Tautomer A

2
7-azaindole
7-azaindole dimer
( Normal form dimer)
7-azaindole dimer
( Tautomer dimer)
Scheme 1. The excited-state intermolecular double proton transfer (ESIDPT)
of 7-azaindole dimer
前言
7
Scheme 2. The excited-state intramolecular double proton transfer (ESIDPT)
of 1,8-dihydroxy-2-naphthaldehyde (DHNA)
Scheme 2. The excited-state intramolecular double proton transfer (ESIDPT)
of 1,8-dihydroxy-2-naphthaldehyde (DHNA)
Scheme 3. The excited-state intramolecular double proton transfer (ESIDPT)
of 1,8-dihydroxy-2,7-naphthdialdehyde (DHNDA)
Relative energy (EB.O, kcal/mol) and S1  S0 emission (nm) of DHNDA in cyclohexane (PCM model)
TS2*(S4)
Blue numbers: B3LYP and TD-B3LYP with 6-31+G(d,p) for S0 and S1
Purple numbers: MP2/6-31+G(d,p)//B3LYP/6-31+G(d,p) for S0
Green numbers: MP2 with 6-31+G(d,p) for S0 .
Experimental data λem~ 450nm,~520nm,~560nm,~ 660nm
S1 PES
TS3*
20.72 DHNDA13_IO*
2.09
-3.33
TS1*
λ em =
EOM-CCSD/6-31+G(d,p)//
TD-B3LYP/6-31+G(d,p)
572.43 nm
λ em =
f=0.000
433.05nm
f=0.4221
S0 PES
DHNDA-
TS6*
15.49 DHNDA TS4*
TS5*
DHNDADHNDA-23_OI*
DHNDADHNDADHNDA- 3.1612_II*(4d)
2.26 23_OO*
12_II*
13_II*
13_II*(4d)
0.43
0.40
c
-2.93
-1.92 -2.77
-7.24
-8.24 -6.63
λabs =
383.32 nm
F=0.4184
DHNDA14_II*(nπ*)
DHNDA-
TS7*
TS3
λ em =
403.49 nm
f=0.4519
λabs =
394.57 nm
f=0.2213
λ em =
443.25
nm
f=0.2033
λabs =
418.51 nm
f=0.3101
λ em =
480.25 nm
f=0.2545
TS4
15.15 DHNDA- 6.60
11.68 23_OI 7.38
4.25
DHNDA2.64
23_OO
2.61
DHNDA23_OO
DHNDA23_OI
λ em =
583.45 nm
f=0.2453
λ em =
610.53 nm
f=0.2296
DHNDA13_II
DHNDA13_II(4d)
2.21
3.60
3.83
5.46
6.88
7.11
DHNDA13_II
λabs =
424.42 nm
f=0.3210
λ em =
491.11 nm
f=0.2536
DHNDA12_II
DHNDA12_II(4d)
DHNDA13_II(4d)
DHNDA23_OI*(4d)
0.40
λabs =
396.05nm
f=0.2527
DHNDA23_OI(4d)
0.91
-0.93
-0.96
DHNDA23_OI(4d)
Relative energy (EB.O, kcal/mol) and S1  S0 emission (nm) of DHNDA in cyclohexane (PCM model)
TS B2*
Blue numbers: B3LYP and TD-B3LYP with 6-31+G(d,p) for S0 and S1
Purple numbers: MP2/6-31+G(d,p)//B3LYP/6-31+G(d,p) for S0
Green numbers: MP2 with 6-31+G(d,p) for S0 .
Experimental data λem~ 450nm,~520nm,~560nm,~ 660nm
S1 PES
TS3*
20.72
-3.33
TS A2*
TS7*
TS
B1*
Tautomer
15.49 Normal
TS C2*
TS C1*
B1*
C*
Tautomer
Tautomer 3.16 Tautomer
Tautomer
2.26 Normal B*
2.09
C1*
0.43
A2*
C2*
A1*
0.40
-2.93
-1.92 -2.77
-7.24
-8.24 -6.63
λabs =
383.32 nm
F=0.4184
Tautomer
B2*
λ em =
EOM-CCSD/6-31+G(d,p)//
TD-B3LYP/6-31+G(d,p)
572.43 nm
λ em =
f=0.000
433.05nm
f=0.4221
S0 PES
DHNDA-
DHNDA-
TS3
λ em =
403.49 nm
f=0.4519
λabs =
394.57 nm
f=0.2213
λ em =
443.25
nm
f=0.2033
λabs =
418.51 nm
f=0.3101
λ em =
480.25 nm
f=0.2545
λ em =
583.45 nm
f=0.2453
λ em =
610.53 nm
f=0.2296
TS4
Tautomer C1
15.15 Normal C 6.60
7.38
11.68
5.46
6.88
4.25
7.11
2.64
Normal B
2.61
DHNDA23_OO
DHNDA23_OI
DHNDA13_II
DHNDA12_II
Normal A*
0.40
λabs =
424.42 nm
f=0.3210
λ em =
491.11 nm
f=0.2536
λabs =
396.05nm
f=0.2527
TS A1
Tautomer A1
2.21
3.60
3.83
DHNDA12_II(4d)
DHNDA13_II(4d)
3.35 Normal A
0.91
-0.93
-0.96
DHNDA23_OI(4d)
貢獻度不大
DHNDA-23_OI*
443.25 nm
DHNDA-13_IO*
433.05nm
1.0
0.8
A. U.
DHNDA-23_OO*
403.49 nm
Em-DHNDA in CYH-ex380
Em-DHNDA (solid)-ex400
DHNDA-13_II*
480.25 nm
0.6
0.4
DHNDA-12_II*
583.45 nm
DHNDA-12_II*(4d)
610.53 nm
0.2
0.0
400
500
600
700
800
DHNDA-13_II*(4d)
491.11 nm
Tautomer B1*
433 nm
1.0
A. U.
Normal B*
403 nm
Em-DHNDA in CYH-ex380
Em-DHNDA (solid)-ex400
0.8
0.6
0.4
Tautomer A2*
611 nm
0.2
0.0
400
500
600
700
800
Tautomer A1*
491 nm
DHNDA-23_OI
DHNDA-13_II(4d)
DHNDA-23_OO
DHNDA-23_OI
DHNDA-13_II
DHNDA-12_OO
DHNDA-13_OO
DHNDA-13_OI
DHNDA-14_OO
Ground state
Ground state
(A)
(C)
(B)
(D)
(E)
Figure 2. Calculated ground-state (S0) structures of the Normal A
( NA,(A)), Tautomer A1 (TA1, (B)), Normal B (NB, (C)), Normal C
(NC, (D)) and Tautomer C1 (TC1, (E)) for the 1,8-Dihydroxy-2 ,7naphthdialdehyde (DHNDA) molecule.
Figure 2. Calculated ground-state (S0) structures of the Normal
A ( NA,(A)), Tautomer A1 (TA1, (B)) for the HSNA molecule and
Normal form ( N,(C)), Tautomer A (TA, (D)) for the DHNA
molecule .
(A)
(B)
Figure 2. Calculated ground-state (S0) structures of the Normal
form (N, (A), Tautomer A (TA, (B)) for the DHNA molecule .
Ground state
(A)
(B)
(D)
(C)
(E)
Figure 4. Calculated structures of (A) the
normal form (N and N*), (B) tautomer A (TA
and TA*) and (C) tautomer B (TB*) for the
DHNA molecule.
Ground state
paper 本文
(A)
(B)
(C)
Figure 4. Calculated structures of (A) the
normal form (N and N*), (B) tautomer A (TA
and TA*) and (C) tautomer B (TB*) for the
DHNA molecule.
Ground state
paper 本文
(A)
(B)
(C)
Figure 4. Calculated structures of (A) the
normal form (N and N*), (B) tautomer A (TA
and TA*) and (C) tautomer B (TB*) for the
DHNA molecule.
Ground state
paper SI
(D)
(E)
Figure 4. Calculated structures of (D) the
Normal C (NC), (E) tautomer A (TA and TA*)
and (C) tautomer B (TB*) for the DHNA
molecule.
Ground state
paper SI
(D)
(E)
Figure 4. Calculated structures of (D) the
Normal C (NC), (E) tautomer A (TA and TA*)
and (C) tautomer B (TB*) for the DHNA
molecule.
Ground state
Paper supporting
information
Figure 1. Calculated ground-state (S0)
structures of the Normal A ( NA,(A)), Tautomer
A1 (TA1, (B)), and Normal B (NB, (C)) for the
1,8-Dihydroxy-2 ,7-naphthdialdehyde (DHNDA)
molecule
Excited state
Excited state
(A)
(B)
(C)
(D)
Figure 3. Calculated excited-state (S1) structures of the Tautomer
A1*( TA1*,(A)), Tautomer A2 *(TA2*, (B)), Normal B (NB*, (C)),
Tautomer B1*( TB1*,(D)), Tautomer B2*( TB2*,(E)), Normal C (NC*,
(F)), Tautomer C1*( TC1*,(G)) and Tautomer C2*( TC2*,(H)) for the
1,8-Dihydroxy-2 ,7-naphthdialdehyde (DHNDA) molecule
Excited state
(E)
(F)
(G)
(H)
Figure 3. Calculated excited-state (S1) structures of the Tautomer
A1*( TA1*,(A)), Tautomer A2 *(TA2*, (B)), Normal B (NB*, (C)),
Tautomer B1*( TB1*,(D)), Tautomer B2*( TB2*,(E)), Normal C
(NC*, (F)), Tautomer C1*( TC1*,(G)) and Tautomer
C2*( TC2*,(H)) for the 1,8-Dihydroxy-2 ,7-naphthdialdehyde
Excited state
Paper 本文
(A)
(C)
(B)
(D)
(E)
Excited state
Paper 本文
(A)
(C)
(B)
(D)
(E)
Excited state
Paper
supporting
formation
(F)
(G)
(H)
TS2*(S4)
S1 PES
20.72 DHNDA13_IO*
2.09
TS6*
TS1*
2.26
DHNDA23_OO*
-3.33
DHNDA14_II*(nπ*)
λ em =
EOM-CCSD/6-31+G(d,p)//
TD-B3LYP/6-31+G(d,p)
572.43 nm
λ em =
f=0.000
433.05nm
f=0.4221
S0 PES
DHNDA12_II*(4d)
c
DHNDA13_II*(4d)
DHNDA23_OI*(4d)
0.40
-7.24
-8.24 -6.63
λabs =
383.32 nm
F=0.4184
λ em =
610.53 nm
f=0.2296
λ em =
403.49 nm
f=0.4519
DHNDA23_OO
λabs =
424.42 nm
f=0.3210
λ em =
491.11 nm
f=0.2536
DHNDA13_II(4d)
2.21
3.60
3.83
λabs =
396.05nm
f=0.2527
DHNDA23_OI(4d)
0.91
-0.93
-0.96
TS B2*
20.71
TS B1*
S1 PES
TB1*
NB*
2.24
2.12
TA1*
TB2*
-3.30
-7.23
TS A2*
TA2*
-6.61
-8.22
λ em =
forbidden
λabs =
383 nm
λabs =
396 nm
λ em =
491 nm
λ em =
433 nm
λ em =
403 nm
λabs =
424 nm
TS A1
TA1
NB
S0 PES
NA
0.90
3.34
2.19
λ em =
611 nm
Upadate
symmetry
Reaction pathway 1
TS_TB1*_TB2*
TS_NB*_NC*
TS_TC1*_TC2*
TS_TA2*
TS_NC*_TC1*
_TC2*
TS_NB*_TB1*
20.71
15.51
TS_TA1*
_TA2*
TB1*
S1 PES
2.12
2.24
NC*
NB*
0.42
3.18
TC1*
0.42
-2.93
-3.30
λabs =
383 nm
TB2*
λ em =
forbidden
λ em = λabs =
403 nm395 nm
λ em =
480 nm
TS_NC_TC1
TC1
NC
4.24
NB
-8.22
-6.61 -7.23
λ em =
443 nm
λabs =
419 nm
15.14
TA1*
TA2*
-1.90 -2.77
TS_NB_NC
λ em =
433nm
S0 PES
TC2*
λ em =
583 nm
λ em =
611 nm
λabs =
424 nm
TS_NA_TA1
6.60
5.45
λ em =
491 nm
λabs =
396 nm
TA1
2.19
3.34
NA
0.90
Relative energy (EB.O, kcal/mol) and S1  S0 emission (nm) of DHNDA in cyclohexane (PCM model)
B3LYP and TD-B3LYP with 6-31+G(d,p) for S0 and S1
Reaction pathway 2
TS_TA2_TC2*
TS_TC1*_TC2*
TS_TA1*_TA2*
3.18
S1 PES
TA2*
-8.22
TS_NC*_TC1*
TS_TA1_TC1*
TA1*
2.57
NC*
0.42
-6.61 -7.23
λabs =
395 nm
λabs =
396 nm
λabs =
424 nm
TS_NA_NC
TC1
10.74
TA1
3.34
λ em =
480 nm
TS_NC_TC1
TS_NA_TA1
2.19
-1.90 -2.77
λ em =
443 nm
λabs =
419 nm
λ em =
491 nm
NA
0.90
TC2*
TC1*
-2.93
λ em =
611 nm
S0 PES
0.42
NC
4.24
6.60
5.45
λ em =
583 nm
Relative energy (EB.O, kcal/mol) and S1  S0 emission (nm) of DHNDA in cyclohexane (PCM model)
B3LYP and TD-B3LYP with 6-31+G(d,p) for S0 and S1
Reaction pathway 2
TS_TC1*_TC2*
TS_TA1*_TA2*
S1 PES
Tautomer
A2*
-8.22
TS_NC*_TC1*
Normal C*
Tautomer
A1*
0.42
-2.93
-6.61 -7.23
λabs =
395 nm
λ em =
611 nm
λabs =
396 nm
λabs =
424 nm
λ em =
491 nm
2.19
λabs =
419 nm
3.34
Normal A
0.90
-1.90 -2.77
λ em =
480 nm
TS_NC_TC1
Tautomer C1
Normal C
Tautomer A1
10.74
Tautomer
C2*
λ em =
443 nm
TS_NA_NC
TS_NA_TA1
S0 PES
Tautomer
C1*
0.42
4.24
6.60
5.45
λ em =
583 nm
Relative energy (EB.O, kcal/mol) and S1  S0 emission (nm) of DHNDA in cyclohexane (PCM model)
B3LYP and TD-B3LYP with 6-31+G(d,p) for S0 and S1
Reaction pathway 2
TS_TA2_TC2*
TS_TC1_TC2*
TS A2*
S1 PES
Tautomer
A2*
-8.22
3.18
Tautomer
A1*
2.57
0.42
Tautomer
C1*
0.42
-2.93
λabs =
395 nm
λ em =
611 nm
λabs =
396 nm
λ em =
491 nm
2.19
-1.90 -2.77
λabs =
419 nm
λ em =
480 nm
TS_NC_TC1
Tautomer C1
3.34
0.90
Tautomer 3.18
C2*
λ em =
443 nm
TS_NA_NC
TS_NA_TA1
Tautomer A1
Normal A
S0 PES
Normal C*
-6.61 -7.23
λabs =
424 nm
TS_TA2_TC2*
TS_NC_TC1*
TS_TA1_TC1*
10.74 Normal C 6.60
4.24
5.45
λ em =
583 nm
DHNDA23_OI*(4d)
DHNDA13_II*(4d)
0.40
TS6*
DHNDA12_II*(4d)
-6.63
-7.24
-8.24
λabs =
396.05nm
λ em =
491.11 nm
DHNDA23_OI(4d)
0.91
λabs =
424.42 nm
DHNDA13_II(4d)
3.35
2.21
λ em =
610.53 nm
1.0
Em-DHNDA in CYH-ex380
Em-DHNDA (solid)-ex400
A. U.
0.8
0.6
0.4
0.2
0.0
400
500
600
700
Wavelength (nm)
800
O19—H24
H24—O23
O23—H22
H22—O21
Normal A
1.598
1.011
1.751
0.977
Tautomer A1
1.022
1.555
1.658
0.994
O19—H24
H24—O23
Normal C
1.594
1.011
Tautomer C1
1.021
1.556
O23—H22
H22—O21
1.745
0.977
1.653
0.994
O19—H24
H24—O23
O21—H22
H22—O16
Normal B
1.658
0.999
0.999
1.658
O19—H24
H24—O23
O23—H22
H22—O21
Tautomer A1*
1.011
1.633
1.499
1.037
Tautomer A2*
0.987
1.777
1.033
1.520
O19—H24
H24—O23
O23—H22
H22—O21
Normal C*
1.395
1.087
1.666
0.994
Tautomer C1*
1.013
1.621
1.510
1.032
O19—H24
H24—O23
O21—H22
H22—O16
Normal B*
1.573
1.016
1.016
1.573
Tautomer C2*
0.988
1.768
1.043
1.484
Tautomer B1*
1.062
1.446
0.999
1.650
Tautomer B2*
0.984
1.778
1.778
0.984
Abs in cyclohexane