Figures1

Fig. 1. Experimental setup for emulsion tests.
Fig. 2. Ultrasonic bath and immersible transducer.
18
Vo/Vs or Vw/Vs
16
14
Optimal Salinity
12
10
Vo/Vs
8
Vw/Vs
6
4
2
0
0
0.5
1
1.5
2
2.5
3
3.5
4
Salinity, % NaCl
Fig. 3. Solubilization parameters vs. salinity, % NaCl and 3% surfactant concentration under
no ultrasonic stimulation (NUS)
18
Vo/Vs or Vw/Vs
16
14
Optimal Salinity
12
10
8
Vo/Vs
6
Vw/Vs
4
2
0
0
0.5
1
1.5
2
2.5
3
3.5
4
Salinity, % NaCl
Fig. 4. Solubilization parameters vs. salinity, %NaCl and 3% surfactant concentration after
15 mins ultrasonic stimulation
16
Optimal Salinity
Vo/Vs or Vw/Vs
14
12
10
Vo/Vs
8
Vw/Vs
6
4
2
0
0
0.5
1
1.5
2
2.5
3
3.5
4
Salinity, % NaCl
Fig. 5. Solubilization parameters vs. salinity, %NaCl and 3% surfactant concentration after
60 mins ultrasonic stimulation
100%
Relative Phase Volume, %
90%
80%
Volume of Excess Oil
70%
Volume of Microemulsion
60%
Volume of Excess Brine
50%
40%
30%
20%
10%
0%
0.5
1
1.2
1.4
1.5
1.8
2
2.5
3
3.5
Salinity, % NaCl
Fig. 6. Relative phase volume vs. salinity, % NaCl and 3% surfactant concentration using no
ultrasonic waves (NUS)
Relative Phase Volume, %
100%
90%
Volume of Excess Oil
80%
Volume of Microemulsion
70%
Volume of Excess Brine
60%
50%
40%
30%
20%
10%
0%
0.5
1
1.2
1.4
1.5
1.8
2
2.5
3
3.5
Salinity, % NaCl
Fig. 7. Relative phase volume vs. salinity, % NaCl and 3% surfactant concentration after 15
mins radiation of ultrasonic waves
Relative Phase Volume, %
100%
90%
Volume of Excess Oil
80%
Volume of Microemulsion
Volume of Excess Brine
70%
60%
50%
40%
30%
20%
10%
0%
0.5
1
1.2
1.4
1.5
1.8
2
2.5
3
3.5
Salinity, % NaCl
Fig. 8. Relative phase volume vs. salinity, % NaCl and 3% surfactant concentration after 60
mins radiation of ultrasonic waves
0.5
%
1.5
%
1
%
2
%
2.5
%
3
%
Fig. 9. Phase behavior of oil and 3% AOS solution (salinity changes from 0.5 to 3 % from
left to right).
Volume of Microemulsion, %
90
NUS
US, 15 mins
US, 60 mins
80
70
60
50
40
30
20
10
0
0.5
1
1.2
1.4
1.5
1.8
2
2.5
3
3.5
Salinity, % NaCl
Fig. 10. Comparison of microemulsion volumes for the mechanical agitation technique;
without using ultrasonic waves (black), after 15 mins. radiation of ultrasonic waves (red), and
after 60 mins. radiation of ultrasonic waves (blue)
55
50
45
40
NUS
US, 15 mins
US, 60 mins
Vo, %
35
30
25
20
15
10
5
0
0.5
1
1.2
1.4
1.5
1.8
2
2.5
3
3.5
Salinity, % NaCl
Fig. 11. Comparison of the volume of oil solubilized in microemulsion for the mechanical
agitation technique; without using ultrasonic waves (black), after 15 mins. radiation of
ultrasonic waves (red), and after 60 mins. radiation of ultrasonic waves (blue)
Fig. 12. Volume measurement of microemulsion, excess oil and water
Temperature vs. Time
Temperature, ˚C
70
60
50
40
30
20
10
0
0
5
10
15
20
25
30
35
40
45
50
55
60
Time, min
Fig. 13. Water temperature changes under influence of ultrasonic waves (40 kHz and 500 W)
in ultrasonic bath
Volume of Microemulsion, %
100
NUS-3 % AOS
90
US, 15 min-1 % AOS
80
US, 15 mins- 3 % AOS
70
60
50
40
30
20
10
0
0.5
1
1.2
1.4
1.5
1.8
2
2.5
3
3.5
Salinity, % NaCl
Fig. 14. Comparison of microemulsion volumes for the mechanical agitation technique; 3 %
AOS concentration and without using ultrasonic waves (black), 3 % AOS concentration and
after 15 mins. radiation of ultrasonic waves (red), 1 % AOS concentration and after 15 mins.
radiation of ultrasonic waves (green)
Interfacial Tension, dynes/cm
0.1
0.01
63˚C
Optimal Salinity
32˚C
0.001
δmo for US, 15 mins
δmw for US, 15 mins
δmo for US, 60 mins
δmw for US, 60 mins
Optimal Salinity
0.0001
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
Salinity, %NaCl
Fig. 15. The effect of temperature on interfacial tension for 15 and 60 mins ultrasonic
stimulation using 3 % AOS concentration