1 - Atomoi

Anorganic Chemistry Practical Course I
University of Zurich Irchel
Laboratory Report
CHE207 P
Synthesis of Zinc Salicylaldehyde-5-natriumsulphonate
by
David Streuli
bench no. 42)/34-G-48
supervised by
Felix Zelder
February 23th, 2016
Anleitung zur durchführung eines Organischen Chemischen
Praktikums
befolge folgende Schritte:
** **
#imAnhang
** **
** findest du ein etwas durcheinander geratenen Lab report **
1. Data package herunterladen
2. Kopiere diesen Ordner in deinen Uni-Ordner und versehe Ihn mit der Nummer
deines
Experimentes.
https://www.dropbox.com/sh/ip62aqkewyk2kjd/AABYizD23YX0alFWm8ojXP08a?dl=0
(gehe auf: Atomoi’s Julien Muster - wenn du einen Ordner eines Älteren Semesters suchst.)
3. III___III Dein erstes Experiment wirst du nun Vorbereiten:
4. Füge die Strukturformel in den NMR-Structurepredictor ein, druck das Spektrum
und die Tabelle aus oder zeichne es ab.
http://www.nmrdb.org/new_predictor/index.shtml?v=v2.28.0
5. Hast du Chem Draw? Zeichne es nochmals.
>View> Show Analysis Window> jetz markierst du die gezeichneten Moleküle und
erhältst somit die MS- Vorhersage
Report N° 4, p. 1
Anorganic Chemistry Practical Course I
University of Zurich Irchel
6. Im Ordner den du von Dropbox heruntergeladen hast findest du einen Ordner
„Prep.“ Ersetzte alle Informationen in den beiden Dateien: „Datasheet.word“ und
„Infosheet.word“.
//OCP1/D2_KopieKopiecopycopy/2015_folders_Bien
z_CHE210_OCP1/prep/Spektrum
und die Tabelle aus oder zeichne es ab.
http://www.nmrdb.org/new_predictor/index.shtml?v=v2.28.0
5. Hast du Chem Draw? Zeichne es nochmals.
>View> Show Analysis Window> klick daraufjetz markierst du die gezeichneten Moleküle und erhältst somit die MSVorhersage
6. Im Ordner den du von Dropbox heruntergeladen hast findest du einen Ordner
„Prep.“ Ersetzte alle Informationen in den beiden Dateien: „Datasheet.word“ und
„Infosheet.word“.
//OCP1/D2_KopieKopiecopycopy/2015_folders_Bienz_CHE210_OCP1/prep/
Tipp: SigmaAldrich ist immer eine gute Wahl für Informationen, da diese die
herkömlichen Chemikalien herstellen.)
7. Genau diese Informationen solltest du auch ins Labjournal übertragen. Hierzu
ist die Anleitung von Prof. Dr. Bienz hilfreich (auch im Ordner). Eben noch nicht
Oder du schaust im GPC1/2-Skript Kapitel The Laboratory Notebook nach.
8. Um einen guten Eindruck zu hinterlassen musst du bloss Literatur zu deiner
Synthese finden. Reaxys, Science HBZ UZH sind dabei nützliche Seiten.
Allerdings ist es kompliziert und es dauert, bis Man im Recherchieren geübt ist.
Report N° 4, p. 2
Anorganic Chemistry Practical Course I
University of Zurich Irchel
Achtung:
Bienz weiss, dass man nicht viel lernt, wenn alles von Anfang an klappen würde.
In der richtigen Forschung klappt eben auch nicht alles auf Anhieb. Er hat
herausfordernde Synthesen ausgewählt und manchmal kommt es vor, dass sogar
das TLC das Produkt nicht zeigt, weil die gewählte mobile Phase das Produkt in
die Edukte zerlegt.
Nach dem Experiment:
Öffne:
>OCP1>D2_KopieKopiecopycopy>2015_folders_Bienz_CHE210_OCP1>prep>S
tudents_Pack_FS15>Documentation>Drawind_Writing>Report_Writing_Templat
es_for General>D2.word
Dann schreibe deinen Report mit Hilfe des PDF-Ausdrucks:
>OCP1>D2_KopieKopiecopycopy>2015_folders_Bienz_CHE210_OCP1>prep>S
tudents_Pack_FS15>Documentation>Drawind_Writing>Writing.doc
Allgemeine Literatur:
http://www.dtv.de/buecher/das_wilde_leben_der_elemente_34768.html
Für Methodik /Gerätehilfe:
http://atomoi.ch/module/che210/?preview_id=1139&preview_nonce=31d5149ac3&preview=true
Report N° 4, p. 3
Anorganic Chemistry Practical Course I
University of Zurich Irchel
Anhang
1,1’-2-Binaphthol by oxidative Aryl-coupling
Scheme 1
Scheme 2
Critical assessment
A yield of 77 % and high purity was obtained that is a bit lower than 95 % in lit. [1].
A slower addition of 2-naphthol would be recommended to prevent the formation
of by-products.
Introduction
sadfasdf
Report N° 4, p. 4
Anorganic Chemistry Practical Course I
University of Zurich Irchel
Salen is an acronym for one of the most important synthetic ligand systems N,N`Bis(salicylidene)ethylenediamine and complexes with several metal-ions. In 1933
[b], the first metal-salen complexes have already been known. The simplest
version 1 is shown below and can be synthesized from two equivalent
salicylaldehyde combined with ethylenediamine in ethanol. A Schiff base is formed
by the elimination of water[a], although these Schiff bases are sensitive to
hydrolysis under acidic conditions. Salen are tetradentate ligand forming
preferentially square pyramidal or octahedral complexes. The binding constant of
salen is strongly dependent of its metal-centre. Because the metal centre
influences the π-system and can be exchanged as wel, different salen-metal
combinations can be used as chemosensors to detect transmetalation [2] . The
second and more popular application is as a catalyst. The discovery of
enantioselective epoxidation of unfunctionalized alkenes with chiral salen
complexes by Jacobsen in 1990 [3] opened a whole new field in asymmetric
catalysis. In 2005, more than 2500 [4] different salen-type complexes have been
characterized. Except of the oxidation of hydrocarbons [5], salen derivatives can
catalyse aziridination of alkenes [6], Diels-Alder reaction [7] hydrolytic kinetic
resolution of epoxides [8] , ring-opening polymerization [9], alkylation of aldehydes
[10], oxidation of sulphides to sulfoxides [11] and selective coupling of CO2 and
epoxides to provideeither polycarbonate or cyclic carbonate [12]. In some cases,
these reactions can arrange even asymmetrically what makes it interesting for the
pharmaceutical industry. For example, Indinavir is an HIV protease inhibitor and
its key building block (1S,2R)-1-amino-2-indanol synthesis is catalysed
enantioselectively by 2 the “Jacobsen’s catalyst”. Since the salen-complexes are
catalysts there is still the need for oxidizing agents. With regards to environmental
concerns salen convert molecular oxygen and hydrogenperoxide rather than
CrO3, what means there is less toxic waste besides the fewer by-products.
Reversibly https://en.wikipedia.org/wiki/Metal_salen_complexes
REFERENCES
[b]
[1]
T. Tsumaki, J. Chem. Soc. Japan, 1987, 1288, 58
E. Hager, C. Makhubela, G. Smith, Dalton Trans., 2012, 41, 13927-13935.
Report N° 4, p. 5
Anorganic Chemistry Practical Course I
University of Zurich Irchel
[2]
Laboratory Report A. Tscharner, R. Bolliger, ACP I – Project 5, 2015
[3]
W. Zhang, J. L. Loebach, S. R. Wilson, E. N. Jacobsen, J. Am. Chem. Soc.,
1990,
112,
2801.
[4]
https://helda.helsinki.fi/bitstream/handle/10138/21131/metalsal.pdf?sequen
ce=1
[5]
N. H. Lee, C.-S. Lee and D.-S. Jung, Tetrahedron Lett., 1998, 39, 1385.
[6]
K. Omura, T. Uchida, R. Irie and T. Katsuki, Chem. Commun., 2004, 2060.
[7]
J. D. McGilvra and V. H. Rawal, Synlett, 2004, 2440.
[8]
C.-K. Shin, S.-J. Kim and G.-J. Kim, Tetrahedron Lett., 2004, 45, 7429.
[9]
[10] T. Maeda, T. Takeuchi, Y. Furusho and T. Takata, J. Polym. Sci., Part A:
Polym. Chem., 2004, 42, 4693
[11]
S. S. Kim and G. Rajagopal, Synthesis, 2003, 2461.
[12]
D. J. Darensbourg, Chem. Rev., 2007, 107, 2388-2410
[2]
M. Hesse, H. Meier, B. Zeeh, Spektroskopische Methoden in der
organischen
Chemie, 8. Ed., Thieme, 2011.
Experimental Part
1. General. Unless otherwise stated, all chemicals were of reagent grade and
purchased from Sigma–Aldrich. Reactions were carried out in oven-dried (100°)
glass equipment and monitored for completion by analyzing a small sample (after
suitable workup) by TLC or NMR. Solvents for reactions were of p.a. grade or
distilled prior to their use. Evaporation of the solvents in vacuo was done with the
rotary evaporator. pH: Merck indicator paper pH 1–14 (universal indicator) or
Metrohm 713 pH meter equipped with pH sensitive electrode. Thin layer
chromatography (TLC): Merck tlc plates silica gel 60 on aluminum with the
Report N° 4, p. 6
Anorganic Chemistry Practical Course I
University of Zurich Irchel
indicated solvent system; the spots were visualized by UV light (254 and 366 nm)
and exposure to vapor of KMnO4. M.p.: Büchi 510; heating rate 2° min–1; range 2/3
to fully molten. UV-Vis spectra: Cary Series spectrophotometer (Agilent
technologies); max (log) and min (log) in nm. IR spectra: SpectrumTwo FT-IR
Spectrometer (Perkin–Elmer) equipped with a Specac Golden GateTM ATR
(attenuated total reflection) accessory; applied as neat samples; 1/ in cm–1. 1HNMR spectra in CDCl3; Bruker AV-300 (300 MHz);  in ppm rel. to TMS ( 0.00)
corresponding to CDCl3 ( 7.26), J in Hz. 13C-NMR spectra in CDCl3; Bruker AV300 (75.5 MHz);  in ppm rel. to TMS ( 0.0) corresponding to CDCl3 ( 77.0);
multiplicities from DEPT-135 and DEPT-90 experiments. Gas chromatography/electron impact ionization-mass spectrometry (GC/EI-MS): Thermo Scientific
ISQ GC/MS equipped with a Trace 1300 GC, split/splitless injector at 250°; flow
rate at 1 ml min–1; Thermo Scientific TG-SQC capillary column, 15 m, 0.25 mm
i.d., 0.25 m film thickness; gradient 20° min–1 from 60°–300° then isothermal for
another 3 min, Rt in min; EI at 70 eV; single stage quadrupole mass analyzer, mass
range 50–600 amu at 2 scans min–1 in full scan mode; in m/z (rel.%) for molecular
ions and characteristic fragments (with interpretation) and for all further signals of
≥5 rel.% Elemental analysis: Chem Draw Prime 15
Instrument Description Thermo QExactive
High-resolution electrospray ionization mass spectra (HR-ESI-MS): QExactive
(Thermo Fisher Scientific, Bremen, Germany) with a heated ESI source connected
to a Dionex Ultimate 3000 UHPLC system. Samples dissolved in MeOH or H2O at
ca. 50 g ml–1; injection of 1 l on-flow with an auto-sampler (mobile phase: MeOH
+ 0.1% HCOOH or CH3CN/H2O 2:8 + 0.1% HCOOH; flow rate 120 l ml–1); ion
source parameters: spray voltage 3.0 kV, capillary temperature 320°, sheath gas
5 l min–1, s-lens RF level 55.0; full scan MS in alternating (+)/(–)-ESI mode; mass
ranges 80–1’200, 133–2’000, or 200–3’000 amu; resolution (full width halfmaximum) 70’000; automatic gain control (AGC) target 3.00 10 6; maximum
allowed ion transfer time (IT) 30 ms; mass calibration <2 ppm accuracy for m/z
130.06619–1621.96509 in (+)-ESI and for m/z 265.14790–1779.96528 in (–)-ESI
with Pierce® ESI calibration solutions (Thermo Fisher Scientific, Rockford, USA);
lock masses: ubiquitous erucamide (m/z 338.34174, (+)-ESI) and palmitic acid
(m/z 255.23295, (–)-ESI).
/////
2. Abbreviations
Report N° 4, p. 7
Anorganic Chemistry Practical Course I
University of Zurich Irchel
AcOEt
approx.
aq. soln.
arom.
br.
d
EI
GC
IR
m
(IR)
m.p.
MS
ethyl acetate
approximately
aqueous solution
aromatic
broad
doublet
electron ionisation
gas chromatography
infra-red
multiplet (NMR), middle
lit.
literature
p.a.
pro analysis
Rf
retention factor
Rt
retention time
s
singlet
t
triplet
UV
ultra-violet
Vis
visible
w
weak
TLC
thin layer
chromatography
melting point
mass spectroscopy
3. Procedure
3.1. N-phenyl-salicylaldimine
Salicylaldehyde 1a (0.85 ml, 8.2 mmol) and aniline were combined in MeOH (50
ml) and stirred for 90 min. at room temperature. When distilled water was
carefully added a bright yellow precipitate appeared and vanished
instantaneously. When it took the solution three seconds to dissolve the
precipitate again the mixture was cooled in an ice bath. The crystallized product
was filtered by vacuum filtration, washed with small portions of water and MeOH
and dried in vacuo. Yield 6.49 g (82%).
3.2. N-phenyl-5-sulfonato-salicylaldimine
N-phenyl-Salicylaldimine (3.503 g, 17.77 mmol) was stepwise dissolved in
concentrated sulfuric acid (>95%, 12 ml). The deep orange solution was heated to
100° C and left stirring for 1.5 h (lit: 2.5 h [1]). The hot solution was poured into a
beaker containing 100 ml ice water that caused the instantaneous formation of a
yellow precipitate. This suspension was reheated until complete dissolution. The
bright orange solution was purified by vacuum filtration and the filtrate was left a
25° C to crystallize. The mustard-yellow sludge was washed with cold water and
dried in vacuo. Yield 3.769 g (76%)
3.3. monosodium 5-sulfonatosalicylaldehyde
Report N° 4, p. 8
Anorganic Chemistry Practical Course I
University of Zurich Irchel
Na2CO3 (1.44 g, 13.59 mmol) was dissolved in H2O (24 ml) in a 100 ml round
bottom flask. N-phenyl-5-sulfonato-salicylaldimine (3.499 g, 12.63 mmol) was
added and boiled (125° C) for
1 (2-naphthol, 2.03 g, 14.1 mmol) was dissolved in H2O (190 ml) and the mixture
was heated to reflux. An aq. soln. of FeCl3 (2.48 g, 15.3 mmol) was added with
help of a dropping funnel over a period of 33 min. The reaction was stirred for 21
h at 100 °. The precipitate that was formed in the hot soln. was filtered off through
a glass filter frit and transferred in H2O (30 ml). Then the mixture was heated to
reflux, the precipitate again filtered of and dissolved in toluene (30 ml) that it could
be dried over Dean-Stark-distillation. A first batch was filtered off after 20 h in the
refrigerator, the second batch was taken after removal of half of the solvent by
evaporation in vacou and storing the mixture in the refrigerator for 26 h. The crude
product was recrystallized using toluene as a solvent and yielding 2 (1,1’-2Binaphthol, 3.11 g,10.9 mmol) in 77 %.
Data of 2, pale brown needles, estimated by 1H-NMR to be >95% pure
TLC: Rf = 0.82 (n-hexane/AcOEt 1:5)
m.p.: 211-212 ° (lit. 216-218 ° [1])
𝑛𝐷23 : solid
𝛼𝐷23 : racemic
UV/Vis (MeOH): not done
Selected IR bands: 3398m, 3483m (O-H), 3045br.w (O-H), 1618m (C=C), 1597m,
1508w, 1470w, 1380m, 1322m, 1251w, 1209s, 1167s (C-O), 1140s, 960w, 864w,
814s (C=C-H), 750s, 665m [2]
1
H-NMR: 7.94 (dd, J = 24.7, 8.4, 4H, HOCCHCH), 7.40-7.14 (m, 8Harom.), 5.03 (s,
2H, -OH) (In agreement with [1])
13
C-NMR: 152.8 (s, 2C, C-OH), 133.4 (s, 2C, Carom.), 131.5 (d, 2C, Carom.), 129.5
(s, 2C, Carom), 128.5 (d, 2C, Carom.), 127.5 (d, 2C, Carom.), 124.2 (d, 2C, Carom.), 124.1
(s, 2C, Carom.), 117.8 (d, 2C, Carom.), 110.8 (s, 2C, Carom) (In agreement with [1])
CI-MS (Rt = 6.3, 11.7): 205 (100, [M]-C5H5O), 207 (90)
Anal. Calc. For C20H14O2 (286.10): C 83.90, H 4.93
Report N° 4, p. 9
Anorganic Chemistry Practical Course I
University of Zurich Irchel
3.2. N-phenyl-5-sulfonato-salicylaldimine
REFERENCES
[a]
E. Hager, C. Makhubela, G. Smith, Dalton Trans., 2012, 41, 13927-13935.
[2]
M. Hesse, H. Meier, B. Zeeh, Spektroskopische Methoden in der
organischen
Chemie, 8. Ed., Thieme, 2011.
Fig. 1: IR of 1,1’-2-Binaphthol
Fig. 2.a: 1H-NMR of 1,1’-2-Binaphthol
Fig. 2.b: 1H-NMR of 1,1’-2-Binaphthol
Fig. 3: 13C-NMR of 1,1’-2-Binaphthol
Report N° 4, p. 10
Anorganic Chemistry Practical Course I
University of Zurich Irchel
Fig. 4: 13C-NMR dept-135 of 1,1’-2-Binaphthol
Fig. 5: 13C-NMR dept-90 of 1,1’-2-Binaphthol
Report N° 4, p. 11
Anorganic Chemistry Practical Course I
University of Zurich Irchel
Fig. 1: GC of 1,1’-2-Binaphthol
Fig. 1: IR of 1,1’-2-Binaphthol
Report N° 4, p. 12