Winter 2013
Chem 350: Introductory Quantum Mechanics
Chapter 4 – Postulates of Quantum Mechanics ......................................................................................... 48
MathChapter C ........................................................................................................................................ 48
The Postulates of Quantum Mechanics .................................................................................................. 50
Properties of Hermitian Operators ......................................................................................................... 53
Discussion of Measurement ................................................................................................................... 55
Discussion of Uncertainty Relations ....................................................................................................... 57
The Time-Dependent Schrodinger Equation .......................................................................................... 60
Time-dependence of expectation values ................................................................................................ 62
Chapter 4 – Postulates of Quantum Mechanics
MathChapter C
A brief reminder on vectors:
In 3 dimensions define orthonormal basic vectors
i , j, k
x
u xi yj zk y
z
Or
e1 , e2 , e3
Or
ux
u uy
u
z
vx
v v y vx i v y j v z k
v
z
Vector has both direction and a length
Vector Addiction u v
u x vx
u v u y vy
u v
z
z
Multiplication by a scalar
48
Chem 350: Introductory Quantum Mechanics
Winter 2013
ux
u u y Multiply length by
u
z
Inner Product
u v u x vx u y v y u z vz
ei i , e2 j , e3 k
ei e j ij
( ui ei v j e j ) ui v j ei e j ui v j ij ui vi
i
j
i, j
i, j
Length
u u v
Angle
u v u v cos
2
u 1
3
i
1
v 1
2
u 22 12 32 14
v 12 12 22 6
(u v) 2 1 (1) 1 3 (2) 5
5
cos
....
14 6
Examples of use of inner product in physics
Work F l F l cos
F l cos mgh
h l cos
Or: Dipole moment
u qi ri
Charges qi at position r
i
r
2
r
2
x q q
qr points in the positive direction from – to +
If we apply an electric field E
Chapter 4 – Postulates of Quantum Mechanics
49
Winter 2013
Chem 350: Introductory Quantum Mechanics
V E
(more later)
Another important product is the vector or cross product
u v : perpendicular to the plane spanned by u and v
Length: u v sin : sign from right hand rule
Mathematical formula
e1
e2
e3
ux
uy
uz
vx
vy
vz
(determinant)
u v e1 (u y vz u z v y ) e2 (u x vz u z vx ) e3 (u x v y u y vx )
Check: Orthogonal to u , v
Famous Physics example:
Lorentz Magnetic Force:
F q(V B)
Apply magnetic field B force acceleration to V , B
charged particle precesses around B
Also:
Change direction of velocity, not speed
Angular Momentum
L r p pr
( yPx xPy )e1 ( zPx xPz )ez ( xPy yPx )e3
Lz xPy yPx
Ly zPx xPz
Remember
Cyclic Permutation
Lx yPz zPy
The Postulates of Quantum Mechanics
A) Observables
To any observable, or measurable quantity A , in Quantum Mechanics corresponds a
linear Hermitian operator Â
If one performs a measurement of A , only eigenvalues ai of the operator  can be obtained
Operators in quantum mechanics are obtained by replacing
Px i
, Py i
, Pz i
x
z
y
Chapter 4 – Postulates of Quantum Mechanics
50
Winter 2013
Chem 350: Introductory Quantum Mechanics
A function of position, eg. V ( x ) is interpreted as multiplication by V ( x) Vˆ ( x)
To know possible outcome from experiment:
ˆ ( x ) a ( x )
Solve A
a
a
Eigenvalue
With operator  we often need to impose boundary conditions
Observable
Operator
Position
x, y , z
Momentum
Px , Py , Pz
Px 2
2m
P2
T
2m
Tx
Kinetic energy
xˆ, yˆ , zˆ
multiply
i
, i
, i
x
z
y
2
2m x 2
2
2
2
2
T
2m x 2 y 2 z 2
2
2
2m
ˆ
V ( x)
V ( x)
Potential Energy
2
: multiply by Vˆ ( r )
Hˆ Tˆ Vˆ
Total Energy
E
Lˆx
lx yPz zPy
Angular momentum
l y zPx xPz
lz xPy yPx
Lˆ y
2
2 Vˆ (r )
2m
i y z
y
z
i z x
z
x
Lˆz i x y
x
y
Sˆ , Sˆ , Sˆ
x
Spin
y
z
Sˆ Sˆx Sˆ y Sˆz 2
2
2
2
We have discussed linear operators and eigenvalue equations. What does Hermitian mean?
An operator  is Hermitian if for any pair of functions f ( x ) and g ( x ) in the domain of the
operator (ie. Satisfying the boundary conditions)
Chapter 4 – Postulates of Quantum Mechanics
51
Chem 350: Introductory Quantum Mechanics
Winter 2013
it is true that
b
a
*
ˆ ( x) dx b g ( x) Af
ˆ ( x) dx
f * ( x) Ag
a
In higher dimensions
domain
ˆ ( ) d
f * ( ) Ag
domain
*
ˆ ( ) d
g ( ) Af
The domain of integration is part of the definition of Hermitian operator (Boundary conditions)
In words: act with  on g and integrate with f * should be equal to act with  of f , take
complex conjugate, and integrate against g ( ) .
We can write the latter expression also as
ˆ * d g ( ) * Af
ˆ d *
g ( ) Af
Example of Hermitian operators
V ( x) :
V ( x ) is a real function
f *( x)V ( x) g ( x)dx g ( x)V ( x) f *( x)dx
g ( x) V ( x) f ( x) * dx ( V real!)
Px i
:
x
P
g
f *
f * ( x) i
g ( x)dx (partial integration)
dx i f * ( x) g ( x) P i
x
x
f *
i
g ( x)dx
x
f
g ( x) i
* dx
x
g ( x)( Pˆx f ( x)) * dx
Likewise
2
and other listed operators are Hermitian
2m x 2
2
Operators in Quantum Mechanics are required to be Hermitian because these operators have very nice
mathematical properties:
Chapter 4 – Postulates of Quantum Mechanics
52
Winter 2013
Chem 350: Introductory Quantum Mechanics
Properties of Hermitian Operators
a) The eigenvalues are all real
b) The eigenfunctions can be chosen to be orthonormal
c) Any function ( x ) can be expressed as linear combination ( x)
C ( x)
n n
n
with Cn
* ( x) ( x)dx
domain n
Let us denote eigenvalues of  to be an with eigenfunctinos n ( x)
Then: Eigenvalues are real
n
* ( Aˆn )dx n ( Aˆn ) * dx
an n *( x)n ( x)dx an * n *( x)n ( x)dx
an an * , an is real
2) Eigenfunctions corresponding to different eigenvalues are orthonormal
k
* ( x) Aˆl ( x)dx l ( Aˆk ( x)) * dx
(al ak *) k * ( x)l ( x)dx 0
ak * ak
al ak
* ( x)l ( x)dx 0
domain k
k , l are orthogonal if ak al
3) If k ( x) and l ( x) have the same eigenvalue (degenerate) then any linear combination
is also eigenfunction with the same eigenvalue
Aˆ ( x) Aˆ (Ck k ( x) Cll ( x))
Ck Aˆk ( x) Cl Aˆl ( x) [Linear]
Ck ak ( x) Cl al ( x) [Same Eigenvalue]
a(Ck k ( x) Cl l ( x))
a ( x)
4) If k ( x) and l ( x) are degenerate (same a ), but are not orthogonal, we can make
them orthonormal
Eg.
k
* ( x)l ( x)dx c
l new l ( x) ck ( x)
k normalized
Chapter 4 – Postulates of Quantum Mechanics
53
Winter 2013
Chem 350: Introductory Quantum Mechanics
*
k
( x)(l ( x) ck ( x))dx
normalize l new
c c 1 0
This is true in general.
With any Hermitian operator we can associate a set of orthonormal functions k ( x)
Aˆk ( x) ak k ( x)
Earlier
* ( x)l ( x)dx kl
domain k
k l
k l
1
0
5) Any (suitable) wave function can expressed as a linear combination of the k ( x)
( x) Ck k ( x)
k
Completeness Property
This statement is hard to prove and we assume it to be true
Further consequences
5a) Normalization
* ( x) ( x)dx
cl * l * ( x) ck k ( x) dx
k
l
cl * ck l * ( x)k ( x)dx
l
k
cl * ck lk
l
k
cl * (0 0 ...cl 0 ...)
l
cl * cl cl
l
2
l
Normalized Wavefunction:
c
l
2
1
l
5b) Expectation Values
* ( x) Aˆ ( x)dx
ck * k * ( x)Aˆ cl l ( x) dx
l
k
ck * cl al k * ( x)l ( x)dx
k
l
Chapter 4 – Postulates of Quantum Mechanics
54
Chem 350: Introductory Quantum Mechanics
Winter 2013
ck * cl al kl
k
l
0 0 ....ck ak ...
(ck * ck )ak A Pk ak
k
k
5c)
A2 .... cl al 2 A2 Pk al 2
2
l
l
From this we deduce that Pk the probability to find ak is given by ck * ck if
( x) ck k ( x)
k
This assumes we know the coefficient. We can calculate it!
ck k * ( x) ( x)dx k * ( x) cl l ( x)dx
l
cl k * ( x)l ( x)dx cl kl
l
l
0 0 ... ck 0 0....
ck
Indeed!
We can now discuss the predictions of Quantum Mechanics regarding measurements
Discussion of Measurement
If we decide to measure a quantity A , we associate with it a Quantum Mechanical operator Â
Solve for eigenfunctions and eigenvalues
Aˆk ( x) ak k ( x)
Type of Measurement  , { ak k ( x) }
If we measure A for individual quantum system, we get always an eigenvalue (rolling the dice)
Possible Outcomes a1 , a2 , a3 .....
Chapter 4 – Postulates of Quantum Mechanics
55
Winter 2013
Chem 350: Introductory Quantum Mechanics
Probability:
N1
N2
P1 (a1 ) ,
P2 (a2 )
Ntot
Ntot
What determines the probabilities? The wavefunction (normalized) ( x ) !!
If we do a large number of measurements on identical microscopic systems, collectively described by
the wavefunction we find the value ak with probability Pk
Pk ck * ck ck
2
ck k * ( x) ( x)dx
How do we prepare an ensemble described by wavefunction ( x ) ?
Could be the ground state of a molecule (low T )
( x) 0
Hˆ 0 ( x) E0 0 ( x)
This is like ‘measuring’ the energy first, then measure Â
We could alternatively measure B̂ and collect all Microsystems with eigenvalue bk
Take those systems that yield eigenvalue bk . They are described by bk ( x)
Bˆ bk ( x) bk bk ( x)
Why? If I measure B again I would measure bk with certainty (if it does not change over time)
Cbk bk * ( x) ( x)dx 1
( x) bk ( x) (ei )
A measurement is the standard procedure to prepare an ensemble of microscopic systems in a welldefine wavefunction (takes some effort!)
Chapter 4 – Postulates of Quantum Mechanics
56
Winter 2013
Chem 350: Introductory Quantum Mechanics
Discussion of Uncertainty Relations
If I measure  for an ensemble, can I get a sharp value for  ?
Yes: use ( x) a ( x)
 a ,
Â2 a 2 , A 0
Next question, if I would measure  and B̂ for an ensemble, can I create a sharp value for both  and
B̂ ?
If ( x ) is eigenstate of  and eigenstate of B̂
Aˆ ( x) a ( x)
Bˆ ( x) b ( x)
( x) a ,b ( x)
When can I create a sharp value for measuring  and B̂ , for each compatible value of a and b ?
If  and B̂ have a complete set of common eigenstates
Aˆa ,b ( x) aa ,b ( x)
Bˆa ,b ( x) ba ,b ( x)
Completeness Property:
Any ( x ) :
( x) cabab ( x)
( ab )
ˆ ˆ ( x) Aˆ c b ( x) c ab ( x)
AB
ab ab
ab ab
( ab )
( ab )
ˆ ˆ ( x) Bˆ c a ( x) c ba ( x)
BA
ab
ab
ab
ab
( ab )
( ab )
ˆ ˆ BA
ˆ ˆ ) ( x) 0
( AB
ˆ ˆ BA
ˆ ˆ 0 then
Hence, If and only if : [ Aˆ , Bˆ ] AB
 and B̂ have complete set of common eigenfunctions
And: We can create samples to measure sharp values of both  and B̂
Chapter 4 – Postulates of Quantum Mechanics
57
Winter 2013
Chem 350: Introductory Quantum Mechanics
If  and B̂ commute measuring B̂ does not destroy the value measured for  (compare to my
example of measuring lunchboxes for schoolkids)
After sample preparation: we can obtain completely sharp values A B 0
What if  and B̂ do not commute?
Mathematical uncertainty Principle
AB
1
Aˆ , Bˆ
2
Depends on the state ( ) in general
If  and B̂ have no common eigenstate then:
One cannot generate an ensemble in which one obtains sharp values for both  and B̂
Most famous example: Measure position and momentum
[ xˆ, Pˆx ] x i
x ( x)
( x) i
x
x
i x
i ( x) i x
x
x
i ( x )
[ xˆ, Pˆx ] i
xp
1
1
i
2
2
Chapter 4 – Postulates of Quantum Mechanics
58
Winter 2013
Chem 350: Introductory Quantum Mechanics
Heisenberg Uncertainty Relation
Measure x and p for ensemble
x p
1
2
Not simultaneously measure x , p !! This was discussed originally by Heisenberg, for his famous
microscope, but we can only verify for ensembles as discussed above.
Special Topic: Continuous eigenvalues
Pˆx i
x
Consider
Pˆx eikx keikx k can have any value
Eigenfunctions e ikx
but ( x) eikx cannot be normalized :
(1d)
(eikx ) * eikx dx
eikx eikx dx 1dx !
And orthonormality is ill-defined
e
ik1x ik2 x
e
dx e
i ( k1 k2 ) x
1
e i ( k1 k2 ) x
dx
i (k1 k2 )
Function keeps oscillating, does not vanish at infinity…
Continuous ‘spectra’ require special care
ck
1
2
eikx ( x)dx
Converges if ( x ) is normalized
Other example position x̂
xˆa ( x) xa ( x) aa ( x)
( x a)a ( x) 0
a ( x) 0 if x a
Funny function!!
a ( x) ? if
xa
a ( x a) ( x a)
( x a) 1
Chapter 4 – Postulates of Quantum Mechanics
59
Winter 2013
Chem 350: Introductory Quantum Mechanics
( x a)
Dirac delta function
a.k.a. normalization
( x a) ( x)dx (a)
P (a ) : the probability to find particle at a
P(a) ( x) dx
2
P( x)dx ( x) dx
2
This definition is consistent with the postulates (follows from the postulates).
Continuous eigenvalues require more sophisticated mathematics (distributions).
The Time-Dependent Schrodinger Equation
Time dependence of ( x, t ) :
i
( x, t ) Hˆ ( x, t )
t
( x, t0 ) to be specified: initial conditions
Assume Ĥ is time-independent
As in chapter 2 we consider separation of variables
Try
x, t
( x, t ) ( x) (t )
( x)i
(t ) Hˆ ( x)
t
i
i
Hˆ ( x)
/ (t )
E : both are constant
t
( x)
Hˆ n ( x) Enn ( x)
En (t )
t
(t ) e
iEnt
Special solutions: Stationary states
( x, t ) n ( x)e
iEn ( t t0 )
These states are called stationary states because
Chapter 4 – Postulates of Quantum Mechanics
60
Winter 2013
Chem 350: Introductory Quantum Mechanics
( x, t ) n ( x) * e
2
n ( x )
Also A
t
Aˆ
t0
iEnt
2
n ( x)e
iEnt
independent of t
and even probability to find eigenvalue a are independent of time:
ˆ ( x) aX ( x)
AX
a
a
Ca (t ) X a ( x) *n ( x)dx eiEnt
Pa (t ) ca
2
ca * ca ca * (0)ca (0) Pa (0) independent of time!!
But : stationary states are very special
The general solution is linear combination:
( x, t ) cnn ( x)e
iEn ( t t0 )
n
i
cnn ( x)En e
t
n
iEn ( t t0 )
cn ( Hˆ n ( x))e
iEn ( t t0 )
n
Hˆ cnn ( x)e
iEn ( t t0 )
n
(reminder Ĥ independent of t , no electromagnetic fields!)
(t t0 ) cnn ( x)
n
specify (t t0 )
cn n * ( x) ( x, t t0 )dx
( x, t ) is determined for all time, very simple!!
Probability to find En ?
cn (t ) n * ( x) cm * m ( x)e
iEm ( t t0 )
m
cn e
iEn ( t t0 )
cn 2 cn cn (0)
2
2
Chapter 4 – Postulates of Quantum Mechanics
61
Winter 2013
Chem 350: Introductory Quantum Mechanics
independent of time E is conserved =
P E
n
n
n
Other properties, eg. xˆ
*(t ) * xˆ (t )dx oscillation in time
Further remarks:
All depends on initial wave function, which is arbitrary in principle [compare to classical
mechanics specify X (0) , P (0) for all particles X (t ) , P (t ) follows from equation of motion]
Stationary States: (t 0) n ( x) energy eigenstates
S.E. Predicts: excited states live forever
Q.M: does not predict thermal equilibrium over time
need to combine quantum mechanics with
a) Statistical mechanics
b) Electromagnetic field (even in a vacuum)
Excited states decay: From quantum electrodynamics (Dirac 1927, Feynman, Schrodinger,
Tomonaga 1949…)
Time-dependence of expectation values
A(t ) *( x, t )Aˆ ( x, t )dx
d *
d
A
d ( x, t )
A(t )
Aˆ ( x, t )dx * ( x) ( x) * ( x)Aˆ
dt
dt
t
dt
i ˆ
i
Hˆ ( )
H ( )
t
t
ˆ
i
* ( H ) *
t
i
Assume:
A
0
t
* ˆ
H *
t
 : Hermitian
d
A ( x, t ) Aˆ
dt
t
ˆ dx
* dx * ( x, t ) A
t
i
i
( x, t ) Aˆ Hˆ * dx * ( x) Aˆ Hˆ ( x)dx
Chapter 4 – Postulates of Quantum Mechanics
62
Winter 2013
Chem 350: Introductory Quantum Mechanics
i
ˆ ˆ ( x, t ) *dx
ˆ ˆ ( x, t )dx
( x, t ) AH
( x, t ) * AH
i
i
ˆ ˆ ( x, t )dx
* ( x)HA
* ( x) AH ( x, t )dx
i
i
* ( x)( AH HA) ( x, t )dx
Or
i
Difficult Step:
d A
ˆ ˆ]
[ AH
dt
t
General produce of 2 Hermitian operators
ˆ ˆ ( x)dx
f * ABg
dx
ˆ ˆ dx
g ( x) BAf
ˆ
ˆ ( x) Af
Bg
*
Reverse Operators!
*
Examples:
i
P
P, H
t
2 d2
i
,
V ( x)
2
x 2m dx
i
P
i
t
V
x
P
V
t
x
Same as from Classical Mechanics
2v
V
ma m 2 F
x
dt
dP
V
dt
x
Also
i
d2
x
x,
V ( x)
2
t
2m dx
m x
2
i
i
m
x
Chapter 4 – Postulates of Quantum Mechanics
63
Winter 2013
Chem 350: Introductory Quantum Mechanics
i
P
m
Or
x
1
P
t
m
Again: Same as in Classical Mechanics
Ehrenfest theorem:
Expectation values in Quantum Mechanics obey relations from classical mechanics
Chapter 4 – Postulates of Quantum Mechanics
64
© Copyright 2026 Paperzz