1 Tim Wendler and Manuel Berrondo BYU Physics I am calculating the dynamics of a collinear atom/diatomic molecule inelastic collision o Jacobi coordinates oQuantum-Classical coupling oLie algebraic solution o6 coupled equations oCanonical ensemble Collinear Configuration Diatomic molecule •Harmonic oscillator potential for BC •Repulsive interaction for AB •No AC interaction •Energy is in units of 0 •Valid for Ee Et Atom Jacobi Coordinates 1 2 m m A mC m mB m A mB mC Potential Energy Surface 1 2 x y y V0 e 2 V0 1 4 V0 1 1 V0 4 1 Equations of motion pˆ p 1 2 x yˆ H yˆ V0 e 2m 2 2 2 x 2 d x x m 2 V0 e e dt 2 y yˆ t Classical for Translation d H q t i tExpansion dt Quantum for vibration Quantum Hamiltonian V0 e x yˆ e V0 e x 1 2 2 1 yˆ yˆ ... 2 1 2 1 2 2 x x H q pˆ y yˆ V0 e yˆ V0 e “dipole” term 2 2 Expanded and Rearranged d i t H q t dt Quantum for vibration Time Evolution Operator t U t 0 d i t H q t dt d i U t 0 H qU t 0 dt Quantum equation of motion for vibration Constant ket d ˆ i U t H qUˆ t dt Lie Algebraic Approach Uˆ t e 1aˆ 2 aˆ 3 Nˆ 4 1̂ n U 1aU n 1 t e e e 1 1 t 2 t yˆ t 2 1 t 2 t pˆ y t i 2 Time dependence goes into “c” numbers Nuances Very general and useful equation d ˆ ˆ 1 i U U H dt d ˆ i U HUˆ dt End up with terms like 1aˆ i 2e aˆe 1aˆ Utilize Berrondo anti-symmetric product A e Be A A e B 6 coupled equations x t vt 1 1 x vt V0 e e m 2 1 t iV0 2 t iV0 3 t i yˆ t Not operator equations! 1 x e i1 2 1 x e i 2 2 4 t iV0 e x i 1 x iV0 e 1 2 2 x 1 2V0e x Transition Rates Initial conditions x0 20 v0 1.41 1 0 0 2 0 0 3 0 0 4 0 0 U 0 1 02 Phase Space Calculations Initial conditions pˆ y t x0 20 v0 1.9 1 2Ve x0 1 0 2 1 2Ve x0 2 0 2 3 0 0 4 0 0 ŷ t Intuitive plot of collision tv0 log cosh 2 New Trajectory Classical Comparison pˆ y t ŷ t Quantum phase gained energy p y t yt Classical phase lost energy •Same until initial speed passes the max oscillator speed •Certain phase relations result in opposite effects Mixed States A superposition is in both states 1 1 2 i 2 A mixture is in perhaps one or perhaps the other 1 1 1 2 2 2 No interference A density matrix can represent a statistical mixture of pure states. Quantum Liouville Equation i H q , t 0 t Initial state in equilibrium at temperature T Just after the collision t U 0U Pi f f UiU 1 f Out of equilibrium, for the moment 1 Pif Zn n 2 fUi e Ei i 0 A canonical ensemble of oscillators Initial State of canonical ensemble at Temperature T Non-equilibrium Just after collision, thermal equilibrium is lost Summary • • No wave functions A simple equation standard o Phase Space o Transition Rates o Canonical Ensemble Infinite order transitions Specific system input xn d ˆ ˆ 1 H i U U dt General boson algebra coefficients already calculated! Future – Reactive Collisions oSN2 Reactions oNuclear Reactions oOxidation of methyl esters
© Copyright 2026 Paperzz