f (t), period T = ω2πo P∞ jnωo t n=−∞ Fn e ao 2 + P∞ n=1 co 2 + Form Exponential an cos (nωo t) + bn sin (nωo t) P∞ n=1 cn cos (nωo t + θn ) Trigonometric Compact for real f (t) Coefficients R Fn = T1 T f (t)e−jnωo t dt an = Fn + F−n bn = j (Fn − F−n ) cn = 2 |Fn | θn = ∠Fn Table 1: Fourier series forms. 1 2 3 4 5 6 7 8 Name: Condition: Property: Scaling Addition Time shift Derivative Hermitian Even function Odd function Average power Constant K f (t) ↔ Fn , g(t) ↔ Gn , . . . Delay to Continuous f (t) Real f (t) f (−t) = f (t) f (−t) = −f (t) K f (t) ↔ K Fn f (t) + g(t) + . . . ↔ Fn + Gn + . . . f (t − to ) ↔ Fn e−jnωo to df dt ↔ jnωo Fn F−n = Fn∗ P∞ ao f (t) = 2 + n=1 an cos (nωo t) P∞ f (t) = n=1 bn sin (nωo t) R P∞ 2 2 P ≡ T1 T |f (t)| dt = n=−∞ |Fn | Table 2: Fourier series properties Name: Condition: Property: 1 2 3 4 5 6 7 Amplitude scaling Addition Hermitian Even Odd Symmetry Time scaling f (t) ↔ F (ω), constant K f (t) ↔ F (ω), g(t) ↔ G(ω), · · · Real f (t) ↔ F (ω) Real and even f (t) Real and odd f (t) f (t) ↔ F (ω) f (t) ↔ F (ω) , real s Kf (t) ↔ KF (ω) f (t) + g(t) + · · · ↔ F (ω) + G(ω) + · · · F (−ω) = F ∗ (ω) Real and even F (ω) Imaginary and odd F (ω) F (t) ↔ 2πf (−ω) 1 f (st) ↔ |s| F ( ωs ) 8 9 10 11 12 13 14 15 16 Time shift Frequency shift Modulation Time derivative Freq derivative Time convolution Freq convolution Compact form Parseval, Energy W f (t) ↔ F (ω) f (t) ↔ F (ω) f (t) ↔ F (ω) Differentiable f (t) ↔ F (ω) f (t) ↔ F (ω) f (t) ↔ F (ω), g(t) ↔ G(ω) f (t) ↔ F (ω), g(t) ↔ G(ω) Real f (t) f (t) ↔ F (ω) f (t − to ) ↔ F (ω)e−jωto f (t)ejωo t ↔ F (ω − ωo ) f (t) cos(ωo t) ↔ 12 F (ω − ωo ) + 12 F (ω + ωo ) df dt ↔ jωF (ω) d F (ω) −jtf (t) ↔ dω f (t) ∗ g(t) ↔ F (ω)G(ω) 1 f (t)g(t) ↔ 2π F (ω) ∗ G(ω) R ∞ 1 f (t) = 2π 0 2|F (ω)| cos(ωt + ∠F (ω))dω R∞ R∞ 1 W ≡ −∞ |f (t)|2 dt = 2π |F (ω)|2 dω −∞ Table 3: Important properties of the Fourier transform. f (t) ↔ F (ω) 1 2 3 4 5 6 7 8 9 10 11 12 13 −at 1 a+jω , a > 0 1 ,a>0 eat u(−t) ↔ a−jω 2a −a|t| e ↔ a2 +ω2 , a > 0 a2 −a|ω| ,a>0 a2 +t2 ↔ πae 1 −at te u(t) ↔ (a+jω) 2, a > 0 n! n −at t e u(t) ↔ (a+jω)n+1 , a > 0 rect( τt ) ↔ τ sinc( ωτ 2 ) π ω sinc(W t) ↔ W rect( 2W ) 2 ωτ t τ 4( τ ) ↔ 2 sinc ( 4 ) ω sinc2 ( W2 t ) ↔ 2π W 4( 2W ) ωo e−at sin(ωo t)u(t) ↔ (a+jω) 2 +ω 2 , a > o a+jω −at e cos(ωo t)u(t) ↔ (a+jω)2 +ω2 , a > o 2 2 √ t2 − 2σ − σ 2ω 2 e e u(t) ↔ 14 δ(t) ↔ 1 15 1 ↔ 2πδ(ω) 16 17 18 δ(t − to ) ↔ e−jωto ejωo t ↔ 2πδ(ω − ωo ) cos(ωo t) ↔ π[δ(ω − ωo ) + δ(ω + ωo )] 19 sin(ωo t) ↔ jπ[δ(ω + ωo ) − δ(ω − ωo )] 20 jω π 2 [δ(ω − ωo ) + δ(ω + ωo )] + ωo2 −ω 2 o sin(ωo t)u(t) ↔ j π2 [δ(ω + ωo ) − δ(ω − ωo )] + ω2ω−ω 2 o 2 sgn(t) ↔ jω 1 u(t) ↔ πδ(ω) + jω P∞ P ∞ 2π 2π n=−∞ δ(t − nT ) ↔ T n=−∞ δ(ω − n T ) P∞ P∞ 1 2π n=−∞ f (t)δ(t − nT ) ↔ n=−∞ T F (ω − n T ) 21 22 23 0 24 0 25 cos(ωo t)u(t) ↔ ↔ σ 2πe Table 4: Important Fourier transform pairs. The left-hand column includes only “energy signals” f (t) , while the right-hand column includes “power signals” and distributions. Name Commutative Distributive Associative Shift Derivative Reversal Start-point Property h(t) ∗ f (t) = f (t) ∗ h(t) f (t) ∗ (g(t) + h(t)) = f (t) ∗ g(t) + f (t) ∗ h(t) f (t) ∗ (g(t) ∗ h(t)) = (f (t) ∗ g(t)) ∗ h(t) h(t) ∗ f (t) = y(t) ⇒ h(t − t0 ) ∗ f (t) = h(t) ∗ f (t − t0 ) = y(t − t0 ) d d d h(t) ∗ f (t) = y(t) ⇒ ( dt h(t)) ∗ f (t) = h(t) ∗ ( dt f (t)) = dt y(t) f (t) ∗ h(t) = y(t) ⇒ h(−t) ∗ f (−t) = y(−t) If h(t) = 0 for t < tsh and f (t) = 0 for t < tsf then y(t) = h(t) ∗ f (t) = 0 for t < tsy = tsh + tsf . If h(t) = 0 for t > teh and f (t) = 0 for t > tef then y(t) = h(t) ∗ f (t) = 0 for t > tey = teh + tef . h(t) ∗ f (t) = y(t) ⇒ Ty = Th + Tf where Th , Tf , and Ty denote the widths of h(t), f (t), and y(t). End-point Width Table 5: Convolution properties. Name Convolution Sifting Sampling Symmetry Scaling Area Definite integral Unit-step derivative Derivative Fourier transform Impulse properties δ(t) ∗ f (t) = f (t) δ(t)f (t)dt = f (0) and −∞ ( Rb f (0) if a < 0 < b δ(t)f (t)dt = a 0, otherwise R∞ Shifted-impulse properties δ(t − t0 ) ∗ f (t) = f (t − t0 ) δ(t − t0 )f (t)dt = f (t0 ) and −∞ ( Rb f (t0 ) if a < t0 < b δ(t − t0 )f (t)dt = a 0, otherwise R∞ f (t)δ(t − t0 ) = f (t0 )δ(t − t0 ) δ(t0 − t) = δ(t − t0 ) 1 δ(t − t0 ), a 6= 0 δ(a(t − t0 )) = |a| f (t)δ(t) = f (0)δ(t) δ(−t) = δ(t) 1 δ(t), a 6= 0 δ(at) = |a| R∞ δ(t)dt = 1 and ( Rb 1 if a < 0 < b δ(t)dt = a 0, otherwise Rt δ(τ )dτ = u(t) −∞ d dt u(t) = δ(t) d d ( dt δ(t)) ∗ f (t) = dt f (t) δ(t) ↔ 1 −∞ R∞ δ(t − t0 )dt = 1 and ( Rb 1 if a < t0 < b δ(t − t0 )dt = a 0, otherwise Rt δ(τ − t0 )dτ = u(t − t0 ) −∞ d dt u(t − t0 ) = δ(t − t0 ) d d ( dt δ(t − t0 )) ∗ f (t) = dt f (t − t0 ) −jωt0 δ(t − t0 ) ↔ e −∞ Graphical symbol Table 6: Properties of the impulse and shifted impulse. δ 0 (t) ↔ s u(t) ↔ 1s tu(t) ↔ s12 1 2 3 δ(t) ↔ 1 1 ↔ s−p 1 tept u(t) ↔ (s−p) 2 7 8 9 4 n! (s−p)n+1 s cos(ωo t)u(t) ↔ s2 +ω 2 o s+α −αt e cos(ωd t)u(t) ↔ (s+α)2 +ω2 d 10 tn u(t) ↔ 11 sin(ωo t)u(t) ↔ 5 6 ept u(t) tn ept u(t) ↔ 12 e−αt sin(ωd t)u(t) n! sn+1 ωo s2 +ωo2 ωd ↔ (s+α) 2 +ω 2 d Table 7: Laplace transforms pairs h(t) ↔ Ĥ(s) involving frequently encountered causal signals — α, ωo , and ωd stand for arbitrary real constants, n for non-negative integers, and p denotes for an arbitrary complex constant. Name: Condition: Property: 1 2 3 4* 5 Multiplication Addition Time scaling Time delay Frequency shift f (t) → F̂ (s), constant K f (t) → F̂ (s), g(t) → Ĝ(s)· · · f (t) → F̂ (s) , real a > 0 f (t) ↔ F̂ (s), to ≥ 0 f (t) → F̂ (s) 6 Time derivative Differentiable f (t) → F̂ (s) 7 8 9* 10 11 Time integration Freq. derivative Time convolution Freq. convolution Poles f (t) → F̂ (s) f (t) → F̂ (s) h(t) ↔ Ĥ(s), f (t) ↔ F̂ (s) f (t) → F̂ (s), g(t) → Ĝ(s) f (t) → F̂ (s) 12 ROC f (t) → F̂ (s) 13* Fourier transform f (t) ↔ F̂ (s) 14 15 Final value Initial value Poles of sF̂ (s) in LHP Existence of the limit Kf (t) → K F̂ (s) f (t) + g(t) + · · · → F̂ (s) + Ĝ(s) + · · · f (at) → a1 F̂ ( as ) f (t − to ) ↔ F̂ (s)e−sto f (t)eso t → F̂ (s − so ) f 0 (t) → sF̂ (s) − f (0− ) 00 f (t) → s2 F̂ (s) − sf (0− ) − f 0 (0− ) ··· f (n) (t) → sn F̂ (s) − · · · − f (n−1) (0− ) Rt 1 0− f (τ )dτ → s F̂ (s) d −tf (t) → ds F̂ (s) h(t) ∗ f (t) ↔ Ĥ(s)F̂ (s) 1 f (t)g(t) → 2πj F̂ (s) ∗ Ĝ(s) Values of s such that |F̂ (s)| = ∞ Portion of s − plane to the right of rightmost pole 6= ∞ F (ω) = F̂ (jω) if and only if ROC includes s = jω f (∞) = lims→0 sF̂ (s) f (0+ ) = lims→∞ sF̂ (s) Table 8: Important properties of the one-sided Laplace transform. Properties marked by * in the first column hold only for causal signals.
© Copyright 2026 Paperzz