ARMENISE-HARVARDSYMPOSIUM2014 MECHANISMSTOMOLECULES 15thBiennialSymposium June22-24,2014,PoianoResortHotel,LakeGardaItaly AbouttheSymposium L1050036ThegentlebrushstrokesofaXVIIIcenturyoilpaintingseemedtomakeupthesettingof the15thArmenise-HarvardSymposium.Amélangeofolivetrees,cypressesandoleanders surroundedbygreenhillsandreflectedintheshimmeringblueoftheGardaLake:inthisbucolic scenario,80scientistsmettodiscussthelatestadvancementsincellbiology. BetweenJune22and24,thesymposiumheldintheluxuriousPoianoResortbroughttogether researchersworkingonthecuttingedgeofscience.“Interdisciplinary”and“heterogeneity”were themainkeywords:thiswasalreadyprettyclearfromthesymposiumtitle,“Mechanismsto Molecules”. Fromsingleproteinsactivitytocompletecellsystems,frombasicresearchtoclinicalapplication: thetwo-and-a-half-daymeetingwasanexcitingopportunityforcross-disciplinarydiscussionsand high-levelscientificexchanges. Twenty-oneresearchers,allleadersoftheirresearchgroupsinItalyandtheUnitedStates,talked abouttheirlatestresults,inmanycasespresentingpreliminaryandunpublisheddata.Thefriendly andfreedialogueledtosharpdebatesaboutthemostfascinatingenginesofourbody:humancells. Theoutstandingtalks,verydifferentfromeachother,hadacommonchallenge:makinglongstories short.Infacteachpresentedresearchbeganmanyyearsago,whenmostofthecellularmechanisms discussedduringthesymposiumwereunknown. Today,newtechnologicaltoolsandhighlyadvancedmicroscopictechniquesaremaking“visible” whatwaspreviouslyunseen;butatthesametime,itisimportantnottolosethebiggerpicture. ThisiswhatemergedfromtheenthrallingkeynotespeechgivenbyHarvardProfessorStephen Harrison,whodeliberatelyjuxtaposedthesymposiumname,entitlinghispresentation“Moleculeto Mechanisms”.Heoutlinedvariouswaystothinkofmolecularactivitystartingfromthe paradigmaticexampleofinfluenzavirushemagglutinin(HA),whosebindsreceptorcandefeatour immuneresponse. Thisstartedthediscussionabouttheincrediblenumberofinteractionshappeningfrommolecular tocellmechanismlevel,andviceversa.Thefirstsymposiumsession,entitled“Mechanisms RegulatingEpigeneticRegulation”,openedupthedoortoinvestigatethisintriguingcellular complexity.DaneshMoazedandStephenBuratowskitalkedabouttwofundamentalingredientsof cellregulation,chromatineandnoncodingRNA.DiegoPasiniexposedtheactivitiesofpolycomb groupproteinsinproliferationanddevelopmentalcontrol,whileGiuseppeTestabroadenedthe fieldbyexplaininghowcellreprogrammingrevolutionizedbiologyoverthelastyears. Thesecondsession,“MechanisticInsightsfromSingleMoleculeAnalysis”,tooktheaudiencebackto themolecularlevel.SamaraReck-PetersonandAndreasLeschzinertalkedaboutafundamental aspectforcells’survival,themechanicsbehindmolecularmotors.JosephLoparogaveastimulating talkaboutDNA“intelligence”,showinghowourgenesstrivetoovercomeobstacles.SherefMansy challengedtheaudiencewithaverynovelfrontierofbiotechnology,theintegrationbetween artificialandnaturalcells. Anotherimportantaspectisthecommunicationamongstdifferentcells,andthiswasthetopicof thethirdsession,“MechanismsRegulatingTrafficking”.RobertoSitiaexplainedhowthequality controlworkswithinthesignaturepathway.TomasKirchhausenshowedtheexceptional potentialitiesofthemodern3Dmicroscopytostudyendocytosis.DanielaCordaandAlbertoLuini gavetwointerestingtalksaboutmembranetraffickingandtransportapparatus. Withthebackdropoftherelevanceofthisresearchtomedicalapplications,thefourthsession focusedon“DegradationMechanisms”.SimonaPolotalkedaboutcellmigrationundernormaland pathologicalconditions.AlfredGoldbergpresentedthesysteminvolvedinproteindegradationby proteasomes.AndreaMusacchioshowedhislatestresultsonthereconstructionofmitotic signaling,whileFrancescoCecconidiscussedtheimplicationofoneofthemostincrediblebehavior ofourcells,autophagy. Thisledtothefifthandlastsession,“TransductionMechanisms”,openedbyGianniCesareni’stalk aboutthesignalingmechanismsunderlyingtheanti-tumoractivityofmetformin.StephenBlacklow andMichaelEckrespectivelypresentedthesignalingintheNotchcellandthecontrolofthe epidermalgrowthreceptor.PierPaolodiFioreclosedthesessiondiscussingtheconnections betweencellfatedeterminationandtumorsuppressioninmammarystemcells. Thetaskofclosingthe15thArmenise-HarvardSymposiumfelltoTomasKirchhausen,who wrappedupthegeneraltake-homemessageofthemeeting:thatweareconstantlydealingwitha numberofcomplexinteractions,fromcellularmechanismstomolecularcommunication.Unfolding themysteriesoftheseinteractionsisthemainchallengeofcellbiology,fascinatingandevergrowingfieldexploringthefundamentalunitsoflife. Moleculetomechanisms—acasehistory StephenHarrison DepartmentofBiologicalChemistry&MolecularPharmacology,HarvardMedicalSchool,Boston,USA Thetitleofthesymposiumwasreversedbythekeynotespeech:frommolecule–intentionally singular–tomechanisms.Withthistalk,StephenHarrison“setthetoneforallthefollowing presentations”,aswouldhavelaterobservedTomasKirchhausenduringthemeetingclosing remarks. Harrisonisoneoftheworld’sleadingexpertsonviruses.JeffreyFlier,PresidentoftheArmeniseHarvardFoundationandDeanofHarvardMedicalSchool,brieflyintroducedHarrison’soutstanding scientificactivity:“Hehasmadeimportantcontributionstostructuralbiology,mostnotablyby determiningandanalyzingstructuresofvirusesandviralproteins,andbycrystallographicanalysis ofprotein-DNAcomplexes,aswellasstructuralstudiesofprotein-kinaseswitchingmechanisms. Hisworkhasbeenwidelyrecognized,andhehasmadepioneeringresearchestoaddressarangeof fundamentalproblems”. Oneoftheseproblemsconcernstheinfluenzavirushemagglutinin(HA).TheHarrisonlabat HarvardMedicalSchoolstudieshowinfluenzaviruspenetratescellsbyfusionofviraland endosomalmembranescatalyzedbytheviralhemagglutinin. SoHarrisonusedthisvirusasthecasehistoryofhispresentation–averyeffectivewaytodevelop thethemeofthemeetingattheoutset. “Thehemagglutininisatrimericstructurewiththreefunctions”heexplained.“Itbindsthevirusto itsreceptor,catalyzesthemembranefusionprocess,andhasstructuresontheoutsidethatcanvary withoutcompromisingitstwootheressentialfunctions”. Inthiswaytheviruscanevolvetoescapeneutralizationbytheimmunesystemofitshost. Intheinfluenza,theproteinhemagglutininsticksoffofthevirussurfacealongwithanotherprotein, whichisanenzyme,calledtheneuraminidase(NA). Harrisonfocusedontwoparticularmechanisms:HA-mediatedfusionandHAantigenicity. Membranefusionisthermodynamicallyfavorable,butitgenerallypresentsahighkineticbarrier. Fusionproteinslowerthisbarrier,sotheyarecatalystsforthemergeroftwobilayers;inthecaseof viralfusionproteins,theybecome“suicide”catalysts.Afterseveralexperimentssetuptomeasure fusionkinetics,Harrisonandcolleaguesshowedthatforinfluenzavirusfusionrequires engagementwiththetargetbilayeroffusionpeptidesfrom3or4neighboringHAtrimmers. “Thecasehistorylessonissummarizedhere”saidHarrison,“Thatthereisacontactpatchbetween thevirusandthetargetmembrane.” Thisintermediateisafundamentalaspectofthefusionmechanism.ButhowdoesHAantigenicity reacttothismechanism? Antigenicityisthecapacitytostimulatetheproductionofantibodies.Duringtheimmuneresponse, theprocessbywhichBcellsproduceantibodieswithincreasedaffinityforantigeniscalledaffinity maturation. “Antibodystructures,fromB-celllineagesinhumanresponsestoinfluenzavirusvaccines,map evolutionofproteininteractionsduringantibodyaffinitymaturation”explainedHarrison. Thefuturechallenge,heconcluded,isthereforetounderstandtheaffinitymaturationmechanisms wellenoughtodesignmodifiedimmunogensthatmightselectivelyelicitbroadimmuneresponses. Frommoleculetomechanisms,then:theinspiringexampleofinfluenzahemagglutiningotstraight totheheartofthesymposiumtheme.Showingfirstofallhowbiologycantravelbetweenthemicro andthemacrolevelofourcells. Geneon,geneoff.Ineukaryoticcells,DNAactivationisoftenamatterofswitches.Butwhatarethe biologicaltriggerscapableofunchaininggeneexpression?Thisisoneofthecorequestions addressedbyDaneshMoazedatHarvardMedicalSchool. Hislaboratoryfocusesonunderstandingthemechanismsthatmediatetheformationofoneofthe mosttightlypackedformsofDNA:heterochromatin,whichplaysacrucialroleingenesilencing. Forthisreason,thestudyofheterochromatin–alsocalledsilentchromatin–helpsunderstanding themechanismsthatkeepgenesintheirrightonoroffstate. Theformationofthesesilentdomainsisalsoresponsiblefortheso-calledepigeneticmemory, whichmaintainscellidentityduringdevelopmentanddifferentiation. Biologistsknowthateverysinglecellofourorganismonlyturnsonthesubsetofgenesnecessary tocarryoutparticularfunctions.Thisisthereasonwhy,forexample,thegenesofnerveimpulse transmissionremainshutoffinlivercells:theyarejustnotusefulinlivercellsandcaninterfere withliverfunction. Moazedandcolleaguesaimatunderstandinghowcellssilenceunnecessarygenestomaintaintheir specificidentities. Theyapplyacombinationofapproaches:frombiochemistrytocellbiology,fromproteomicsto genomics,withthecommongoalofidentifyingthefactorsabletomediateheterochromatin assemblyandfunction. Analyzingsilentdomainsinyeast–single-celledfungithatreproducebyfission–researchers identifiedaspecialingredientplayingacentralrolesintheformationofrepressive heterochromatin:noncodingRNAs. “NowadaystherearealotofideasaboutwhatsmallRNAsarecapableofdoing,andsome mechanismsareclearerthanothers”Moazedexplained.“ThewaytheseRNAsaregeneratedisa fundamentalquestion,becausetheyspecifythepartsofthegenomethatshouldbesilenced”. Inparticular,histeamshowedthatsmallRNAmolecules(overall,about20nucleotides)work throughtheRNAinterference(RNAi)toregulategenesilencingandexpression.Developingmany biochemicalexperimentsinfissionyeast,theypurifiedtheRNA-InducedTranscriptionalSilencing (RITS)complex,whichdirectlylinkstheRNAipathwaytoheterochromatinassembly. Moazed’slabfocusedontwocriticalprocessesformaintenanceofheterochromatin,histone methylationandsiRNAamplification.Thesetwoprocesseswereshowntobemutuallydependent andtoformself-reinforcingpositivefeedbackloopsofcrucialimportanceformaintenanceofsilent domains. SuchnoncodingRNA-basedmechanismsmaybeinvolvedinregulatingheterochromatinformation andgeneexpressioninotherorganisms.Andthisisexactlywhatstudiesinotherlaboratoriesare beginningtoreveal. “Futureapplications?UsingsmallRNAstosilencegenesandreprogramtheepigenome”hesaid.“It maybepossibletoturn-offgenesatthetranscriptionallevel,althoughmanytechnicalchallenges havetobeovercomebeforethiscanbedoneinsystemsoutsidesimplermodelorganismslike yeast”. Thenextstep,then,istheinvestigationofotherbiologicalpathwaysthatplaymajorrolesin regulatingheterochromatin:inordertounderstandbetterandbetterthecomplex,fascinating switchesofDNA. Shapingtheeukaryotictranscriptomewithchromatinandnon-codingRNA StephenBuratowski DepartmentofBiologicalChemistryandMolecularPharmacology,HarvardMedicalSchool,Boston, USA Thehugedictionarybuildingupourgenomehasaverycomplexpunctuation.DNAsequencesare justsmallstringsofletters,butunderstandingtheirrulesisabigchallenge. AtHarvardMedicalSchool,theBuratowskiLabstudiesthemarksofgeneexpressions:inparticular, theenzymesthat“write”thesemarks,aswellastheproteinsthat“read”them. Usingyeastasamodelsystem,researchersanalyzethemechanismofgeneexpressionin eukaryotes,workingonRNApolymeraseIItranscriptioninitiationandthesubsequentprocessing ofthemRNA.Severaldozenproteinsarerequiredsimplytoinitiatetranscription,andmanymore takeactionsinotherprocesseslinkedtotranscription.Forthisreason,understandingtranscription meansdecipheringthefunctionsofeverysinglefactor. Duringthe15thArmenise-HarvardSymposiumStephenBuratowski,headofthelaboratory, presentedhisapproachtounfoldthemysteriesoftranscription’spunctuation.Hisresearchteam focusesonthecommunicationbetweenchromatinandthetranscriptionmachinery. Theyshowedthattheactoftranscriptioncausesmajorchangesinthenucleosomesthatpackage thegene.UsingtheyeastSaccharomycescerevisiae,theydiscoveredthatSet1(atypeofhistone methyltransferases,orHMT)proteinlevelsarecarefullycalibratedtotheamountoftranscription occurringinthecell.Set1issubjecttodegradationbytheubiquitin-proteasomesystemunlessitis stabilizedbyongoingtranscriptionandhistonemethylation.Disruptionofthisfeedbackloop causesaberrantmethylationpatternsandgenemisregulation. Thismechanismmayhaveclinicalrelevance,asmanyleukemiaandlymphomascontain translocationsinthemammalianMLL1gene,anHMTrelatedtoSet1. Carryingoutgenome-wideexpressionscreenstoanalyzeachromatin“reader”calledSet3, Buratowskiandcolleaguesfoundthatthemajorityofgeneswhoseexpressionlevelschangedwere repressedbythisfactor.Butwhatwasmoreunexpected,theydemonstratedthattheseeffects stronglycorrelatewithoverlappingnon-codingtranscription.Thisdoesnotmeanthatnon-coding RNAsthemselvesmediatethegeneexpressionchanges;instead,thelatterdependonhistone methylationsplacedovergenepromotersbyoverlappingtranscription. Andthisisexactlywhereclinicalmedicinecouldfindnewapplications:“Ithinkitiscertainlyworth thinkingabouthowchangesintranscriptioncanaffectdiseaseslikecancer”Buratowskiconcluded. “Thisisbecausemanydiseasesarecausedbyproblemsineitherwritingorreadingthemarksof geneexpressions”. ActivitiesofPolycombGroupProteinsinProliferationandDevelopmentalControl DiegoPasini DepartmentofExperimentalOncology,EuropeanInstituteofOncology,Milan,Italy Manyhumandiseasesarecausedbythelossofcellularidentity.Canceristheclearestexample:in alltumors,cellsacquirefeaturesthatleadtoabnormalgrowthanddifferentiationdefects. Buthowhappensthatcellsstartlosingtheiridentity?Andwhatarethemechanismsregulatingcell fateduringdevelopmentanddifferentiation? DiegoPasini’scurrentresearchattheEuropeanInstituteofOncologyrevolvesaroundthese questions.Heaimstounderstandhowdiseaseslikecancercanform,maintainanddevelop. DuringtheArmenise-HarvardSymposium,Pasiniexplainedthathislabisinterestedinstudying thesemechanismsbyfocusingonPolycombGroup(PcG)proteins. PcGareafamilyofproteinsresponsibleforcellulardifferentiationduringdevelopmentvia transcriptionalrepression. “PolycombGroupproteinsaremasterregulatorsofcelldevelopment”saidPasini.“Theyarealso essentialforcellularproliferation,andplayanactiveroleincancerformation”. ThefirsttodescribethepolycombgroupwasgeneticistEdwardB.Lewis,whoin1978observed inDrosophilathatPcGwasinvolvedinthesilencingofHoxgeneexpression. Sincethen,theseproteinshavebeenthesubjectofintensestudyasitisclearthattheyarevitalfor maintenanceofcell-typeidentityanddifferentiation. “Atthebiochemicallevel,mostPcGproteinsformtwomajorpolycombrepressivecomplexes:PRC1 andPRC2”explainedPasini. PRC1andPRC2represstranscriptionrespectivelybyUbiquitylatingHistoneH2Alysine(K)119 andbytri-methylating(me3)HistoneH3K27.DeregulationofbothPRC1andPRC2activitiesisa commonfeatureofhumantumors. TostudytheroleofPcGproteinsinregulatingnormalandcancercellsproliferation,Pasiniand colleaguescombinecellcultureandinvivostudies.TheirexperimentsdemonstratedthatPRCs independentlyregulatecellularproliferationandtransformation. SotheabilityofPRC1andPRC2topromoteproliferationisamainfeaturethatlinksPolycomb Groupproteinsactivitytocancer. Forthisreason,PcGinhibitionhasbeenproposedasastrategyfortumortreatment. JoiningtheZoo:Cellreprogrammingandtheriseofhumandiseasemodels GiuseppeTesta DepartmentofExperimentalOncology,EuropeanInstituteofOncology,Milan,Italy Haveyoueverthoughtofyourbodyasarovinglaboratory?Intheverylatestyears,thisisexactly whathashappened.Atruerevolutionoccurredincellularbiology:itiscalled“cellreprogramming”, anditallowsscientiststodirectlystudydiseasesinhumantissues. Cellreprogrammingdependsontheseminalderivationofhumaninducedpluripotentstemcells (iPSC)fromsomaticcells.Bornin2007,thistechniquehasalreadydeeplychangedtheprospects notonlyofregenerativemedicinebutalso,andlikelyinanevenshortertimeframe,ofourcapacity todissectthegeneticcontributiontohumandiseases. AttheEuropeanInstituteofOncology,GiuseppeTestaisworkingonthiscutting-edgelineof research.Hislaboratoryfocusesontheepigeneticsofgenomeprogrammingandreprogramming,in particularthemechanismsenablinglineagecommitmentandtheiraberrationsincancerand neurologicaldiseases. DuringtheArmenise-HarvardSymposium,Testagaveabrilliantoverviewofwhathecalledthe “zoojoining”:withpluripotentstemcellsonboard,themenagerieofavailabletissuesamples becamepotentiallyinfinite. Thiswasunimaginableuntilthebeginningofourcentury,whenmodelorganismswerethemain resourcetointerrogatehumandiseasepathogenesis.Obtainingprimarysamplesdirectlyfrom patientswasverydifficult;andwhenithappened,mostofthetimeitwastoolate,postmortemor atnotsomeaningfulstagesofdiseasehistory. Testaexplainedhowcellreprogrammingallowed,forthefirsttimeinthehistoryofmedicine,to makehumangeneticvariationexperimentallytractablethroughthecreationofgeneticallymatched celllineages.Ontheselineagesitisnowpossibletodecipherandtargetdiseasepathogenesis, biologicalstand-insor“avatars”ofourselves. Sowearethenewmodelstoworkon:thismeansthatone’sdiseaseisdirectlystudiedinvitroon one’sDNA,andpersonalizedtreatmentsaremorelikelytobedeveloped. TheTestaLabharnessesthispotentialtodevelopphysiopathologicallymeaningfulmodelsofboth cancerandneurodevelopmentaldisorders. Incancer,researchersaimatthedissectionofthegenomicversusepigenomiccomponents:since tumorshavethemboth,cellreprogrammingallowstoseewhichcomponentispredominantin everyphaseofthedisease. Withinneurodevelopmentaldisorders,theyfocusonauniquerangeofintellectualdisability syndromes(includingautismspectrumdisorders)causedbymutationsordosagealterationsin epigeneticregulatorsandtranscriptionfactors.AfterreprogrammingandanalyzingiPSCandtheir differentiatedderivativeswiththesemutations,itisalsopossibletoscreendrugsonthematavery largescale. Theseexperimentalsettings,togetherwiththeirimportantclinicalapplications,areagreat exampleofhowcellularphenomenahavebecomeaninterfacebetweenmolecularbiologyand medicine. TestaquotedwhatbiologistHaroldKincaidcalledthe“placeholders”,processesforwhichwehave goodevidence,butwhosenatureisunknown.Nowcellreprogrammingisprobablybringingthis “unknown”tolight. SpatialRegulationofMolecularMotors SamaraReck-Peterson DepartmentofCellBiology,HarvardMedicalSchool,Boston,USA Thecellsthatmakeupourbodyareconstantlybusy:theymove,divide,andcommunicatewith neighboringcells.Atthesametime,theyneedtomaintainhomeostasis,sothattheinternalcellular conditionsremainstableandrelativelyconstant.Molecularmotors,whichtransportcellularcargos, areresponsibleforallofthesefunctions.Transportoccursalongtwotypesoftracks,calledactin filamentsandmicrotubules. Alleukaryoticcellsusemotorsfortransportalongactinfilamentsandmicrotubules,anddamageto thesetransportmechanismscanleadtoseriousdiseases.Forexample,neurodegenerativeand neurodevelopmentaldiseasesareknowntoresultfromdefectsinmicrotubule-basedtransport. Forthisreason,explaininghowmicrotubule-basedintracellulartransportworkscouldrepresenta significantbreakthroughinclinicalmedicine. TheReck-PetersonLabatHarvardMedicalSchoolismovinginthisdirection.“Wewantto understandhowthemotorsofthecellwork”explainedSamaraReck-Peterson,headofthe laboratory.“Inparticular,wearefocusingonthedyneinmotor”. Cytoplasmicdyneinisthemainmotorproteindrivingmicrotubule-basedintercellulartransport, togetherwithanotherfamilyofmotorscalledkinesins.Dyneinmotorsmoveonlytowardsthe minus-endsofmicrotubules(towardsthecellcenter),whilekinesinmotormovetowardstheplusendsofmicrotubules(towardsthecellperiphery). “Wehaveover40kinesingenesthathostdiversefunctions,butdyneinisalittlebitdifferent” explainedReck-Peterson.“Wehave15differentdyneinsinthehumangenomeand14oftheseare onlyfoundincellsthathaveciliaorflagella.Theremainingcytoplasmicdyneinmotorhashundreds ofcargos,manyofwhicharestilltobeidentified;weknowthatduringinterphasedyneinhasmany functionsincludingthetransportofmRNAs,RNPs,proteins,andorganelles.Virusesareanother importantcargo,theycanhijackdyneintogettothecenterofthecell”. Tounderstandthemolecularmechanismsunderlyingthesefunctionsofdynein,theReck-Peterson Labusesahighlyinterdisciplinaryapproach,fromcelltosystemsbiology,frombiophysicsto syntheticbiology. Therearefourgenesimplicatedinlocalizingdyneintotheplus-endofmicrotubule.Intheir experiments,theypurifiedthesefourproteinsandreconstitutedinvitrothetransportofdyneinto theplus-endofthemicrotubule. Theyfoundthattwoproteins–homologsofLis1andClip170–aresufficienttocoupledyneinto Kip2,aplus-end-directedkinesin.Kip2transportsdyneintothemicrotubuleplusend,butnotasa passivepassenger:dyneinresistsitsownplus-end-directedmotionthoughitsmicrotubule-binding domain. Twoothersmicrotubule-associatedproteins,homologsofClip170andEB1,actasprocessivity factorsforKip2,helpingitovercomedynein’sintrinsicminus-end-directedmotility. Thus,therearefourmainplayersinvolvedindyneinspatialregulation:twoproteinsthatare requiredtocouplethedyneintokinesin,andthentwomoreproteinsthatmakethekinesinabetter motor.Thisrevealshowaminimalsystemofproteinstransportsamolecularmotortothestartof itstrack. “Ourmaingoalnowistounderstandhowthismotorworksandisregulated,”saidReck-Peterson. “Andifweunderstandthat,weareastepclosertodiscoveringwhythemutationsinthetransport machinerycausediseases”. Mechanismsandregulationofcytoplasmicdynein AndresLeschziner Dept.ofMolecularandCellularBiology,HarvardUniversity,Boston,USA Stepafterstep,walkingtakesprettyadvancedcoordinationabilities.Legs,muscles,nerves,brain: everysingleingredientfindsitsrole,buildingupthecomplexandharmoniousactionofmoving. Atmicroscopiclevel,almostthesamethinghappensinyourcells,asexplainedAndresLeschziner duringtheArmenise-HarvardSymposium.“Molecularmotorsaretheproteinmachinesthat‘walk’ alongcytoskeletaltracks”hesaid.“Inparticular,cytoplasmicdyneinisresponsiblefortransporting mostcellularcargofromtheperipherytowardsthecellinterior.Itscomplexmotoractivityis essentialformanyfunctionsineukaryotes,suchaschromosomesegregationandintracellular transport”. Togetherwithkinesinsandmyosins,dyneinsmakeupthethreefamiliesofmolecularmotors. However,dyneinsarethelargestandmostcomplexgroup,andmanyoftheirregulating mechanismsarestillunknown. OneofthebiggestunsolvedquestionsconcernsLis1,aconserveddyneinregulator.Lis1isknownto keepdyneinboundtomicrotubules,butitisnotunderstoodhowitaccomplishesthisaction. AtHarvardMedicalSchool,theLeschzinerLabteamedupwiththeReck-PetersonLabtounfoldthe mysteriesofdyneinusing3Delectronmicroscopy,single-moleculeimaging,biochemistryandin vivoassays. Leschzinerandcolleagueswereparticularlyinterestedinunderstandinghowdyneinmovesalong microtubules,componentsofthecytoskeletonfoundthroughoutthecytoplasm. A3Dstructureofthedynein-Lis1complexwasobtained.ThismodelrevealedthatbindingofLis1 todynein’sAAA+ring(whichbelongstoasuperfamilyofring-shapedproteins)physicallyblocks dynein’smainmechanicalelement,the“linker”,frommakingcriticalinteractionswiththering. “Lis1isaubiquitousdyneinco-factor,actingasaclutchtouncoupledynein’scyclesofATP hydrolysisandmicrotubulebindingandrelease”explainedLeschziner. Sotherearetwodifferentcyclesinvolved:thefirst(acycleofforce-generatingATPhydrolysis) occursinthering-shapedAAA+motordomain;thesecond(acycleofmicrotubulebindingand release)occursinthemicrotubulebindingdomain,locatedattheendofdynein’slong“leg”. Thesetwocyclesoccur25nmawayfromeachother,yettheirfunctioncriticallydependsontheir coordination. Regulationofdyneinisthereforeoneofthecrucialaspectsforthecomplex,articulatedworldof movementoccurringatthecellularlevel.AndapparentlyahugeresponsibilityfallsonLis1,playing acentralroleinregulatingdynein’smovements. Overcomingobstacles:Single-moleculestudiesofDNArepair JosephJ.Loparo DepartmentofBiologicalChemistryandMolecularPharmacology;HarvardMedicalSchool WecanthinkofDNAastheinstructionmanualpackedinsideourcells.IfourDNAbecomes damaged,thenourcellsmaygetthewronginstructions,whichcanleadtodiseases.Forthisreason, whenaDNAlesionoccurs,ourcellsimmediatelyactivatetheirDNArepairmechanismstofixthe problem. Buttherearesomelesionsthattherepairmachineryfailstofind.Inthiscasetheproteinmachinery thatcopiesourDNAcancollidewiththesedamagedDNAbases,stoppingtheDNAreplication machineryinitstracks.Itisthenthatourcellshaveatoughdecisiontomake:donothingand perhapsdieorutilizeanerrorproneDNAcopyingenzymethatcansynthesizethroughthedamage butcouldintroducediseasecausingmutationsintoourDNA. “ThisishowcellsovercomeDNAobstacles:sometimes,itisbetterforthemtotaketherisk”said JosephLoparo,headofalaboratoryatHarvardMedicalSchoolworkingonDNAdamagetolerance andrepair. Gamblingasageneticstrategy,inotherwords.Loparoandcolleaguesareworkingtounravelhow bacterialcellschoosetousetheseerrorproneenzymes:“Mostbacteriahaveasinglecircular chromosomewhichtheycopywithamulti-proteinmachineknownasthereplisome,their replicationmachinery”heexplained.“Thereplisomeiscomposedoftworeplicativepolymerase complexeswhichquicklyandaccuratelycopyeachparentalstrandofDNA”. IfDNAbecomesdamagedandtheDNArepairmachineryisunabletocorrectthelesion,thiscanbe ablocktothereplisome. “TranslesionpolymerasesarespecializedDNApolymerasescapableofsynthesizingovercertain DNAlesionsthatstallthereplicativeDNApolymerase”saidLoparo.“Mylabisinterestedin understandingthemechanismsofthisprocess,andhowtranslesionpolymerasesarerecruitedto thereplicationmachinery”. Byreconstitutingtranslesionsynthesis(TLS)andobservingitoccuronsingleDNAmoleculesin realtime,theLoparoLabshowedthattheEscherichiacolibclamp,aring-shapedmoleculethat encirclesDNAandtetherspolymerasestotheirsubstrates,cansimultaneouslybindtwokindsof polymerases,thereplicativepolymerasePolIIIandtheerror-pronetranslesionpolymerase,PolIV. ThisenablesanexchangeofthetwopolymerasesandarapidbypassofaDNAlesionwhichisin manywaysanalogoustohowonemaintainsasparetireinthetrunkoftheircar. Furthermore,theyfoundthatadditionalbindingsitesbetweenPolIVandbacttolimitPolIV dependentDNAsynthesisundernormalconditions,yetfacilitatesthedisplacementofPolIIIfrom theDNAuponthedetectionofDNAdamage. Theseresultssupportanewmodelinwhichinteractionsbetweenpolymerasesandthebclampact tobothinactivateandactivateerror-pronepolymerases.Withinthisregulatorynetwork,itislike thecellissaying:“Icantellthatthereplicationmachineryisintrouble.Itisworthutilizinganerror pronepolymeraseasitismyonlyhopeforsurvival”. Thismechanismisalsoveryinterestingfromahumanhealthperspective,becausemanyofthe basicmechanismsofthispolymeraseregulationlikelyoccurinhumancells.Understandinghow geneticmutationsarisewillleadtoabetterunderstandingofdiseaseslikecancer. “Thenextstepsforusaretolookattheseprocessesinlivebacteriacells,wherewehaveallthe physiologicalcomplexity”concludedLoparo.“Additionally,wearereconstitutingthereplication machineryinitsentiretyinatesttube”. Thiscouldansweronceandforalltheodd,yetimportantquestion:howproneareourcells towardsgeneticgambling? Integratingartificialwithnaturalcells SherefMansy UniversityofTrento,ViadelleRegole,101,Mattarello(TN)Italy Crossingtheboundarybetweenlivingandnon-living,bringingartificialsystemstolife.Science fiction?Probablynot.AttheCentreforIntegrativeBiology(CIBIO)oftheUniversityofTrento, biochemistSherefMansyhastakenastepforwardtowardsmakinganartificialcell“breath”.This wouldbeatruerevolutionfortraditionalcellularbiology,whichcouldeventuallyleadtochange thedefinitionitselfoflife. “Achickisalivingorganism,astoneisnot.Everybodycanclearlyseethedifference.Butisthere anythinginthemiddle?”askedMansyattheArmenise-Harvardsymposiumaudience.Hethen presentedthelatestresultsofhisresearch,showinganewwaytoaddressthechallengeofartificial life. Thecontrolofcellularbehaviorlargelyreliesongeneticengineering,butartificialcellscouldbe designedtobetterregulatecellprocessesthroughchemicalcommunication.WithhisteamatCIBIO, Mansydevelopedanartificialcellwhichisabletotranslateachemicalmessageintoasignalthat canbesensedbyEscherichiacoli.Thiscouldactivateacellularresponseotherwiseimpossibletobe detected. Withinthissystem,theartificialcellsworkaschemicaltranslators,sensingmoleculesthatE. colialonecannotsense.Asaconsequence,theartificialcellsreleaseamoleculefamiliartoE.coli, therebytranslatinganunrecognizedchemicalmessageintoawell-knownone. Thisallowsa“dialogue”betweentheartificialandthenaturalcells,expandingthesensory capabilitiesofE.coliwithoutalteringthegeneticcontentofthebacterium. Mansy’sartificialcellhasacomplexstructure,bothfromengineeringandbiologicalpointofviews. Itisbuiltwithaphospholipidvesiclecontainingisopropylb-D-1-thiogalactopyranoside(IPTG), DNA,andtranscription-translationmachinery.TheDNAtemplatecodesforapreviouslyselected riboswitch,activatingtranslationinresponsetothepresenceoftheophylline.Thetheophylline riboswitchcontrolsthesynthesisoftheporeformingproteina-hemolysin(aHL). colialonedoesnotrespondtotheophylline,andIPTGdoesnotcrossthevesiclemembraneofthe artificialcellintheabsenceofthepore.Andhere’sexactlywheretheartificialcellscometoaction: theyallowE.colitoreceivethechemicalmessage,thusbecomingIPTG-responsive. “Bacteriadonaturallycommunicatetoeachother”saidMansy.“Ourgoalwastoseeifasingle bacteriumcouldstillcommunicateincaseoneofthecellsisartificial.Apparently,theansweris yes.” Theseresults,publishedinNatureCommunications,areapromisingbasisforpossiblemedical applications.“Ourartificialcellsdegradeinacoupleofhours:therearenolong-termconsequences. Thisimpliesthattheycouldbeusedinbiologicalsystems–forexample,toidentifypollutants– withoutgeneticintervention”explainedMansy.Sofarthisisthefirstartificial,cell-likesystem capableofcreatingacommunicationpathwaybetweenartificialandlivingcells.Thenextstepwill bebroadeningthisapproach,makingartificialcellsableto“talk”withcomplexbiologicalsystems. “Ifwehadartificialcellsthatcandetectallthesignalsofthelivingcells,theycouldalsorecognize thesignalsexpressedbyproblemcells,likecancer”concludedtheresearcher. Thedefinitionof“livingcell”isthusbecomingmoreandmorefoggy:butthiscouldnotbea problem,asfaraswechangethequestionstobeaddressed.JustasAlanTuringdidabout60years ago,whenhegavebirthtothefieldofArtificialIntelligence. Biogenesisandqualitycontrolofoligomericproteinsintheearlysecretorypathway RobertoSitia UniversitàVita-SaluteSanRaffaele,DivisionofGeneticsandCellBiology,SanRaffaeleScientific Institute,Milan,Italy Prestoebeneraroavviene.ThistypicalItalianproverb,meaningthatitisdifficulttoworkfastand wellatthesametime,isbroadlydisregardedbyourcells. AsRobertoSitiaexplainedduringtheArmenise-HarvardSymposium,manybiologicalprocesses suchasproteinsecretionmusthavehighfidelityandefficiency. AtSanRaffaeleScientificInstitute,Sitiaaddressesafundamentalquestionincellbiology:howare thesizeandactivityofthedifferentcompartmentsconstantlycoordinated? Inmulticellularorganisms,cellsmustpromptlyrespondtomultiplestimuli.Totaketheright decision,theyneedtocontinuouslyexchangeinformationamongsteachotherandwiththeexternal world,andtounambiguouslyintegratethecorrespondingsignals. Thistaskbecomesparticularlydemandingduringdifferentiationorinresponsestoenvironmental changes.Sitiaandcolleaguesinvestigatedthemolecularmechanismsthatallowcellstointegrate signalling,proteinqualitycontrolandsortingintheearlysecretorycompartment. “Theearlysecretorypathwayisemergingasakeyhub,performingmanydifficulttasksatthesame time”saidSitia.“Itensuresefficienthigh-qualityreleasebytheproteinfactory”. Theendoplasmicreticulum(ER)isamultifunctionalcompartmentfoundinalleukaryoticcells. “FromtheER,secretoryproteinsbegintheirjourneytowardstheirfinaldestinations,theorganelles oftheexocyticandendocyticcompartments,theplasmamembraneortheextracellularspace”Sitia explained.HisresearchteamdiscoveredthatERp44,amultitaskproteinattheER-Golgiinterface, isamasterregulatorinthishub. Fidelityofprotein-basedintracellularcommunicationisguaranteedbyqualitycontrol(QC) mechanismslocatedattheER–Golgiinterface,whichrestrictforwardtransporttonativeproteins. AndhereiswhereERp44comestoaction:Sitiafoundthatitisakeyregulatorofproteinsecretion, Ca2+signallingandredoxregulation. “IfthesignalsconveyedbytheERp44-centeredmolecularhubarenotworking,cellssuffer;butif theyaretoomuch,thecell’sfunctionarealsocompromised”hesaid. WearebeginningtounderstandwhatmakesERp44capableofsatisfyingitsmultipletasks, allowingtheproteinfactorytoperformprestoebene. Imagingendocytosiswithhighspatiotemporalresolution TomasKirchhausen DepartmentofCellBiology,HarvardMedicalSchool,Boston,USA “Seeingisbelieving.Biologyisbasedonobservation.ButwhatIwanttodoisalsomeasuring:this quantificationcanbesize,canbelength,canbevolume,canbenumberofmolecules,canbewhere arethemoleculesinagivenmoment”. BiologistTomasKirchhausenknowswhathe’stalkingabout.HislaboratoryatHarvardMedical Schoolisoneofthefewintheworldtocombinestandardand3Dmicroscopycapableofgiving rapid,high-precisionthree-dimensionalimagingoflivingcells. Thiscutting-edgetechnologyisputattheserviceofunderstandingthemovementofmembrane proteinsthroughoutcells.Thesemechanismsareofkeyimportanceforthecell’ssorting machineries,andcanbehijackedbytoxins,virusesandbacterialpathogens. Studyinghowcellscanbeattacked,KirchhausenLabaimsatfindingtreatmentfordiseases dependingonviralinfectionandpathogeninvasion:fromcancertoLGMD2B/Miyoshimuscular dystrophies,fromAlzheimerdiseasetoALS(amyotrophiclateralsclerosis),aswellasother neurologicaldiseases. Inpreparationtothesestudies,hisgroupdeterminedthefirststructureatnearatomicresolution ofclathrin,aproteinplayingamajorroleinthecreationofcoatedvesicles.Clathrinhasatriskelion shapecomposedofthreeclathrinheavychainsandthreelightchainsandtheyformthecoat surroundingthevesicleswhoselatticeoftenappearsastheseemofasoccerball. Live-cellandsinglefluorescencemicroscopyimagingwereusedto“see”inthreedimensionsthe moleculareventsandtheintracellularcompartmentsresponsiblefortheformationofclathrincoatedpitsandcoatedvesicles–aconserved“nano-machine”thatgeneratesintracellularvesicular carriersinallanimalsandplants. “Inourstudieswehavetwooppositeextremes”explainedKirchhausen.“Thefirstoneistheuseof methodsgivingacompletepicture,likecrystallographyorNMR;thesecondextremeistheuseof fluorescencemicroscopyvisualizationmethodsgoingtoaverylowresolution,withalotof dynamics”. “Sotheideaistocombinethesetwoextremestohaveaclearerviewofthemechanismof endocytosis”hesaid. Endocytosis,theprocessthatcellsusetoingestmolecules(likeLDL–thebadcholesteroland certainviruses)byengulfingthem,wasobservedwiththemicroscopyvisualizationtechniques. Theyallowedsufficienttemporalandspatialresolutiontofollowthelifeofasingleclathrincoated pit. “Theinitiationprocessofendocytosisishighlystochastic”continuedKirchhausen.“Weobserved thattheclathrinadaptors,proteinsthatconnectclathrinwiththemembranesurroundingthe clathrincoatarriveanddepartfromthemembranewithverylowbinding.Whenwehavethe adaptorsintherightplace,thetriskelioncanmapthisinteraction,thatstabilizesthestructurefora fewsecondsandformationofthepitensues”. ThelevelofdetailreachedbyKirchhausen’sobservationispioneerinquantitativebiology.“Now thatwehavetherighttechniques,wecancounthowmanymoleculesofacertaintypearerequired forthedifferentstepsofendocytosis:aquestionthathadremainedunansweredfor30years” commentedEmanueleCocucci,postdocworkinginKirchhausenLab.“Thenextstepswillbe understandingthetotalnumberofmoleculesinvolvedinendocytosis,includingallthereceptors.So wehavetogoevendeeper”. Inthenearfuture,temporalresolutionandspatialprecisionof3Dmicroscopycouldthenreach higherdetails.ButasKirchhausenpointedout,itiscrucialnottolosethebiggerpicture.“It’slike thecartraffic”hesaid.“WecanseetheglobaldifferencesbetweenthetrafficofRomeandMilan,or wecancountthedetails,likethecoloursofthecar,thedrivers,thenumberofpassengers,andso on.Bothtypeofquantificationsareimportant”. Mono-ADP-ribosylationandmembranetrafficking DanielaCorda InstituteofProteinBiochemistry,NationalResearchCouncil,Napoli,Italy Between20.000and25.000:thisisapproximatelythenumberofgenesinyourgenome.Butifyou thinkthisquantityishigh,youshouldprobablylookatyourproteome.Infactthenumberof proteinsmakingupthehumanproteomeisestimatedatover1million. Overthelastdecades,scientistshavediscoveredthatsinglegenesencodemultipleproteins,and thismakestheproteomefarmorecomplexthanthegenome. Butthereisasecretingredientwhichcanfacilitatestudyingthiscomplexity:itistheprocesscalled proteinpost-translationalmodifications(PTMs).Thisisafundamentalstepoccurringafterprotein biosynthesis,playingakeyroleindeterminingtheregulationandfunctionofproteinsandother cellularmolecules. Mostoftenmediatedbyenzymaticactivity,post-translationalmodificationscanoccuratanystep duringthe“lifecycle”ofaprotein,sounderstandingtheseprocessesiscrucialtounfoldthe complexityofproteome. AttheInstituteofProteinBiochemistryoftheItalianNationalResearchCouncil,DanielaCordais leadingpioneeringresearchonPTMs.Amongthevariouspost-translationalmodifications,sheis focusingonmono-ADP-ribosylation(mono-ADPR).Thisreactionhasanimportantphysiological roleincellularprocessessuchasmembranetraffic,immuneresponse,DNArepairandsignalling. Cordawasoneofthefirstscientiststolookatmono-ADP-ribosylationasakeymechanismincell biology. “Formanyyearsithasbeenconsideredatoxicreaction”sheexplained.“Buttogetherwithother colleagues,Ithoughtthatifatoxinmodifiesaprotein,perhapsthismodificationisinterferingwith aphysiologicalmechanism.Ithoughtthatifatoxinmodifiesaprotein,perhapsthismodificationis interferingwithaphysiologicalmechanism.Thismeansthatisolatedpathologicalmechanisms (withouttheirphysiologicalcounterpart)donotexist”. Thisintuitionshookuptheunderstandingoftheproteinenzymaticactivity.Studyinghowtoxins inducetheADP-ribosylationofproteins,Cordaandothercolleaguescouldidentifyspecificcell mechanismsthatwerepreviouslyunknown. Inparticular,theCordalaboratorystudiedbrefeldinA(BFA),afungaltoxincausingthedisassembly oftheGolgicomplexmembranes.BFAinducestheADP-ribosylationofBARS,aproteininvolvedin thefissionofmembranesatseveraltrafficstepsofthesecretoryandendocyticpathways. TheproteinBARSwasdiscovered20yearsagobyDanielaCordateam,andnowturnedouttobean essentialelementofthemembranefissionmachinery. SelectivelyanalyzingthebrefeldinAactivity,researchersidentifiedanintermediatethatcovalently bindsBARS,calledBFA-ADP-riboseconjugate(BAC). “BACmodifiesthisproteinonly,itisveryspecific”saidCorda.“SoifwecanmimicBAC,wecan inhibitasingleprotein,BARS.Thisiswhatweareworkingon:synthetizingBACanalogues,and performingvirtualscreeningstoselectsothersmallmoleculeswithsimilaractivity”. Theinhibitionbysmallmoleculesofproteinsknowntocauseadiseasemayeventuallyleadto clinicalapplications,incancerasinotherpathologies. “Wearetestingthesesmallmoleculesinvitrohopingtosoonfindanapplicationintumorssuchas lymphomaandbreastcancer”Cordaconcluded. BARS,arelativelynewentryinscientificlabs,isthereforesheddinganewlightonthecellular functionscontrol.Andthisproteincouldsoonbecomeapharmacologicaltargetforanticancer therapies. Controlsystemsofmembranetransportattheinterfacebetweentheendoplasmic reticulumandtheGolgi. AlbertoLuini IstitutodiBiochimicadelleProteine(IBP),CNRNapoli,Italy;TelethonInstituteofGeneticsand Medicine(TIGEM),Napoli,Italy. Ifyouloseyourbalance,youwillprobablyfall.Yourcellsbehaveprettymuchthesameway:they haveaninternalequilibriumthatneedstoremainconstant,otherwisethey“fall”.Thiscellular balanceiscalledhomeostasis,whichguaranteesthecells’internalstability. Maintaininghomeostasisdespitethevariationofinternalandexternalconditionsisafundamental taskourcellularsystemneedstofulfill.Sounderstandingthistaskcanrevealimportantaspectsof ourcellactivity. AttheItalianNationalResearchCouncil,AlbertoLuiniandhisresearchgroupstudytheprocessof homeostasisstartingfromthecomplexcellmembranetransportapparatus. Withinthissystem,variationsinmembranefluxesfromtheendoplasmicreticulum(ER)tothe GolgicomplexarebalancedbyoppositefluxesfromtheGolgitotheER,tomaintainhomeostasis betweenthetwoorganelles. AsLuiniexplainedtotheArmenise-HarvardSymposiumaudience,heandhisteamdescribeda moleculardevicethatbalancestransportfluxesbyintegratingsignaltransductioncascadeswith thetransportmachinery. Inparticular,theyfoundthatER-to-GolgitransportactivatestheKDELreceptorattheGolgi.This triggersacascadeinvolvingGsandadenylylcyclaseandphosphodiesteraseisoforms,andthenPKA activation,andresultsinthephosphorylationofproteinsinvolvedinretrogradetraffic.This inducesrecyclingtotheERandtendstobalancetransportfluxesbetweenERandGolgi. Moreover,theKDELreceptoractivatesCREB1andothertranscriptionfactorsthatup-regulate transport-relatedgenes.InthiswayaGolgi-basedcell-autonomouscontrolsystemmaintains transporthomeostasisthroughbothsignalingandtranscriptionalnetworks. Anotherinterestingthingisthatthismodelwasobtainedusingveryadvancedmicroscopy includinganextremelypowerfultechnique:correlativemicroscopy.Itwasdevelopedforthefirst timeinLuini’slaboratory,anditisusedtostudyinvivodynamicsandultrastructureof intracellularstructuresatincrediblelevelsofdetail. Combiningcorrelativelightandelectronmicroscopy,researcherswereabletoseedynamic functionalassaysinlivecellsdirectlywithhighresolution3Dmorphology. Thiswayitbecamepossibletoobservethecontrolsystemsofmembranetransportintegrating informationondynamics,ultrastructureandmolecularcompositionassemblyofmolecular machinery.Atthesametime,“seeing”theenginethatallowsourcellstomaintaintheirbalance. MyosinVIBridgesUbiquitinSignalingandCellMigration SimonaPolo IFOMFondazioneIstitutoFIRCdiOncologiaMolecolare,20139Milan,Italy;DipartimentodiScienze dellaSalute,UniversitàdegliStudidiMilano,Milan,Italy. Humancellscannotfreelytravelaroundthebody:theirmovementistightlyregulatedandnormally quitelimited.Butcancercellscanlosethiscontrol,travellinginthebloodstreamthroughthewellknowprocessofmetastasis.MyosinVIisamotor-proteinableto“travel”alongactinfilamentsand isinvolvedintumorformationandmetastasis. AttheIFOM–FIRCInstituteofMolecularOncologyofMilan,SimonaPoloandcolleaguesarenow investigatingthecontrolsystemofMyosinVIfromanalternativepointofview.Thiswasthefocus ofthefascinatingtalkgivenbyDr.PoloduringtheArmenise-HarvardSymposium:MyosinVIplays anexplicitroleincellmigration,underbothpathologicalandnormalconditions. DrPoloistheleaderofaresearchgroupinvestigatingthemechanismsofregulationmediatedby ubiquitin.Ubiquitinisaregulatoryproteinthathasbeen“ubiquitously”foundinalmostalltissues; itsaddictiontootherproteinscanaffecttheminmanyways. “Thebest-knownfunctionofubiquitinisthedegradationviatheproteasome,butabout10years agoanovelfunctionofubiquitinationinsignallingwasdiscovered”sheexplained.“Wearestudying thismechanism,andshowedthatMyosinIVharboursaparticularubiquitinbindingdomain(UBD) differentfromanypreviouslydescribedUBD”. UBDsareacollectionofmodularproteindomainsthatnon-covalentlybindtoubiquitin;thenew UBDidentifiedbyPolo’steamwasgiventhenameofMyosinVIUbiquitinBinding(MyUb)domain. Ubiquitincancomeindifferentflavoursandtheyallperformdifferentfunctionsintothecells,most ofwhicharestillunknown. “Wefoundoutthat,differentlyfromthevastmajorityoftheUBDsthatshownobindingspecificity, MyUbdomainshaveaclearpreferenceforK63dimersimplicatingthatMyosinVIandubiquitin interactionisnotforproteindegradation”saidPolo. ThesefindingspreparedthegroundtoexplaintheroleofUbandMIU-MyUbdomainsinthe physiologicalandpathologicalregulationofMyosinVI. “IthasbeenobservedanoverexpressionofMyosinVIintumortissues”saidPolo.“Butwefoundout thatthisisnotagenericoverexpression:itislimitedtothespecificformabletointeractwith ubiquitin.Wearenowdissectingindetailstheunprecedentedroleplayedbyubiquitinincell migration”. Newinsightsintoproteasomemechanismsinnormalanddiseasestates AlfredGoldberg DeptCellBiology,HarvardMedicalSchool,Boston,USA “Proteasomeissmarterthanyouthink!”Thisexclamationcrownedtheconclusionofthesharpand brightpresentationbyAlfredGoldberg,duringthethirddayoftheArmenise-HarvardSymposium. HislaboratoryatHarvardMedicalSchoolstudieshowproteinsinourbodyareconstantlybeing fabricatedandthenbrokendownintoaminoacids.Proteasomestakeprideofplaceinthisprocess: theyareproteincomplexeswhosemainfunctionistodegradeunneededordamagedproteinsby proteolysis,achemicalreactionthatbreakspeptidebonds. ThesmartproteasomeGoldbergreferredtoisthe26Sproteasome,themajorsiteforprotein degradationinmammaliancells.Inrecentyears,inhibitorsofits20Speptidaseactivities(e.g. bortezomib)havegreatlyadvancedthetreatmentofmultiplemyeloma. Moreover,theprocessingofubiquitin(asmallregulatoryproteinfoundinalmostalltissuesof eukaryoticorganisms)conjugatesby26Sproteasome’s19Sregulatoryparticleinvolvesmany enzymaticstepsthatmaybetargetsfordrugdevelopment. Sothestudyof26Sproteasomehasimmediateapplicationalsoinclinicalmedicine,andthisisone ofthereasonswhyAlfredGoldbergtookitasthe“maincharacter”ofhisresearchandhistalk.Here thischaracterbecametheprotagonistoffourshortstories:foursurprisingmechanismscontrolling proteasomefunction. “Thefirststoryisthattheproteasomeistightlyregulated”heexplained.“Wenowthinkwe understoodthemechanism,theoveralllinkagebetweentheubiquitinchainandthebreakingdown oftheproteins:theregulationthatoccursinthatprocess”. InfactGoldberdLabdiscoveredthatwhenmammalian26Sproteasomesareinhibited,the ubiquitin-receptorsubunit,Rpn13,becomespolyubiquitinatedbya26S-associatedubiquitinligase. Thismodificationpreventsbindingofubiquitinatedsubstrates,andpresumablyevolvedtoprevent build-upofconjugateswhenproteasomefunctionisstalled. Andherewecometothesecondstory.“Thesurpriseisthatproteasometriggersunexpected responses”Goldbergtold.“Whentheproteasomeisinhibited,ithasamechanismsaying:‘don’tgive meanymoreubiquinatedproteins!’It’saveryadvancedself-regulatedmechanism”. Proteasomeregulationconcernsthethirdstoryaswell:“Wefoundthatwhentheproteasomeis partiallyinhibited,evenjustalittlebit,thesignalsofproductionofnewproteasomesevolvevery specifically.Thisisaverysmartstructurethatknowshowtogetthecelltocompensatepossible problems”. Thefourthstoryisaboutproteasomeanddisease.“Proteasomeisreallyaffectedincommon neurodegenerativediseases:thishadbeensuggestedmanytimes,butwithnoclearevidences”said Goldberg.“Wehaveusednewtechniquestoshowinmousemodeldiseaseoffrontotemporal dementia,whichisveryclosetoAlzheimerdiseasebecausehasmutationsinTaugene”. Inthiscasetheproteasomesaredefected:thisistightlyboundwithdiseasedevelopmentinmice. “Ourhypothesisisthatinalltmajorneurodegenerativediseasesthereisaprogressivefailureto degradetheubiquinatedconjugates,andthisconditionisassociatedtotheaccumulationoftauand phospho-tau”concludedGoldberg. Connectingthesefourstoriescouldgettheproteasomemechanismtoworkbetter,improving Neurodegenerativediseasestherapies.Takingatthesametimeadvantageoftheproteasome’s unexpectedsmartness. Towardsinvitroreconstitutionofspindlecheckpointsignaling AndreaMusacchio DepartmentofMechanisticCellBiology,Max-Planck-InstituteofMolecularPhysiology,Dortmund, Germany Thedistributionoftheparentalgenometotwodaughtercellsduringmitosisandmeiosisisthe essenceofgeneinheritanceandthereforeoflifeitself.Notsurprisingly,therefore,thisprocess involveswhatisprobablythemostcomplexensembleofcellularmolecularmachineryand providesanastoundingexampleoftheabilityofbiologicalmattertoself-organize. Themitoticspindle,astructuremadeofmicrotubules,molecularmotorsandtheirregulators,hosts acruciallylargefractionofthemachineryofcelldivision.Thisbipolar,elongated,andremarkably dynamicstructuredefinesthedivisionplaneofthemothercell,anddevotesitselftothecaptureof chromosomes,totheirclusteringinthemiddleplane,andtotheirsubsequentsegregationtothe daughtercells.Thus,themitoticspindleiscrucialtoensurethatthedaughtercellsinheritexactly thesamenumberandtypeofchromosomes,thereforeguaranteeingcellularandorganismal viability. Despitetheimportanceofthespindleforcelldivision,theexactmolecularbasisofitsfunction remainspoorlyunderstood.TryingtounfoldthismysteryisthemaingoalofAndreaMusacchioat theMax-Planck-InstituteofMolecularPhysiologyinDortmund,Germany.Musacchioleadsa researchteamfocusedoncomplexproteinscaffoldsknownaskinetochores.Kinetochoresarelarge proteinaceousstructuresbuiltonthecentromereregionofchromosomes.Theirprimaryfunctionis toprovideasiteofattachmentofchromosomestothemitoticspindle. Kinetochoresplayasecond,subtlerfunctionthatishowevercrucialforaccuratecelldivision:they controlafeedbackmechanismknownasmitoticcheckpoint,orspindleassemblycheckpoint(SAC). Thefunctionofthischeckpointistopreventseparationoftheduplicatedchromosomes–thesister chromatids–untiltheyhaveproperlyattachedtothespindleapparatus.DysfunctionoftheSAC mayresultinincorrectpartitioningofthesisterchromatidstothedaughtercells,creatinga pathologicalcellconditionknownasaneuploidy.Suchconditionstronglycorrelateswith tumorigenesis,supportingthespeculationthatcheckpointdysfunctionmaybe–amongothers–a prominentcauseoftransformation. Overthelastyears,Musacchio’slaboratoryhasmadesignificantcontributionstothefield:“We reconstitutedseveralkinetochoresub-complexesintheinnerandtheouterkinetochore,the regionsofthekinetochoreimplicatedincentromerebindingandmicrotubulebindingand checkpointcontrol,respectively”,saidtheresearcher. Indeed,biochemicalreconstitution,coupledwithmedium-orhigh-resolutionstructural investigationsisplayingaleadingroleindevelopinganunderstandingofkinetochoreorganization. Forinstance,Musacchioandcolleagueswererecentlyableforthefirsttimetogainadetailedview ofacrucialkinetochoresub-complexmadeoffoursubunits,theCENP-HIKMcomplex. Thenextchallengeisexplainingtherelationshipbetweenkinetochoresandcheckpointcontrol:this iswhatMusacchiocalledthe“thirddecadeofcheckpointstudies”,afterthediscoveryofthemain checkpointcomponents(1991-2000)andtheinvestigationoftheirinteractions(2001-2010).To addressthischallenge,hisresearchgroupisapproachingthereconstitutioninvitroofspindle checkpointsignalling.Thiseffortfollowsatraditionalpathof“reductionist”studiesthatinterpret theemergenceofcomplexbiologicalfunctionsasaresultofspecificinteractionsofthe macromolecularbuildingblocksthatpopulatecells. ThescaleofambitionimplicitinMusacchio’splans,however,transcendsthatofmostcurrent efforts.“Theword‘towards’isveryimportant:we’restillnotthere”pointedoutMusacchio.“Butwe believethatitispossibletoreconstitutethecatalyticapparatusofthecheckpointonreconstituted kinetochores”.Invitroreconstitutionofthiscomplexbiologicalstructurewillrevolutionizethe understandingofchromosomesdivisionduringmitosis,sheddinganewlightononeofthemost excitingexamplesofself-organizationinlivingmatter. Theautophagysignalingnetworkinthecoordinationofacell’sresponse FrancescoCecconi UnitofCellStressandSurvival,DanishCancerSocietyResearchCenter,2100Copenhagen,Denmark; DepartmentofBiology,UniversityofRomeTorVergata,Rome,Italy Theworld“cannibalism”usuallyconjuresupimagesofprimitiveandbrutalpractices.Butdeep down,weareallcannibals:ourcellsareconstantlyeatingthemselves,discardingoftheirredundant moleculargarbagethroughaprocessknownasautophagy. DerivingfromaGreektermmeaning“selfeating”,autophagyismostofthetimesasurviving mechanism,allowingcellsto“recycle”theirbiologicalwaste.Andtomanyscientists’surprise, recentdiscoverieshaveshownthatfaultyautophagymechanismscontributetothedevelopmentof variousdiseases. FrancescoCecconi’slaboratoryiscommittedtounravelingtheupstreamregulationofautophagy andelucidatingtheroleitplaysinthreedifferentpathologicalconditions:neurodegeneration, autoimmunityandcancer. Thelatterinparticularisstillobjectofdiscussion:“Incancerthereisasortofcontroversygoingon abouttheroleofautophagy”explainedCecconi.“Ifweknock-outanautophagygene,thenweget accumulationsoftoxiccompoundsthatautophagycan’thelpgettingridof.Forexample,damaged tissuescanoverproduceROS,whichcandamageDNAcausingchromosomeinstabilityandcancer. Inthiscase,mutationsintheautophagygenessetareresponsibleforcancerogenesis”. Ontheotherside,autophagycanhavetheoppositefunction,beingevendetrimentalforthepatient. “Ifatumororiginatesfromacompletelydifferentsetofmutationsandwehavetheautophagy systemperfectlyworkingwithinthecells,thentheautophagyishelpingcancercellstosurvive”. Thereisthenincanceradualfunctionofautophagy:dependingonthetumororigin,autophagy shouldeitherbepushedtoworkorblocked. Inthiscontext,Cecconi’slabhasidentifiedanovelproteincalledAmbra1(ActivatingMoleculein Beclin1-RegulatedAutophagy),playingmultiplerolesasascaffoldfactorinautophagycontrol. “WearestudyingthefunctionofAmbra1incellcycleregulationanditsimplicationsintumor insurgence”saidCecconi. Togetherwithhisresearchteam,hedevelopedanexperimenttounderstandtheroleofAmbra1in cancer.Theresultscouldshedanewlightonthelinkbetweenautophagyandtumordevelopment. “IhopeIconvincedyouabouttheimportanceofthisprotein”concludedCecconitotheArmeniseHarvardaudience,andheprobablydid. Thesignalingmechanismsunderlyingtheanti-tumoractivityofmetformin GianniCesareni DepartmentofBiology,UniversityofRomeTorVergata,RomeItaly Fightingcancerwithawell-knownmedicine.Afewyearsago,thishypothesisdominatedmany scientificmagazines,asanewpossiblefrontierfortumortreatment. Thepromisingmedicinewasmetformin,themostfrequentlyprescribeddrugfortype2diabetes patients.Thesefindingsimmediatelytriggeredseveralclinicaltrials.Butthemechanisms underlyingtheanti-tumoractivityofmetforminweren’tfullyclarified,anditsroleasacancer suppressorisstillunderexamination. AttheUniversityofRome,TorVergata,GianniCesareniusedanewapproachtoaddressthese questions.Togetherwithhisresearchgroup,hedecidedtolookatthebehaviorofacancercellasa systemandnotasasimplelinearcombinationofitsparts.Theserelativelynewapproachis commonlyreferredtoassystemsbiology,asexplainedduringthe15thArmenise-Harvard Symposium. “Welookatthecellinitsentirety,aimingatdescribinghowmetforminperturbsthephysiological processesofthecancercelltherebypreventingitsproliferation”heexplained.“Thisisanew approachinmodernbiology,aimingtodescribethecellasasystemandnotsimplyasthesumofits parts”. Inordertoworkoutmetformin’sroleincancer,theCesareniLabappliedacombinationofhigh contentmulti-parametricanalysiswithlogicmodelingandsimulationtechniques.Theobjective wastomapcellperturbationsoncomplexlogicnetworks. Inthiswaytheyobtainedapredictivecell-specificlogicmodel,laterappliedtofunctionally characterizethemolecularmechanismunderlyingtheanti-canceractivityofmetformin. “Weanalyzedhowsignalingnetworksarerewiredinbreastcancercellsuponmetformin treatment”saidCesareni.“First,wemonitoredtheactivationofabout20keysignalingproteinsin cancercellstreatedwithavarietyofperturbationsbeforeandaftermetformintreatment.Next,we builttwocellspecificnetworkmodelsofmetforminfortreatedanduntreatedcells”. Theresultswereextremelyinteresting:theexperimentsshowedthatmetforminrewiresthe signalingnetworks,modifyingdifferentconnectionsbetweensignalingproteins. “Wefoundthatmetforminchangesthestructureofthenetworksunderlyingsomecellpathways” explainedtheresearcher.“Sothecellsbecomemoresensitivetotopictreatmentsandlessproneto proliferation”. Tosumup,metformindoesn’tkillthetumorcells,butmakethemweaker.Andthisiscertainly quiteagoodstartingpoint. Mechanisticeventsregulatingnotchsignaltransduction StephenC.Blacklow HarvardMedicalSchool,Boston,MA,USA;DanaFarberCancerInstitute,Boston,USA Thisstorybeginsin1917,whenThomasHuntMorganidentifiedallelesofageneresponsiblefor notchingofthewingsinfruitflies.Subsequentwork,ledinlargepartbySpyrosArtavanis-Tsakonas ofHarvardMedicalSchool,revealedthatthegeneresponsibleforthisphenotype,calledNotch,isa highlyconservedreceptorinasignaltransductionpathwaythatcontrolnumerouscellfate decisionsinorganismsrangingfromfliestohumans.WhereasnormalNotchsignalingmakesit possibleforadjacentcellstocommunicateeffectivelywitheachother,dysregulatedNotchsignaling oftenasaresultofmutationsintheNotchreceptorsortheirligands,contributestoavarietyof humandiseases,includingneurodegenerationandcancer. Thus,understandinghownormalandaberrantNotchsignalingtakesplacehasimportant implicationsforclinicalmedicine.AtHarvardMedicalSchool,thisisonetaskoftheBlacklowLab: tounderstandthemolecularlogicofcell-surfacereceptorssuchasNotchproteins,whicharehighly relevanttohumanphysiologyanddisease. “Amajorfocusofthelaboratoryistounderstandhownormalnotchsignalingtakesplace.This knowledgewillalsoyieldimportantinsightsintotheeffectsofaberrantNotchsignalingincancer andotherdiseases”saidStephenBlacklow,headofthelaboratory. Hiseffortsaremainlydirectedtowardunderstandinghowactivationisinducedbyligandsandhow notchcooperateswithotherfactorstoregulatetargetgenetranscription. “Onecentralunansweredquestioninsignalingishowthebindingsiteforligandscancommunicate witharegulatoryswitchthatis600Angstroms(alongdistanceinmolecularterms)away,andhow ligandstimulationnormallyrelievesautoinhibition”saidBlacklow. Oneimportantcluetoansweringthisquestionisthatsignal-sendingcellsrelyonendocytosisofthe ligandstodeliverthesignaltotheNotchreceptorsonthesignal-receivingcells.Twopossibilities mightexplainthisdependence:oneisthatligandendocytosisexertsmechanicalforcetopullonthe Notchreceptorinordertoexposeametalloproteasecleavagesitetoactivatingproteolysis,andthe secondisthatligandsrelyonendocytosisforan“activating”modificationthatrendersthem competentforsignaling.Inotherwords,endocytosisandrecyclingofligandmayberequiredfor conversionofligandsfromalatentstateintoanactiveform. Thelaboratoryiscurrentlyworkingondistinguishingbetweenthesetwopossibilities.“Itis possibletosubstitutethenormalligand-receptorinteractionwithasyntheticsystem,whichretains thedependenceonligandendocytosisinsendingcells,andontheactivationswitchinreceiving cells,”saidBlacklow.“Sotheworkingmodelthatcanbetestedinthesyntheticsystemisthat endocytosisisactuallysupplyingtheforcethatopenstheregulatoryswitch”. MechanismofinhibitionoftheepidermalgrowthfactorreceptorbyMig6 MichaelJ.Eck DepartmentofBiologicalChemistry&MolecularPharmacology,HarvardMedicalSchool;Cancer Biology,Dana-FarberCancerInstitute,Boston,USA Lungcanceristheleadingkillerintheworldamongtumors.AccordingtotheWorldHealth Organization1,59millionofdeathsforlungcancerwereregisteredin2012. Althoughlungcanceriscloselylinkedtosmoking,everyyearitaffectstensofthousandsofpeople whoneversmoked. Inrecentyears,scientistscontinuedtounravelgeneticfactorsinvolvedincancerdevelopment.And forlungcancerinnonsmokers,thereisanincreasedlikelihoodoffindingasomaticmutationofthe epidermalgrowthfactorreceptor(EGFR).EGFRisthecell-surfacereceptorformembersofthe epidermalgrowthfactorfamily(EGF-family)ofextracellularproteinligands. AtHarvardMedicalSchool,MichaelEckisworkingonthestructureofsignalingcomplexesthat underliecancer,withaparticularfocusonlungcancer-derivedmutationsintheepidermalgrowth factorreceptor.Hislab’sstructuralapproachesarealsousedtofacilitatedevelopmentofanticancerdrugs. “About15%oflungcancersarecausedbyEGFRmutations”explainedEckduringtheArmeniseHarvardSymposium.“Inparticular,somaticmutationsinEGFRareamajorcauseofnon-smallcell lungcancer”. Hepresentedthelatestresultsofhislaboratory:thediscoveryofaquiteunexpectedmechanismof inhibitionofEGFRbyanendogenousregulator,Mig6. Mig6(Mitogen-inducedgene6,alsocalledRALT)isafeedbackinhibitorofEGFRfamilymembers thatactsbydirectlybindingactivatedEGFR,inhibitingitscatalyticactivityanddirectingits internalizationanddegradation. Mig6isprobablyatumorsuppressor:thismeansthatitslossleadstotumorformation.In particular,focaldeletionsspanningitschromosomallocusoccurinGBM(Glioblastomamultiforme) andlungcancer. HisstudiesrevealedthatMig6isactuallya“mechanism-based”inhibitorofEGFR.“EGFRistrapped intheactofphosphorylatingMig6”explainedEck.“OncetheEGFRkinasephosphorylatesMig6,itis effectivelyirreversiblyinhibited”. Thesefindingsmayleadtonewtherapeuticstrategiesforlungandothercancerscausedbymutant EGFR. Connectingthemachineriesofcellfatedeterminationandtumorsuppressionin mammarystemcells PierPaoloDiFiore FondazioneIFOM-IstitutoFIRCdiOncologiaMolecolare,MilanItaly Itishardtoimaginethatstemcells,themost“immaculate”biologicalexistingmaterial,couldlead tocancer.Butaccordingtoarecenttheory,“stem-like”cancercellsareresponsibleforthe generationoftumorsandforsustainingtumorgrowth. Thismodelpredictstheexistenceofcancerstemcells(CSCs)withpropertiescharacteristically associatedtonormalstemcells,suchasself-renewal,multipotencyandquiescence. AttheInstituteofMolecularOncologyFoundation,PierPaoloDiFioreisexploringthischallenging stem-celltheoryofcancer.Heisinvestigatingthemolecularmechanismsgoverningthe maintenanceofthestemcellcompartmentinnormaltissues,andhowthesemechanismsare subvertedincancer. DuringtheArmenise-HarvardSymposiumclosingtalk,heexplainedhowislabisaddressingthis studyperformingbothbasicandtranslationalcancerresearch. “Theexistenceofcancerstemcellshasbeenprovedforanumberofcancertypes,includingbreast cancer”hesaid.“However,thebreaststemcellcompartmentremainspoorlycharacterizeddueto thelackofreliabletechniquesfortheiridentificationandisolation.Wehavedevelopedanew techniquetospecificallylabelandpurifybreaststemcellsfrommammaryglandtissue”. Thistechniqueexploitsboththepropensityofbreaststemcellstogeneratemammospheres(3D clustersofcells)insuspensionculture,andtherelativequiescenceofstemcellscomparedtoother breastcelltypes,whenpropagatedinvitro. DiFioreandcolleaguesareusingpurifiednormalandcancerstemcellstoisolatea“stemness” signaturefromwhichtheycanextractdiagnostic,prognosticandtherapeuticmarkersthatcanthen beevaluatedfortestinginclinicaltrials. Inthiscontext,acrucialroleisplayedbythemechanismsofasymmetriccelldivision.Inparticular, researchersareinvestigatingwhether,andhow,Numbandendocytosis-basedmechanismsare involvedintheregulationofasymmetriccelldivisionofhumanbreaststemcells. “Numbisacellfatedeterminantthatbyasymmetricallypartitioningatmitosiscontrolsbinarycell fatedecisions”explainedDiFiore.“Inhumanbreastcancers,thereisfrequentlossofNumb expression,duetoitsexaggeratedubiquitinationandensuingdegradation”. ThisNumblosscausesalterationsintwomajordownstreampathways.Ontheonehand,lackof NumballowsforuncheckedsignalingactivityoftheNotchreceptor.Ontheother,lackofNumb causesattenuationofthep53signalingpathway.Tumorsdisplayingloss-of-Numbexpressionare addictedtothiseventandtoitsmolecularconsequences. DiFioreclaimedthatthisleadstoafirstimportantconclusion,whichalsoconstitutedthe“takehomemessage”ofhistalk:“WhenyouhavehighNumb,youhavehighp53;whenyouhavelow Numb,youhavelowp53”. ThissuggestsadoubleroleofNumb:itisprobablyatumorsuppressor,anditsactioncauses decreasedp53activityinbreastcancers.Therefore,Numbcontrolsbothanoncogenicpathwayand atumorsuppressorpathway,andthismayleadtonewpromisingclinicalapplicationstofight cancerstemcells. Armenise-HarvardSymposiumandyoungresearchers:theCareerDevelopment Award “Myfatherbelieved,andsodoI,thatsuperbresultsmostoftencomefromcollaboration.The Foundationintendstocontinuelookingforwaystoenhanceconversationandcooperativeworkon bothsidesoftheAtlantic”. WiththesewordstheArmenise-HarvardFoundation’sChairman,CountGiampieroAuletta Armenise,gaveatributetohislatefather,founderCountGiovanniAulettaArmenise,onthelastday ofthesymposium.HegreatlysummarizedtheFoundation’smission:establishinga multidisciplinary-basedscienceresearch. The15thArmenise-HarvardSymposiumfullyreflectedthisvision.Intheend,everyoneagreedit hadbeenanexcitingmeeting,withastronginterdisciplinaryapproach. Alongwiththescientificsessions,over30scientistspresentedposters.Thisgavegroupleadersand youngerresearchersthechancetotalkovertheirwork,findingnewcollaborationopportunities. ThisisthespiritofthewholeFoundation,bestexpressedbyitsmostforward-lookinggrant program:theCareerDevelopmentAward(CDA).Since2001,theArmenise-HarvardFoundationhas fundedthedevelopmentoftalentedyoungscientists,establishingcollaborativerelationships betweenItalianresearchersandHarvardMedicalSchool. Inthelast14years,20scientistshavemovedtoItalyfromelsewherearoundtheworld,supported bytheFoundation.Theysetuptheirownlabsalloverthecountry,fromPalermotoTrento. The15thArmenise-HarvardSymposiumwitnessedthesuccessofthisfundingprogram.8Career DevelopmentAwardeesattendedthemeeting:VincenzoCostanzo,FedericoForneris,Claudia Lodovichi,MarieLaureBaudet,RosellaVisintin,TizianaBonaldi,StefanoGustincichandSheref Mansy,whoalsowasoneofthespeakers.Allofthemaredevelopingapromisingcareerinscience. “ThisisoneofthefewopportunitiestoindependentlyworkinItalyonaspecificresearchprogram” commentedVincenzoCostanzo,winnerofthe2013CDAgrant.HerecentlymovedtotheVertebrate GenomeStability,IFOMIstitutoFIRCdiOncologiaMolecolareinMilan,whereheisworkingonthe roleofDNAdamageresponsefactorsinvertebrateDNAreplication. “WestudyhowDNArepairsitself,andwhytumorcellsarenotcapableoffulfillingthistask”he explained.“Cellsarelikeplanes:everysinglemechanismisrelatedtomanyothers.Ifoneofthese mechanismsisdamaged,aDNAdamageresponseisactivated.Wewanttounderstandhowto selectivelyinterveneontumorcells,whichdefectsinthespecificgenesoftheDNAdamage response”. Tothisend,VincenzoCostanzoisapplyingamultidisciplinaryapproach–thesamevisionbroadly promotedduringthe15thArmenise-HarvardSymposium. AsCountGiampieroAulettaArmenisestated:“Ourfoundersbelievedinlookingatproblemsfrom multipleangles,andtheFoundationwillcontinuetopursuethisgoal”. Glossary Actin:aglobularmulti-functionalproteinfoundthatformsmicrofilaments.Itisthemonomeric subunitoftwotypesoffilamentsincells:microfilaments,oneofthethreemajorcomponentsofthe cytoskeleton,andthinfilaments,partofthecontractileapparatusinmusclecells.Actinparticipates inmanyimportantcellularprocesses,includingmusclecontraction,cellmotility,celldivisionand cytokinesis,vesicleandorganellemovement,cellsignalling,andtheestablishmentand maintenanceofcelljunctionsandcellshape. Autophagy:anevolutionarilyconservedcatabolicmechanismthatinvolvescelldegradationof unnecessaryordysfunctionalcellularcomponentsthroughtheactionsoflysosomes.Although originallyclassifiedasatypeofprogrammedcelldeath,autophagyismorewidelyviewedasabasic cellsurvivalmechanismtocombatenvironmentalstressors Chromatin:acomplexofmacromoleculesfoundincells,consistingofDNA,proteinandRNA.Its primaryfunctionsare:topackageDNAintoasmallervolumetofitinthecell;toreinforcetheDNA macromoleculetoallowmitosis;topreventDNAdamage;4tocontrolgeneexpressionandDNA replication. Clathrin:aproteinthatplaysamajorroleintheformationofcoatedvesicles.Itformsatriskelion shapecomposedofthreeclathrinheavychainsandthreelightchains. Dynein:amotorproteinconvertingthechemicalenergycontainedinATPintothemechanical energyofmovement.Ittransportsvariouscellularcargoby“walking”alongcytoskeletal microtubulestowardstheminus-endofthemicrotubule,whichisusuallyorientedtowardsthecell center. Endocytosis:anenergy-usingprocessbywhichcellsabsorbmolecules(suchasproteins)by engulfingthem. Epidermalgrowthfactorreceptor:thecell-surfacereceptorformembersoftheepidermal growthfactorfamily(EGF-family)ofextracellularproteinligands. Heterochromatin:atightlypackedformofDNA,whichcomesindifferentvarieties.These varietieslieonacontinuumbetweenthetwoextremesofconstitutiveandfacultative heterochromatin.Bothplayaroleintheexpressionofgenes,whereconstitutiveheterochromatin canaffectthegenesnearthem(position-effectvariegation)andwherefacultativeheterochromatin istheresultofgenesthataresilencedthroughamechanismsuchashistonedeacetylationorpiRNA throughRNAi. Histone:ahighlyalkalineproteinfoundineukaryoticcellnucleithatpackagesandorderstheDNA intostructuralunitscallednucleosomes.Histonesarethechiefproteincomponentsofchromatin, actingasspoolsaroundwhichDNAwinds,andplayaroleingeneregulation. Histonemethylation:aprocessbywhichmethylgroupsaretransferredtoaminoacidsofhistone proteinsofchromosomes.Dependingonthetargetsite,methylationcanmodifyhistonessothat differentportionsofchromatinareactivatedorinactivated.Thisprocessiscriticalforthe regulationofgeneexpressionthatallowsdifferentcellstoexpressdifferentportionsofthegenome. Histonemethyltransferases(HMT):histone-modifyingenzymesthatcatalyzethetransferofone, two,orthreemethylgroupstolysineandarginineresiduesofhistoneproteins. Kinesin:aproteinbelongingtoaclassofmotorproteinsfoundineukaryoticcells.Kinesinsmove alongmicrotubulefilaments,andarepoweredbythehydrolysisofATP.Mostkinesinswalk towardstheplusendofamicrotubule,which,inmostcells,entailstransportingcargofromthe centreofthecelltowardstheperiphery. MessengerRNA(mRNA):alargefamilyofRNAmoleculesthatconveygeneticinformationfrom DNAtotheribosome,wheretheyspecifytheaminoacidsequenceoftheproteinproductsofgene expression. Metformin:anoralantidiabeticdruginthebiguanideclass.Itisthefirst-linedrugofchoiceforthe treatmentoftype2diabetes,inparticular,inoverweightandobesepeopleandthosewithnormal kidneyfunction. Microtubule:acomponentofthecytoskeleton,foundthroughoutthecytoplasm.Microtubulesare formedbythepolymerizationofadimeroftwoglobularproteins,alphaandbetatubulin;theyare involvedinmaintainingthestructureofthecelland,togetherwithmicrofilamentsand intermediatefilaments,theyformthecytoskeleton. Myosin:aproteinofATP-dependentmotorfamily,bestknownforitsroleinmusclecontraction anditsinvolvementinawiderangeofothereukaryoticmotilityprocesses.Myosinsareresponsible foractin-basedmotility. Notch-1:ahumangeneencodingamemberoftheNotchfamily.Notchfamilymembersplayarole inavarietyofdevelopmentalprocessesbycontrollingcellfatedecisions. Notchproteins:afamilyoftransmembraneproteinswithrepeatedextracellularEGFdomainsand thenotch(orDSL)domains.Theseproteinsareinvolvedinlateralinhibitioninembryogenesis. Notchsignalingpathway:ahighlyconservedcellsignalingsystempresentinmostmulticellular organisms.Notchsignalingpromotesproliferativesignalingduringneurogenesis,anditsactivityis inhibitedbyNumbtopromoteneuraldifferentiation. Numb:aproteinthatinhumansisencodedbytheNUMBgene.Itplaysaroleinthedetermination ofcellfatesduringdevelopment. Phosphorylation:theadditionofaphosphate(PO43−)grouptoaproteinorotherorganic molecule.Phosphorylationturnsmanyproteinenzymesonandoff,therebyalteringtheirfunction andactivity.Proteinphosphorylationisonetypeofpost-translationalmodification. Proteasomes:proteincomplexesinsidealleukaryotesandarchaea,andinsomebacteria.In eukaryotes,theyarelocatedinthenucleusandthecytoplasm.Themainfunctionoftheproteasome istodegradeunneededordamagedproteinsbyproteolysis,achemicalreactionthatbreakspeptide bonds. Reactiveoxygenspecies(ROS):chemicallyreactivemoleculescontainingoxygen.ROSareformed asanaturalbyproductofthenormalmetabolismofoxygenandhaveimportantrolesincell signalingandhomeostasis. RNAinterference(RNAi):abiologicalprocessinwhichRNAmoleculesinhibitgeneexpression, typicallybycausingthedestructionofspecificmRNAmolecules. RNA-inducedtranscriptionalsilencing(RITS):aformofRNAinterferencebywhichshortRNA molecules–suchassmallinterferingRNA(siRNA)–triggerthedownregulationoftranscriptionof aparticulargeneorgenomicregion. Yeast:single-celledfungithatreproducebybudding.Yeastsizecanvarygreatlydependingonthe species,typicallymeasuring3–4µmindiameter,althoughsomeyeastscanreachover40µm.
© Copyright 2026 Paperzz