Anorganic Chemistry Practical Course I University of Zurich Irchel Laboratory Report CHE207 P Synthesis of Zinc Salicylaldehyde-5-natriumsulphonate by David Streuli bench no. 42)/34-G-48 supervised by Felix Zelder February 23th, 2016 Anleitung zur durchführung eines Organischen Chemischen Praktikums befolge folgende Schritte: ** ** #imAnhang ** ** ** findest du ein etwas durcheinander geratenen Lab report ** 1. Data package herunterladen 2. Kopiere diesen Ordner in deinen Uni-Ordner und versehe Ihn mit der Nummer deines Experimentes. https://www.dropbox.com/sh/ip62aqkewyk2kjd/AABYizD23YX0alFWm8ojXP08a?dl=0 (gehe auf: Atomoi’s Julien Muster - wenn du einen Ordner eines Älteren Semesters suchst.) 3. III___III Dein erstes Experiment wirst du nun Vorbereiten: 4. Füge die Strukturformel in den NMR-Structurepredictor ein, druck das Spektrum und die Tabelle aus oder zeichne es ab. http://www.nmrdb.org/new_predictor/index.shtml?v=v2.28.0 5. Hast du Chem Draw? Zeichne es nochmals. >View> Show Analysis Window> jetz markierst du die gezeichneten Moleküle und erhältst somit die MS- Vorhersage Report N° 4, p. 1 Anorganic Chemistry Practical Course I University of Zurich Irchel 6. Im Ordner den du von Dropbox heruntergeladen hast findest du einen Ordner „Prep.“ Ersetzte alle Informationen in den beiden Dateien: „Datasheet.word“ und „Infosheet.word“. //OCP1/D2_KopieKopiecopycopy/2015_folders_Bien z_CHE210_OCP1/prep/Spektrum und die Tabelle aus oder zeichne es ab. http://www.nmrdb.org/new_predictor/index.shtml?v=v2.28.0 5. Hast du Chem Draw? Zeichne es nochmals. >View> Show Analysis Window> klick daraufjetz markierst du die gezeichneten Moleküle und erhältst somit die MSVorhersage 6. Im Ordner den du von Dropbox heruntergeladen hast findest du einen Ordner „Prep.“ Ersetzte alle Informationen in den beiden Dateien: „Datasheet.word“ und „Infosheet.word“. //OCP1/D2_KopieKopiecopycopy/2015_folders_Bienz_CHE210_OCP1/prep/ Tipp: SigmaAldrich ist immer eine gute Wahl für Informationen, da diese die herkömlichen Chemikalien herstellen.) 7. Genau diese Informationen solltest du auch ins Labjournal übertragen. Hierzu ist die Anleitung von Prof. Dr. Bienz hilfreich (auch im Ordner). Eben noch nicht Oder du schaust im GPC1/2-Skript Kapitel The Laboratory Notebook nach. 8. Um einen guten Eindruck zu hinterlassen musst du bloss Literatur zu deiner Synthese finden. Reaxys, Science HBZ UZH sind dabei nützliche Seiten. Allerdings ist es kompliziert und es dauert, bis Man im Recherchieren geübt ist. Report N° 4, p. 2 Anorganic Chemistry Practical Course I University of Zurich Irchel Achtung: Bienz weiss, dass man nicht viel lernt, wenn alles von Anfang an klappen würde. In der richtigen Forschung klappt eben auch nicht alles auf Anhieb. Er hat herausfordernde Synthesen ausgewählt und manchmal kommt es vor, dass sogar das TLC das Produkt nicht zeigt, weil die gewählte mobile Phase das Produkt in die Edukte zerlegt. Nach dem Experiment: Öffne: >OCP1>D2_KopieKopiecopycopy>2015_folders_Bienz_CHE210_OCP1>prep>S tudents_Pack_FS15>Documentation>Drawind_Writing>Report_Writing_Templat es_for General>D2.word Dann schreibe deinen Report mit Hilfe des PDF-Ausdrucks: >OCP1>D2_KopieKopiecopycopy>2015_folders_Bienz_CHE210_OCP1>prep>S tudents_Pack_FS15>Documentation>Drawind_Writing>Writing.doc Allgemeine Literatur: http://www.dtv.de/buecher/das_wilde_leben_der_elemente_34768.html Für Methodik /Gerätehilfe: http://atomoi.ch/module/che210/?preview_id=1139&preview_nonce=31d5149ac3&preview=true Report N° 4, p. 3 Anorganic Chemistry Practical Course I University of Zurich Irchel Anhang 1,1’-2-Binaphthol by oxidative Aryl-coupling Scheme 1 Scheme 2 Critical assessment A yield of 77 % and high purity was obtained that is a bit lower than 95 % in lit. [1]. A slower addition of 2-naphthol would be recommended to prevent the formation of by-products. Introduction sadfasdf Report N° 4, p. 4 Anorganic Chemistry Practical Course I University of Zurich Irchel Salen is an acronym for one of the most important synthetic ligand systems N,N`Bis(salicylidene)ethylenediamine and complexes with several metal-ions. In 1933 [b], the first metal-salen complexes have already been known. The simplest version 1 is shown below and can be synthesized from two equivalent salicylaldehyde combined with ethylenediamine in ethanol. A Schiff base is formed by the elimination of water[a], although these Schiff bases are sensitive to hydrolysis under acidic conditions. Salen are tetradentate ligand forming preferentially square pyramidal or octahedral complexes. The binding constant of salen is strongly dependent of its metal-centre. Because the metal centre influences the π-system and can be exchanged as wel, different salen-metal combinations can be used as chemosensors to detect transmetalation [2] . The second and more popular application is as a catalyst. The discovery of enantioselective epoxidation of unfunctionalized alkenes with chiral salen complexes by Jacobsen in 1990 [3] opened a whole new field in asymmetric catalysis. In 2005, more than 2500 [4] different salen-type complexes have been characterized. Except of the oxidation of hydrocarbons [5], salen derivatives can catalyse aziridination of alkenes [6], Diels-Alder reaction [7] hydrolytic kinetic resolution of epoxides [8] , ring-opening polymerization [9], alkylation of aldehydes [10], oxidation of sulphides to sulfoxides [11] and selective coupling of CO2 and epoxides to provideeither polycarbonate or cyclic carbonate [12]. In some cases, these reactions can arrange even asymmetrically what makes it interesting for the pharmaceutical industry. For example, Indinavir is an HIV protease inhibitor and its key building block (1S,2R)-1-amino-2-indanol synthesis is catalysed enantioselectively by 2 the “Jacobsen’s catalyst”. Since the salen-complexes are catalysts there is still the need for oxidizing agents. With regards to environmental concerns salen convert molecular oxygen and hydrogenperoxide rather than CrO3, what means there is less toxic waste besides the fewer by-products. Reversibly https://en.wikipedia.org/wiki/Metal_salen_complexes REFERENCES [b] [1] T. Tsumaki, J. Chem. Soc. Japan, 1987, 1288, 58 E. Hager, C. Makhubela, G. Smith, Dalton Trans., 2012, 41, 13927-13935. Report N° 4, p. 5 Anorganic Chemistry Practical Course I University of Zurich Irchel [2] Laboratory Report A. Tscharner, R. Bolliger, ACP I – Project 5, 2015 [3] W. Zhang, J. L. Loebach, S. R. Wilson, E. N. Jacobsen, J. Am. Chem. Soc., 1990, 112, 2801. [4] https://helda.helsinki.fi/bitstream/handle/10138/21131/metalsal.pdf?sequen ce=1 [5] N. H. Lee, C.-S. Lee and D.-S. Jung, Tetrahedron Lett., 1998, 39, 1385. [6] K. Omura, T. Uchida, R. Irie and T. Katsuki, Chem. Commun., 2004, 2060. [7] J. D. McGilvra and V. H. Rawal, Synlett, 2004, 2440. [8] C.-K. Shin, S.-J. Kim and G.-J. Kim, Tetrahedron Lett., 2004, 45, 7429. [9] [10] T. Maeda, T. Takeuchi, Y. Furusho and T. Takata, J. Polym. Sci., Part A: Polym. Chem., 2004, 42, 4693 [11] S. S. Kim and G. Rajagopal, Synthesis, 2003, 2461. [12] D. J. Darensbourg, Chem. Rev., 2007, 107, 2388-2410 [2] M. Hesse, H. Meier, B. Zeeh, Spektroskopische Methoden in der organischen Chemie, 8. Ed., Thieme, 2011. Experimental Part 1. General. Unless otherwise stated, all chemicals were of reagent grade and purchased from Sigma–Aldrich. Reactions were carried out in oven-dried (100°) glass equipment and monitored for completion by analyzing a small sample (after suitable workup) by TLC or NMR. Solvents for reactions were of p.a. grade or distilled prior to their use. Evaporation of the solvents in vacuo was done with the rotary evaporator. pH: Merck indicator paper pH 1–14 (universal indicator) or Metrohm 713 pH meter equipped with pH sensitive electrode. Thin layer chromatography (TLC): Merck tlc plates silica gel 60 on aluminum with the Report N° 4, p. 6 Anorganic Chemistry Practical Course I University of Zurich Irchel indicated solvent system; the spots were visualized by UV light (254 and 366 nm) and exposure to vapor of KMnO4. M.p.: Büchi 510; heating rate 2° min–1; range 2/3 to fully molten. UV-Vis spectra: Cary Series spectrophotometer (Agilent technologies); max (log) and min (log) in nm. IR spectra: SpectrumTwo FT-IR Spectrometer (Perkin–Elmer) equipped with a Specac Golden GateTM ATR (attenuated total reflection) accessory; applied as neat samples; 1/ in cm–1. 1HNMR spectra in CDCl3; Bruker AV-300 (300 MHz); in ppm rel. to TMS ( 0.00) corresponding to CDCl3 ( 7.26), J in Hz. 13C-NMR spectra in CDCl3; Bruker AV300 (75.5 MHz); in ppm rel. to TMS ( 0.0) corresponding to CDCl3 ( 77.0); multiplicities from DEPT-135 and DEPT-90 experiments. Gas chromatography/electron impact ionization-mass spectrometry (GC/EI-MS): Thermo Scientific ISQ GC/MS equipped with a Trace 1300 GC, split/splitless injector at 250°; flow rate at 1 ml min–1; Thermo Scientific TG-SQC capillary column, 15 m, 0.25 mm i.d., 0.25 m film thickness; gradient 20° min–1 from 60°–300° then isothermal for another 3 min, Rt in min; EI at 70 eV; single stage quadrupole mass analyzer, mass range 50–600 amu at 2 scans min–1 in full scan mode; in m/z (rel.%) for molecular ions and characteristic fragments (with interpretation) and for all further signals of ≥5 rel.% Elemental analysis: Chem Draw Prime 15 Instrument Description Thermo QExactive High-resolution electrospray ionization mass spectra (HR-ESI-MS): QExactive (Thermo Fisher Scientific, Bremen, Germany) with a heated ESI source connected to a Dionex Ultimate 3000 UHPLC system. Samples dissolved in MeOH or H2O at ca. 50 g ml–1; injection of 1 l on-flow with an auto-sampler (mobile phase: MeOH + 0.1% HCOOH or CH3CN/H2O 2:8 + 0.1% HCOOH; flow rate 120 l ml–1); ion source parameters: spray voltage 3.0 kV, capillary temperature 320°, sheath gas 5 l min–1, s-lens RF level 55.0; full scan MS in alternating (+)/(–)-ESI mode; mass ranges 80–1’200, 133–2’000, or 200–3’000 amu; resolution (full width halfmaximum) 70’000; automatic gain control (AGC) target 3.00 10 6; maximum allowed ion transfer time (IT) 30 ms; mass calibration <2 ppm accuracy for m/z 130.06619–1621.96509 in (+)-ESI and for m/z 265.14790–1779.96528 in (–)-ESI with Pierce® ESI calibration solutions (Thermo Fisher Scientific, Rockford, USA); lock masses: ubiquitous erucamide (m/z 338.34174, (+)-ESI) and palmitic acid (m/z 255.23295, (–)-ESI). ///// 2. Abbreviations Report N° 4, p. 7 Anorganic Chemistry Practical Course I University of Zurich Irchel AcOEt approx. aq. soln. arom. br. d EI GC IR m (IR) m.p. MS ethyl acetate approximately aqueous solution aromatic broad doublet electron ionisation gas chromatography infra-red multiplet (NMR), middle lit. literature p.a. pro analysis Rf retention factor Rt retention time s singlet t triplet UV ultra-violet Vis visible w weak TLC thin layer chromatography melting point mass spectroscopy 3. Procedure 3.1. N-phenyl-salicylaldimine Salicylaldehyde 1a (0.85 ml, 8.2 mmol) and aniline were combined in MeOH (50 ml) and stirred for 90 min. at room temperature. When distilled water was carefully added a bright yellow precipitate appeared and vanished instantaneously. When it took the solution three seconds to dissolve the precipitate again the mixture was cooled in an ice bath. The crystallized product was filtered by vacuum filtration, washed with small portions of water and MeOH and dried in vacuo. Yield 6.49 g (82%). 3.2. N-phenyl-5-sulfonato-salicylaldimine N-phenyl-Salicylaldimine (3.503 g, 17.77 mmol) was stepwise dissolved in concentrated sulfuric acid (>95%, 12 ml). The deep orange solution was heated to 100° C and left stirring for 1.5 h (lit: 2.5 h [1]). The hot solution was poured into a beaker containing 100 ml ice water that caused the instantaneous formation of a yellow precipitate. This suspension was reheated until complete dissolution. The bright orange solution was purified by vacuum filtration and the filtrate was left a 25° C to crystallize. The mustard-yellow sludge was washed with cold water and dried in vacuo. Yield 3.769 g (76%) 3.3. monosodium 5-sulfonatosalicylaldehyde Report N° 4, p. 8 Anorganic Chemistry Practical Course I University of Zurich Irchel Na2CO3 (1.44 g, 13.59 mmol) was dissolved in H2O (24 ml) in a 100 ml round bottom flask. N-phenyl-5-sulfonato-salicylaldimine (3.499 g, 12.63 mmol) was added and boiled (125° C) for 1 (2-naphthol, 2.03 g, 14.1 mmol) was dissolved in H2O (190 ml) and the mixture was heated to reflux. An aq. soln. of FeCl3 (2.48 g, 15.3 mmol) was added with help of a dropping funnel over a period of 33 min. The reaction was stirred for 21 h at 100 °. The precipitate that was formed in the hot soln. was filtered off through a glass filter frit and transferred in H2O (30 ml). Then the mixture was heated to reflux, the precipitate again filtered of and dissolved in toluene (30 ml) that it could be dried over Dean-Stark-distillation. A first batch was filtered off after 20 h in the refrigerator, the second batch was taken after removal of half of the solvent by evaporation in vacou and storing the mixture in the refrigerator for 26 h. The crude product was recrystallized using toluene as a solvent and yielding 2 (1,1’-2Binaphthol, 3.11 g,10.9 mmol) in 77 %. Data of 2, pale brown needles, estimated by 1H-NMR to be >95% pure TLC: Rf = 0.82 (n-hexane/AcOEt 1:5) m.p.: 211-212 ° (lit. 216-218 ° [1]) 𝑛𝐷23 : solid 𝛼𝐷23 : racemic UV/Vis (MeOH): not done Selected IR bands: 3398m, 3483m (O-H), 3045br.w (O-H), 1618m (C=C), 1597m, 1508w, 1470w, 1380m, 1322m, 1251w, 1209s, 1167s (C-O), 1140s, 960w, 864w, 814s (C=C-H), 750s, 665m [2] 1 H-NMR: 7.94 (dd, J = 24.7, 8.4, 4H, HOCCHCH), 7.40-7.14 (m, 8Harom.), 5.03 (s, 2H, -OH) (In agreement with [1]) 13 C-NMR: 152.8 (s, 2C, C-OH), 133.4 (s, 2C, Carom.), 131.5 (d, 2C, Carom.), 129.5 (s, 2C, Carom), 128.5 (d, 2C, Carom.), 127.5 (d, 2C, Carom.), 124.2 (d, 2C, Carom.), 124.1 (s, 2C, Carom.), 117.8 (d, 2C, Carom.), 110.8 (s, 2C, Carom) (In agreement with [1]) CI-MS (Rt = 6.3, 11.7): 205 (100, [M]-C5H5O), 207 (90) Anal. Calc. For C20H14O2 (286.10): C 83.90, H 4.93 Report N° 4, p. 9 Anorganic Chemistry Practical Course I University of Zurich Irchel 3.2. N-phenyl-5-sulfonato-salicylaldimine REFERENCES [a] E. Hager, C. Makhubela, G. Smith, Dalton Trans., 2012, 41, 13927-13935. [2] M. Hesse, H. Meier, B. Zeeh, Spektroskopische Methoden in der organischen Chemie, 8. Ed., Thieme, 2011. Fig. 1: IR of 1,1’-2-Binaphthol Fig. 2.a: 1H-NMR of 1,1’-2-Binaphthol Fig. 2.b: 1H-NMR of 1,1’-2-Binaphthol Fig. 3: 13C-NMR of 1,1’-2-Binaphthol Report N° 4, p. 10 Anorganic Chemistry Practical Course I University of Zurich Irchel Fig. 4: 13C-NMR dept-135 of 1,1’-2-Binaphthol Fig. 5: 13C-NMR dept-90 of 1,1’-2-Binaphthol Report N° 4, p. 11 Anorganic Chemistry Practical Course I University of Zurich Irchel Fig. 1: GC of 1,1’-2-Binaphthol Fig. 1: IR of 1,1’-2-Binaphthol Report N° 4, p. 12
© Copyright 2026 Paperzz