Fig. 1. Experimental setup for emulsion tests. Fig. 2. Ultrasonic bath and immersible transducer. 18 Vo/Vs or Vw/Vs 16 14 Optimal Salinity 12 10 Vo/Vs 8 Vw/Vs 6 4 2 0 0 0.5 1 1.5 2 2.5 3 3.5 4 Salinity, % NaCl Fig. 3. Solubilization parameters vs. salinity, % NaCl and 3% surfactant concentration under no ultrasonic stimulation (NUS) 18 Vo/Vs or Vw/Vs 16 14 Optimal Salinity 12 10 8 Vo/Vs 6 Vw/Vs 4 2 0 0 0.5 1 1.5 2 2.5 3 3.5 4 Salinity, % NaCl Fig. 4. Solubilization parameters vs. salinity, %NaCl and 3% surfactant concentration after 15 mins ultrasonic stimulation 16 Optimal Salinity Vo/Vs or Vw/Vs 14 12 10 Vo/Vs 8 Vw/Vs 6 4 2 0 0 0.5 1 1.5 2 2.5 3 3.5 4 Salinity, % NaCl Fig. 5. Solubilization parameters vs. salinity, %NaCl and 3% surfactant concentration after 60 mins ultrasonic stimulation 100% Relative Phase Volume, % 90% 80% Volume of Excess Oil 70% Volume of Microemulsion 60% Volume of Excess Brine 50% 40% 30% 20% 10% 0% 0.5 1 1.2 1.4 1.5 1.8 2 2.5 3 3.5 Salinity, % NaCl Fig. 6. Relative phase volume vs. salinity, % NaCl and 3% surfactant concentration using no ultrasonic waves (NUS) Relative Phase Volume, % 100% 90% Volume of Excess Oil 80% Volume of Microemulsion 70% Volume of Excess Brine 60% 50% 40% 30% 20% 10% 0% 0.5 1 1.2 1.4 1.5 1.8 2 2.5 3 3.5 Salinity, % NaCl Fig. 7. Relative phase volume vs. salinity, % NaCl and 3% surfactant concentration after 15 mins radiation of ultrasonic waves Relative Phase Volume, % 100% 90% Volume of Excess Oil 80% Volume of Microemulsion Volume of Excess Brine 70% 60% 50% 40% 30% 20% 10% 0% 0.5 1 1.2 1.4 1.5 1.8 2 2.5 3 3.5 Salinity, % NaCl Fig. 8. Relative phase volume vs. salinity, % NaCl and 3% surfactant concentration after 60 mins radiation of ultrasonic waves 0.5 % 1.5 % 1 % 2 % 2.5 % 3 % Fig. 9. Phase behavior of oil and 3% AOS solution (salinity changes from 0.5 to 3 % from left to right). Volume of Microemulsion, % 90 NUS US, 15 mins US, 60 mins 80 70 60 50 40 30 20 10 0 0.5 1 1.2 1.4 1.5 1.8 2 2.5 3 3.5 Salinity, % NaCl Fig. 10. Comparison of microemulsion volumes for the mechanical agitation technique; without using ultrasonic waves (black), after 15 mins. radiation of ultrasonic waves (red), and after 60 mins. radiation of ultrasonic waves (blue) 55 50 45 40 NUS US, 15 mins US, 60 mins Vo, % 35 30 25 20 15 10 5 0 0.5 1 1.2 1.4 1.5 1.8 2 2.5 3 3.5 Salinity, % NaCl Fig. 11. Comparison of the volume of oil solubilized in microemulsion for the mechanical agitation technique; without using ultrasonic waves (black), after 15 mins. radiation of ultrasonic waves (red), and after 60 mins. radiation of ultrasonic waves (blue) Fig. 12. Volume measurement of microemulsion, excess oil and water Temperature vs. Time Temperature, ˚C 70 60 50 40 30 20 10 0 0 5 10 15 20 25 30 35 40 45 50 55 60 Time, min Fig. 13. Water temperature changes under influence of ultrasonic waves (40 kHz and 500 W) in ultrasonic bath Volume of Microemulsion, % 100 NUS-3 % AOS 90 US, 15 min-1 % AOS 80 US, 15 mins- 3 % AOS 70 60 50 40 30 20 10 0 0.5 1 1.2 1.4 1.5 1.8 2 2.5 3 3.5 Salinity, % NaCl Fig. 14. Comparison of microemulsion volumes for the mechanical agitation technique; 3 % AOS concentration and without using ultrasonic waves (black), 3 % AOS concentration and after 15 mins. radiation of ultrasonic waves (red), 1 % AOS concentration and after 15 mins. radiation of ultrasonic waves (green) Interfacial Tension, dynes/cm 0.1 0.01 63˚C Optimal Salinity 32˚C 0.001 δmo for US, 15 mins δmw for US, 15 mins δmo for US, 60 mins δmw for US, 60 mins Optimal Salinity 0.0001 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 Salinity, %NaCl Fig. 15. The effect of temperature on interfacial tension for 15 and 60 mins ultrasonic stimulation using 3 % AOS concentration
© Copyright 2026 Paperzz