2 7-azaindole 7-azaindole dimer ( Normal form dimer) 7-azaindole dimer ( Tautomer dimer) Scheme 1. The excited-state intermolecular double proton transfer (ESIDPT) of 7-azaindole dimer 前言 7 Scheme 2. The excited-state intramolecular double proton transfer (ESIDPT) of 1,8-dihydroxy-2-naphthaldehyde (DHNA) Scheme 2. The excited-state intramolecular double proton transfer (ESIDPT) of 1,8-dihydroxy-2-naphthaldehyde (DHNA) Scheme 3. The excited-state intramolecular double proton transfer (ESIDPT) of 1,8-dihydroxy-2,7-naphthdialdehyde (DHNDA) Relative energy (EB.O, kcal/mol) and S1 S0 emission (nm) of DHNDA in cyclohexane (PCM model) TS2*(S4) Blue numbers: B3LYP and TD-B3LYP with 6-31+G(d,p) for S0 and S1 Purple numbers: MP2/6-31+G(d,p)//B3LYP/6-31+G(d,p) for S0 Green numbers: MP2 with 6-31+G(d,p) for S0 . Experimental data λem~ 450nm,~520nm,~560nm,~ 660nm S1 PES TS3* 20.72 DHNDA13_IO* 2.09 -3.33 TS1* λ em = EOM-CCSD/6-31+G(d,p)// TD-B3LYP/6-31+G(d,p) 572.43 nm λ em = f=0.000 433.05nm f=0.4221 S0 PES DHNDA- TS6* 15.49 DHNDA TS4* TS5* DHNDADHNDA-23_OI* DHNDADHNDADHNDA- 3.1612_II*(4d) 2.26 23_OO* 12_II* 13_II* 13_II*(4d) 0.43 0.40 c -2.93 -1.92 -2.77 -7.24 -8.24 -6.63 λabs = 383.32 nm F=0.4184 DHNDA14_II*(nπ*) DHNDA- TS7* TS3 λ em = 403.49 nm f=0.4519 λabs = 394.57 nm f=0.2213 λ em = 443.25 nm f=0.2033 λabs = 418.51 nm f=0.3101 λ em = 480.25 nm f=0.2545 TS4 15.15 DHNDA- 6.60 11.68 23_OI 7.38 4.25 DHNDA2.64 23_OO 2.61 DHNDA23_OO DHNDA23_OI λ em = 583.45 nm f=0.2453 λ em = 610.53 nm f=0.2296 DHNDA13_II DHNDA13_II(4d) 2.21 3.60 3.83 5.46 6.88 7.11 DHNDA13_II λabs = 424.42 nm f=0.3210 λ em = 491.11 nm f=0.2536 DHNDA12_II DHNDA12_II(4d) DHNDA13_II(4d) DHNDA23_OI*(4d) 0.40 λabs = 396.05nm f=0.2527 DHNDA23_OI(4d) 0.91 -0.93 -0.96 DHNDA23_OI(4d) Relative energy (EB.O, kcal/mol) and S1 S0 emission (nm) of DHNDA in cyclohexane (PCM model) TS B2* Blue numbers: B3LYP and TD-B3LYP with 6-31+G(d,p) for S0 and S1 Purple numbers: MP2/6-31+G(d,p)//B3LYP/6-31+G(d,p) for S0 Green numbers: MP2 with 6-31+G(d,p) for S0 . Experimental data λem~ 450nm,~520nm,~560nm,~ 660nm S1 PES TS3* 20.72 -3.33 TS A2* TS7* TS B1* Tautomer 15.49 Normal TS C2* TS C1* B1* C* Tautomer Tautomer 3.16 Tautomer Tautomer 2.26 Normal B* 2.09 C1* 0.43 A2* C2* A1* 0.40 -2.93 -1.92 -2.77 -7.24 -8.24 -6.63 λabs = 383.32 nm F=0.4184 Tautomer B2* λ em = EOM-CCSD/6-31+G(d,p)// TD-B3LYP/6-31+G(d,p) 572.43 nm λ em = f=0.000 433.05nm f=0.4221 S0 PES DHNDA- DHNDA- TS3 λ em = 403.49 nm f=0.4519 λabs = 394.57 nm f=0.2213 λ em = 443.25 nm f=0.2033 λabs = 418.51 nm f=0.3101 λ em = 480.25 nm f=0.2545 λ em = 583.45 nm f=0.2453 λ em = 610.53 nm f=0.2296 TS4 Tautomer C1 15.15 Normal C 6.60 7.38 11.68 5.46 6.88 4.25 7.11 2.64 Normal B 2.61 DHNDA23_OO DHNDA23_OI DHNDA13_II DHNDA12_II Normal A* 0.40 λabs = 424.42 nm f=0.3210 λ em = 491.11 nm f=0.2536 λabs = 396.05nm f=0.2527 TS A1 Tautomer A1 2.21 3.60 3.83 DHNDA12_II(4d) DHNDA13_II(4d) 3.35 Normal A 0.91 -0.93 -0.96 DHNDA23_OI(4d) 貢獻度不大 DHNDA-23_OI* 443.25 nm DHNDA-13_IO* 433.05nm 1.0 0.8 A. U. DHNDA-23_OO* 403.49 nm Em-DHNDA in CYH-ex380 Em-DHNDA (solid)-ex400 DHNDA-13_II* 480.25 nm 0.6 0.4 DHNDA-12_II* 583.45 nm DHNDA-12_II*(4d) 610.53 nm 0.2 0.0 400 500 600 700 800 DHNDA-13_II*(4d) 491.11 nm Tautomer B1* 433 nm 1.0 A. U. Normal B* 403 nm Em-DHNDA in CYH-ex380 Em-DHNDA (solid)-ex400 0.8 0.6 0.4 Tautomer A2* 611 nm 0.2 0.0 400 500 600 700 800 Tautomer A1* 491 nm DHNDA-23_OI DHNDA-13_II(4d) DHNDA-23_OO DHNDA-23_OI DHNDA-13_II DHNDA-12_OO DHNDA-13_OO DHNDA-13_OI DHNDA-14_OO Ground state Ground state (A) (C) (B) (D) (E) Figure 2. Calculated ground-state (S0) structures of the Normal A ( NA,(A)), Tautomer A1 (TA1, (B)), Normal B (NB, (C)), Normal C (NC, (D)) and Tautomer C1 (TC1, (E)) for the 1,8-Dihydroxy-2 ,7naphthdialdehyde (DHNDA) molecule. Figure 2. Calculated ground-state (S0) structures of the Normal A ( NA,(A)), Tautomer A1 (TA1, (B)) for the HSNA molecule and Normal form ( N,(C)), Tautomer A (TA, (D)) for the DHNA molecule . (A) (B) Figure 2. Calculated ground-state (S0) structures of the Normal form (N, (A), Tautomer A (TA, (B)) for the DHNA molecule . Ground state (A) (B) (D) (C) (E) Figure 4. Calculated structures of (A) the normal form (N and N*), (B) tautomer A (TA and TA*) and (C) tautomer B (TB*) for the DHNA molecule. Ground state paper 本文 (A) (B) (C) Figure 4. Calculated structures of (A) the normal form (N and N*), (B) tautomer A (TA and TA*) and (C) tautomer B (TB*) for the DHNA molecule. Ground state paper 本文 (A) (B) (C) Figure 4. Calculated structures of (A) the normal form (N and N*), (B) tautomer A (TA and TA*) and (C) tautomer B (TB*) for the DHNA molecule. Ground state paper SI (D) (E) Figure 4. Calculated structures of (D) the Normal C (NC), (E) tautomer A (TA and TA*) and (C) tautomer B (TB*) for the DHNA molecule. Ground state paper SI (D) (E) Figure 4. Calculated structures of (D) the Normal C (NC), (E) tautomer A (TA and TA*) and (C) tautomer B (TB*) for the DHNA molecule. Ground state Paper supporting information Figure 1. Calculated ground-state (S0) structures of the Normal A ( NA,(A)), Tautomer A1 (TA1, (B)), and Normal B (NB, (C)) for the 1,8-Dihydroxy-2 ,7-naphthdialdehyde (DHNDA) molecule Excited state Excited state (A) (B) (C) (D) Figure 3. Calculated excited-state (S1) structures of the Tautomer A1*( TA1*,(A)), Tautomer A2 *(TA2*, (B)), Normal B (NB*, (C)), Tautomer B1*( TB1*,(D)), Tautomer B2*( TB2*,(E)), Normal C (NC*, (F)), Tautomer C1*( TC1*,(G)) and Tautomer C2*( TC2*,(H)) for the 1,8-Dihydroxy-2 ,7-naphthdialdehyde (DHNDA) molecule Excited state (E) (F) (G) (H) Figure 3. Calculated excited-state (S1) structures of the Tautomer A1*( TA1*,(A)), Tautomer A2 *(TA2*, (B)), Normal B (NB*, (C)), Tautomer B1*( TB1*,(D)), Tautomer B2*( TB2*,(E)), Normal C (NC*, (F)), Tautomer C1*( TC1*,(G)) and Tautomer C2*( TC2*,(H)) for the 1,8-Dihydroxy-2 ,7-naphthdialdehyde Excited state Paper 本文 (A) (C) (B) (D) (E) Excited state Paper 本文 (A) (C) (B) (D) (E) Excited state Paper supporting formation (F) (G) (H) TS2*(S4) S1 PES 20.72 DHNDA13_IO* 2.09 TS6* TS1* 2.26 DHNDA23_OO* -3.33 DHNDA14_II*(nπ*) λ em = EOM-CCSD/6-31+G(d,p)// TD-B3LYP/6-31+G(d,p) 572.43 nm λ em = f=0.000 433.05nm f=0.4221 S0 PES DHNDA12_II*(4d) c DHNDA13_II*(4d) DHNDA23_OI*(4d) 0.40 -7.24 -8.24 -6.63 λabs = 383.32 nm F=0.4184 λ em = 610.53 nm f=0.2296 λ em = 403.49 nm f=0.4519 DHNDA23_OO λabs = 424.42 nm f=0.3210 λ em = 491.11 nm f=0.2536 DHNDA13_II(4d) 2.21 3.60 3.83 λabs = 396.05nm f=0.2527 DHNDA23_OI(4d) 0.91 -0.93 -0.96 TS B2* 20.71 TS B1* S1 PES TB1* NB* 2.24 2.12 TA1* TB2* -3.30 -7.23 TS A2* TA2* -6.61 -8.22 λ em = forbidden λabs = 383 nm λabs = 396 nm λ em = 491 nm λ em = 433 nm λ em = 403 nm λabs = 424 nm TS A1 TA1 NB S0 PES NA 0.90 3.34 2.19 λ em = 611 nm Upadate symmetry Reaction pathway 1 TS_TB1*_TB2* TS_NB*_NC* TS_TC1*_TC2* TS_TA2* TS_NC*_TC1* _TC2* TS_NB*_TB1* 20.71 15.51 TS_TA1* _TA2* TB1* S1 PES 2.12 2.24 NC* NB* 0.42 3.18 TC1* 0.42 -2.93 -3.30 λabs = 383 nm TB2* λ em = forbidden λ em = λabs = 403 nm395 nm λ em = 480 nm TS_NC_TC1 TC1 NC 4.24 NB -8.22 -6.61 -7.23 λ em = 443 nm λabs = 419 nm 15.14 TA1* TA2* -1.90 -2.77 TS_NB_NC λ em = 433nm S0 PES TC2* λ em = 583 nm λ em = 611 nm λabs = 424 nm TS_NA_TA1 6.60 5.45 λ em = 491 nm λabs = 396 nm TA1 2.19 3.34 NA 0.90 Relative energy (EB.O, kcal/mol) and S1 S0 emission (nm) of DHNDA in cyclohexane (PCM model) B3LYP and TD-B3LYP with 6-31+G(d,p) for S0 and S1 Reaction pathway 2 TS_TA2_TC2* TS_TC1*_TC2* TS_TA1*_TA2* 3.18 S1 PES TA2* -8.22 TS_NC*_TC1* TS_TA1_TC1* TA1* 2.57 NC* 0.42 -6.61 -7.23 λabs = 395 nm λabs = 396 nm λabs = 424 nm TS_NA_NC TC1 10.74 TA1 3.34 λ em = 480 nm TS_NC_TC1 TS_NA_TA1 2.19 -1.90 -2.77 λ em = 443 nm λabs = 419 nm λ em = 491 nm NA 0.90 TC2* TC1* -2.93 λ em = 611 nm S0 PES 0.42 NC 4.24 6.60 5.45 λ em = 583 nm Relative energy (EB.O, kcal/mol) and S1 S0 emission (nm) of DHNDA in cyclohexane (PCM model) B3LYP and TD-B3LYP with 6-31+G(d,p) for S0 and S1 Reaction pathway 2 TS_TC1*_TC2* TS_TA1*_TA2* S1 PES Tautomer A2* -8.22 TS_NC*_TC1* Normal C* Tautomer A1* 0.42 -2.93 -6.61 -7.23 λabs = 395 nm λ em = 611 nm λabs = 396 nm λabs = 424 nm λ em = 491 nm 2.19 λabs = 419 nm 3.34 Normal A 0.90 -1.90 -2.77 λ em = 480 nm TS_NC_TC1 Tautomer C1 Normal C Tautomer A1 10.74 Tautomer C2* λ em = 443 nm TS_NA_NC TS_NA_TA1 S0 PES Tautomer C1* 0.42 4.24 6.60 5.45 λ em = 583 nm Relative energy (EB.O, kcal/mol) and S1 S0 emission (nm) of DHNDA in cyclohexane (PCM model) B3LYP and TD-B3LYP with 6-31+G(d,p) for S0 and S1 Reaction pathway 2 TS_TA2_TC2* TS_TC1_TC2* TS A2* S1 PES Tautomer A2* -8.22 3.18 Tautomer A1* 2.57 0.42 Tautomer C1* 0.42 -2.93 λabs = 395 nm λ em = 611 nm λabs = 396 nm λ em = 491 nm 2.19 -1.90 -2.77 λabs = 419 nm λ em = 480 nm TS_NC_TC1 Tautomer C1 3.34 0.90 Tautomer 3.18 C2* λ em = 443 nm TS_NA_NC TS_NA_TA1 Tautomer A1 Normal A S0 PES Normal C* -6.61 -7.23 λabs = 424 nm TS_TA2_TC2* TS_NC_TC1* TS_TA1_TC1* 10.74 Normal C 6.60 4.24 5.45 λ em = 583 nm DHNDA23_OI*(4d) DHNDA13_II*(4d) 0.40 TS6* DHNDA12_II*(4d) -6.63 -7.24 -8.24 λabs = 396.05nm λ em = 491.11 nm DHNDA23_OI(4d) 0.91 λabs = 424.42 nm DHNDA13_II(4d) 3.35 2.21 λ em = 610.53 nm 1.0 Em-DHNDA in CYH-ex380 Em-DHNDA (solid)-ex400 A. U. 0.8 0.6 0.4 0.2 0.0 400 500 600 700 Wavelength (nm) 800 O19—H24 H24—O23 O23—H22 H22—O21 Normal A 1.598 1.011 1.751 0.977 Tautomer A1 1.022 1.555 1.658 0.994 O19—H24 H24—O23 Normal C 1.594 1.011 Tautomer C1 1.021 1.556 O23—H22 H22—O21 1.745 0.977 1.653 0.994 O19—H24 H24—O23 O21—H22 H22—O16 Normal B 1.658 0.999 0.999 1.658 O19—H24 H24—O23 O23—H22 H22—O21 Tautomer A1* 1.011 1.633 1.499 1.037 Tautomer A2* 0.987 1.777 1.033 1.520 O19—H24 H24—O23 O23—H22 H22—O21 Normal C* 1.395 1.087 1.666 0.994 Tautomer C1* 1.013 1.621 1.510 1.032 O19—H24 H24—O23 O21—H22 H22—O16 Normal B* 1.573 1.016 1.016 1.573 Tautomer C2* 0.988 1.768 1.043 1.484 Tautomer B1* 1.062 1.446 0.999 1.650 Tautomer B2* 0.984 1.778 1.778 0.984 Abs in cyclohexane
© Copyright 2026 Paperzz