Language and Cognition Center of Excellence Cognitive Interaction Technology Universität Bielefeld Distinguishing Cognitive Models of Spatial Language Understanding 1 Kluth , Thomas Michele 1 Burigo , Holger 2 Schultheis , Pia 3 Knoeferle 1: CITEC (Cognitive Interaction Technology Excellence Cluster), Bielefeld University, Bielefeld, Germany 2: Cognitive Systems Group, Department of Computer Science, University of Bremen, Bremen, Germany 3: Department of German Language and Linguistics, Humboldt-University Berlin, Berlin, Germany. Research Question Introduction • two models computing acceptability ratings of spatial prepositions: – Attentional Vector Sum model (AVS, Regier & Carlson, 2001): attention shifts from the RO to the LO (Logan & Sadler, 1996) – reversed AVS model (rAVS, Kluth, Burigo, & Knoeferle, 2016): attention shifts from the LO to the RO (Burigo & Knoeferle, 2015; Roth & Franconeri, 2012) • equal performance on the data from Regier and Carlson (2001, see Kluth et al., 2016) The circle is above the rectangle. located object (LO) reference object (RO) AVS model (Regier & Carlson, 2001) reversed AVS (rAVS) model How to distinguish the two models? • different predictions • a more flexible model for specific stimuli is harder to falsify → empirical study to → investigate flexibiltest these predictions ity of models (Kluth, Burigo, & Knoeferle, 2016) LO 2 LO tor vec • deviation δ from canonical downwards of one vector pointing from the LO to point between proximal point P and centerof-mass C of the RO. • the greater the relative distance, the more the vector points |LO,P |y |LO,P |x towards C, relative distance = ROwidth + ROheight δ sum LO 1 δ2 δ1 RO P height D1 (plus “height component” not shown here) * no vector sum (because of simplified LO) * attentional distribution is computationally irrelevant D2 C Stimuli & Predictions width h ◦2 · h × ◦4 · h × Empirical Results Parameter Space Partitioning ◦6 · h × rel. volume of parameter space (%) ◦ × mean difference relative distance effect, 'über' ratings rAVS prediction: higher ratings for LOs above taller rectangles 0.05 0.00 -0.05 -0.10 -0.15 -0.20 square tall rect. center-of-mass e ect, 'über' ratings d d mean di erence unclear prediction d d thick rect. thin rect. minus ... AVS prediction: ? d d 100 0.10 d d 0.0 -0.1 -0.2 -0.3 -0.4 -0.5 -0.6 -0.7 -0.8 -0.9 C mC L mL all rAVS prediction: 0 no difference AVS prediction: + higher rating for LOs above mass × = center-of-mass; ◦ = center-of-object up to 28 LOs above each RO References Burigo, M., & Knoeferle, P. (2015). Visual attention during spatial language comprehension. PLoS ONE , 10 (1), e0115758. doi: 10.1371/journal.pone.0115758 Kluth, T., Burigo, M., & Knoeferle, P. (2016). Shifts of attention during spatial language comprehension: A computational investigation. In Proceedings of the 8th International Conference on Agents and Artificial Intelligence – Volume 2 (pp. 213–222). SCITEPRESS. doi: 10.5220/0005851202130222 Kluth, T., Burigo, M., Schultheis, H., & Knoeferle, P. (2016). The role of the center-of-mass in evaluating spatial language. In Proceedings of the 13th Biannual Conference of the German Society for Cognitive Science. Logan, G. D., & Sadler, D. D. (1996). A computational analysis of the apprehension of spatial relations. In P. Bloom, M. A. Peterson, L. Nadel, & M. F. Garrett (Eds.), Language and Space (pp. 493–530). The MIT Press. Navarro, D. J., Pitt, M. A., & Myung, I. J. (2004). Assessing the distinguishability of models and the informativeness of data. Cognitive Psychology , 49 (1), 47–84. doi: 10.1016/j.cogpsych.2003.11.001 Pitt, M. A., Kim, W., Navarro, D. J., & Myung, J. I. (2006). Global model analysis by parameter space partitioning. Psychological Review , 113 (1), 57–83. doi: 10.1037/ 0033-295X.113.1.57 Regier, T., & Carlson, L. A. (2001). Grounding spatial language in perception: An empirical and computational investigation. Journal of Experimental Psychology: General, 130 (2), 273–298. doi: 10.1037//0096-3445.130.2.273 Roth, J. C., & Franconeri, S. L. (2012). Asymmetric coding of categorical spatial relations in both language and vision. Frontiers in Psychology , 3 (464). doi: 10.3389/ fpsyg.2012.00464 Veksler, V. D., Myers, C. W., & Gluck, K. A. (2015). Model flexibility analysis. Psychological Review , 122 (4), 755–769. doi: 10.1037/a0039657 Landscaping (Navarro, Pitt, & Myung, 2004) AVS generated data 0.22 0.18 0.14 0.10 0.06 60 20 0 • Are the models able to generate “intuitive” predictions? rAVS: -0; AVS: ?+ • equality of ratings = 0.5 40 rAVS model AVS Model Flexibility Analysis rAVS generated data rAVS-fit (nRMSE) ◦× rAVS-fit (nRMSE) ×◦ × ◦ 80 → PSP confirms intuitive predictions for rAVS but not for AVS RO ×◦ -0-0 00 (Pitt et al., 2006) (Veksler, Myers, & Gluck, 2015) stimuli used in 0.22 0.18 0.14 0.10 0.06 0.0 0.1 0.1 0.1 0.2 6 0 4 8 2 0.0 0.1 0.1 0.1 0.2 6 0 4 8 2 AVS-fit (nRMSE) AVS-fit (nRMSE) × = fits to 1000 artificial data sets; = fits to empirical data AVS model rAVS model present study Regier and Carlson (2001) φ = 0.000899 φ = 0.000544 φ = 0.000420 φ = 0.000292 The lower the φ value, the less flexible the model. Discussion • PSP: mechanisms of AVS harder to translate into testable predictions • relative distance: – prediction of rAVS model empirically confirmed • asymmetrical ROs: – people seem to rely on the center-of-object instead of on the center-of-mass of the RO → disconfirms both models – work in progress to implement this suggestion into both models (Kluth, Burigo, Schultheis, & Knoeferle, 2016) • contrasting results for model flexibility: – PSP & MFA: AVS is more flexible than rAVS – landscaping: none of the models mimics the other model ICCM 2016, August 4-6, State College, Pennsylvania, USA
© Copyright 2026 Paperzz