Real Oscillators … constant forces  integrate EOM  parabolic trajectories. … linear restoring force  guess EOM solution  SHM … nonlinear restoring forces  ? nonlinear spring? linear spring F  c 1  e x  F   kx F F x x  kx  mx c 1  e x   mx F   mg  APatm  AP  mx The spring of air : use Ideal Gas Law: PV=NRT NRT  mg  APatm  A  mx V Patm chamber volume: V=Ax NRT  mg  APatm   mx x m A +x Stable Equilibrium at P, V Force xeq = NRT / (mg + APatm) 0 0 0 X EOM Taylor Series Expansions: f x    n 0 dn f a  n dx  x  a n n! Turns a function into a polynomial near x = a Example: 0.3 f x  f(x) 0.2 1  cos x  1 x2  ex 0.1 0 -0.1 -6 -4 -2 0 x 2 4 6 Expand NRT/x around xeq:   NRT NRT NRT 2 x  xeq   3 x  xeq   ...  mx   mg  APatm  2 xeq xeq xeq    NRT  NRT 2 x  xeq   3 x  xeq   ...  mx 0  2 xeq xeq   Is it safe to linearize it? Better check a unitless ratio. How about:  x  xeq     x   eq  (Yes, excellent choice Dr. Hafner!) 2    x  xeq   x  xeq  NRT    ...  mx 0     xeq   xeq   xeq    Displacement 5% of xeq: 0  .05 .0025 NRT x  xeq   mx 2 xeq Perhaps you would prefer…. .. NRT x  xeq   x  xeq   2 mxeq SHM with NRT m o  xeq …. Simple Pendulum: Length: L Mass: m Stable Equilibrium: Q Fx  0 Fy  T  mg  0 Displace by Q: Fx   mg cosQ  sin Q  T mg cosQ sinQ -x mg cosQ L2  x 2 x   mg L L EOM: mg mg L2  x 2 x  mg  mx L L Expand it! g  2 x L2  x 2  x L Derivatives: f  x L2  x 2 f   L  x  x L  x 2 2 2 2  f   3 xL  x 1 2 2 f   3L  x  2 2 1 2 2  1 2 2  x L  x 3 2  6 x L  x 2 2  3 2 2  3 2 2  3 x L  x 4 2  5 2 2  g 3 3  0  Lx  0  x ...  x 2  L  6L  Now express as a unitless ratio of the dependent variable and some parameter of the system: 3   x 1 x    g 0     0    ...  x 2 L    L Displacement 5% of length: 0 .05 g  x  x L 0 .0000625 … SHM with g o  L The world is not linear. However, one can use a Taylor expansion to linearize an EOM by assuming only small perturbations around a point of stable equilibrium (which may not be the origin).
© Copyright 2025 Paperzz