13 15 17 19 -1.6 -0.8 Sample Range R C har t 0.0 0.8 1.6 2.4 Nor mal P r ob P lot AD: 0.260, P: 0.704 UCL=4.345 4 _ R=2.055 2 0 LCL=0 1 3 5 7 9 11 13 15 17 19 -2 Last 2 0 Subgr oups 0 0 Pp Ppk -2 10 4 Overall Overall Location Scale 5 2 T r ansfor med C apa P lot 2 Values 1.22437 Normal Probability Plot Indicates That The Johnson Transformation Fits The Normal Distribution Better Than the Box-Cox Transformation 15 0.0124166 0.931791 * 0.43 Specs 20 Sample Figure 9-35: Comparison of Box-Cox and Johnson Transformations for Trace Contaminant Data Figure 9-36: Control Charts for Fill Volume – Combined Stream Figure 9-37: Comparison of Control Charts by Line Most Line 1 Points are Below the Centerline Violates Length of Longest Run Rule Line 1 Line 2 Figure 9-38: Line 1 Data Followed By Line 2 Data Figure 9-39: Line 1 Data Collected By Filler Head Histogram of Filler Head 1 Histogram of Filler Head 2 180 Mean StDev N 160 246.0 1.028 2000 140 160 Head 1 Frequency 80 249.0 0.9946 2000 80 60 40 40 20 20 243 244 245 246 247 Fill Volume 248 0 249 244 245 Histogram of Filler Head 3 246 247 Fill Volume 248 249 250 Histogram of Filler Head 4 180 Mean StDev N 160 248.0 0.9946 2000 140 180 160 140 Head 3 100 80 100 80 60 60 40 40 20 20 245 246 247 248 249 Fill Volume 250 251 Head 4 120 Frequency 120 Frequency Mean StDev N 100 60 0 247.0 0.9752 2000 Head 2 120 100 0 Mean StDev N 140 120 Frequency 180 0 246 247 248 249 Fill Volume 250 Figure 9-40A: Histograms of Fill Volumes – Heads 1 - 4 251 252 Histogram of Filler Head 5 Histogram of Filler Head 6 180 Mean StDev N 160 250.0 1.007 2000 140 Head 5 160 Frequency 80 100 80 60 60 40 40 20 20 247 248 249 250 Fill Volume 251 252 0 253 248 249 Histogram of Filler Head 7 Mean StDev N 140 251 252 Fill Volume 253 254 255 252.0 1.003 2000 180 Mean StDev N 160 140 120 Head 7 Head 8 120 100 Frequency Frequency 250 Histogram of Filler Head 8 160 80 60 100 80 60 40 40 20 20 0 251.0 1.019 2000 Head 6 120 100 0 Mean StDev N 140 120 Frequency 180 249.6 250.4 251.2 252.0 252.8 Fill Volume 253.6 254.4 255.2 0 250 251 252 253 Fill Volume 254 Figure 9-40B: Histograms of Fill Volumes – Heads 5 - 8 255 256 253.0 0.9744 2000
© Copyright 2026 Paperzz