Real Oscillators … constant forces integrate EOM parabolic trajectories. … linear restoring force guess EOM solution SHM … nonlinear restoring forces ? nonlinear spring? linear spring F c 1 e x F kx F F x x kx mx c 1 e x mx F mg APatm AP mx The spring of air : use Ideal Gas Law: PV=NRT NRT mg APatm A mx V Patm chamber volume: V=Ax NRT mg APatm mx x m A +x Stable Equilibrium at P, V Force xeq = NRT / (mg + APatm) 0 0 0 X EOM Taylor Series Expansions: f x n 0 dn f a n dx x a n n! Turns a function into a polynomial near x = a Example: 0.3 f x f(x) 0.2 1 cos x 1 x2 ex 0.1 0 -0.1 -6 -4 -2 0 x 2 4 6 Expand NRT/x around xeq: NRT NRT NRT 2 x xeq 3 x xeq ... mx mg APatm 2 xeq xeq xeq NRT NRT 2 x xeq 3 x xeq ... mx 0 2 xeq xeq Is it safe to linearize it? Better check a unitless ratio. How about: x xeq x eq (Yes, excellent choice Dr. Hafner!) 2 x xeq x xeq NRT ... mx 0 xeq xeq xeq Displacement 5% of xeq: 0 .05 .0025 NRT x xeq mx 2 xeq Perhaps you would prefer…. .. NRT x xeq x xeq 2 mxeq SHM with NRT m o xeq …. Simple Pendulum: Length: L Mass: m Stable Equilibrium: Q Fx 0 Fy T mg 0 Displace by Q: Fx mg cosQ sin Q T mg cosQ sinQ -x mg cosQ L2 x 2 x mg L L EOM: mg mg L2 x 2 x mg mx L L Expand it! g 2 x L2 x 2 x L Derivatives: f x L2 x 2 f L x x L x 2 2 2 2 f 3 xL x 1 2 2 f 3L x 2 2 1 2 2 1 2 2 x L x 3 2 6 x L x 2 2 3 2 2 3 2 2 3 x L x 4 2 5 2 2 g 3 3 0 Lx 0 x ... x 2 L 6L Now express as a unitless ratio of the dependent variable and some parameter of the system: 3 x 1 x g 0 0 ... x 2 L L Displacement 5% of length: 0 .05 g x x L 0 .0000625 … SHM with g o L The world is not linear. However, one can use a Taylor expansion to linearize an EOM by assuming only small perturbations around a point of stable equilibrium (which may not be the origin).
© Copyright 2026 Paperzz