Network-Oriented Modeling: Addressing Complexity in Cognitive

Network-Oriented Modeling:
Addressing Complexity in Cognitive, Affective,
and Social Interactions
Jan Treur
Table of Contents
Part I Network-Oriented Modeling: Introduction
1 Network-Oriented Modelling and Its Conceptual Foundations
An Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.1 Introduction . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . .
1.2 Addressing Human Complexity by Separation Assumptions . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . .
1.3 Addressing Complexity by Interaction in Networks Instead of by Separation . . . . . . . .. . . . . . . . . . . .
1.4 Network-Oriented Modelling . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . .
1.5 The Dynamic Computational Modelling Perspective. . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . .
1.6 Network-Oriented Modelling Based on Temporal-Causal Networks . . . . . . . .. . . . . . . . . . . .
1.7 Scope of Applicability and Achievements. . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . .
1.8 Overview of the Book . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . .
References. . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . .
3
3
4
11
14
16
18
22
23
29
2 A Temporal-Causal Network Modeling Approach
With Biological, Neurological and Social Processes as Inspiration . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1 Introduction
2.2 Modeling Complex Processes by Temporal-Causal Networks . . . . . . . . . . .. . . . . . . . . . . .
2.3 Exploiting Knowledge About Physical and Biological Mechanisms in Modelling. . . . . . . . . .
2.3.1 Addressing Complexity by Higher Level Models Based on Knowledge from Computer Science . . . .
2.3.2 Addressing Complexity by Higher Level Models Based on Knowledge from Neuroscience. . . .
2.4 Conceptual Representation of a Temporal-Causal Network Model. . . . . . . . . . . . .
2.4.1 Conceptual Representations of a Temporal-Causal Network Model . . . . . . . . . . . . .
2.4.2 More Specific Examples of Conceptual Representations of Temporal-Causal Network Models. . .
2.5 Numerical Representation of a Temporal-Causal Network Model . . . . . .. . . . . . . . . .
2.5.1 The Systematic Transformation from Conceptual to Numerical Representation . . . . . .
2.5.2 Illustration of the Transformation for the Example of Fig. 2.10 . . . . . . .
2.5.3 Illustration of the Modelling Perspective for a Social Contagion Process . . . . . . . . . .
2.6 Standard Combination Functions . . . . . . . . . . . . . . . . . . . . . . .
2.6.1 Basic Standard Combination Functions . . . . . . . . . . .
2.6.2 Building More Complex Standard Combination Functions . . . . . . . . . . . .. . . . . . . . .
2.7 Properties for Combination Functions. . . . . . . . . . . . . . . . . . . .
2.8 Applying Computational Methods to Model Representations . . . . . . . . . . . . . ..
2.9 Applicability of the Modelling Perspective . . . . . . . . . . . . . . . .
2.9.1 The State-Determined System Assumption . . . . . . . .
2.9.2 State-Determined Systems and First-Order Differential Equations . . . . . . . . . .
2.9.3 State-Determined Systems and Modeling Based on Temporal-Causal Networks . . . .
2.10 Modelling Adaptive Processes by Adaptive Temporal-Causal Networks . . . . . . . . . . . . . . . . .
2.11 Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
33
38
41
41
42
43
45
47
56
57
62
64
67
67
70
75
79
83
83
84
86
90
97
98
Part II Emotions All the Way
3 How Emotions Come in Between Everything
Emotions Serving as Glue in All Mental and Social Processes . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2 Generating Emotional Responses and Feelings . . . . . . . . . . . . .
3.3 Emotion Regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.4 Interaction Between Cognitive and Affective States . . . . . . . . .
3.5 Emotion-Related Valuing in Decision-Making . . . . . . . . . . . . .
3.6 Emotions and Social Contagion . . . . . . . . . . . . . . . . . . . . . . . .
3.7 Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
103
103
105
109
112
116
117
118
4 How Do You Feel Dreaming
Using Internal Simulation to Generate Emotional Dream Episodes. . . . . . . . . . . . . . . . . . . .
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2 Memory Elements, Emotions and Internal Simulation
in Dreaming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3 A Temporal-Causal Network Model Generating
Dream Episodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.4 Simulations of Example Dream Scenarios . . . . . . . . . . . . . . . .
4.5 Relations to Neurological Theories and Findings . . . . . . . . . . .
4.6 Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
125
125
126
128
133
136
137
138
5 Dreaming Your Fear Away
Fear Extinction Learning During Dreaming . . . . . . . . . . . . . . . . . . . . .
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.2 An Adaptive Temporal-Causal Network Model for Fear Extinction Learning. . . . . . . . . . . . . . . . . . . . . . . . . . .
5.2.1 Conceptual Representation of the Adaptive Network Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.2.2 Numerical Representation of the Adaptive Network Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.3 Simulations of Fear Extinction Learning in Dream Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.4 Relating the Adaptive Temporal-Causal Network
Model to Neurological Theories . . . . . . . . . . . . . . . . . . . . . . . .
5.5 Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
141
141
142
142
146
148
152
153
154
6 Emotions as a Vehicle for Rationality in Decision Making
Experiencing Emotions for Decisions Based on Experience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.2 The Adaptive Temporal-Causal Network Model for Decision Making . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.3 Simulation Results for a Deterministic World. . . . . . . . . . . . . .
6.4 Simulation Results for a Stochastic World . . . . . . . . . . . . . . . .
6.5 Simulation Results for a Changing Stochastic World . . . . . . . .
6.6 Evaluating the Adaptive Temporal-Causal Network Model on Rationality . . . . . . . . . . . . . . . . . .
6.7 Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
157
157
159
167
171
172
175
178
179
Part III Yourself and the Others
7 From Mirroring to the Emergence of Shared Understanding and Collective Power
Biological and Computational Perspectives on the Emergence of Social Phenomena. . . .. .
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.2 Mirror Neuron Activation and Internal Simulation . . . . . . . . . .
7.2.1 The Discovery of Mirror Neurons . . . . . . . . . . . . . . .
7.2.2 Neurons for Control and Self-other Distinction . . . . .
7.2.3 Generating Emotions and Feelings by Internal Simulation: As-if Body Loops . . . . . . . . . . . . . . . . . .
7.2.4 Mirroring Process: Mirror Neuron Activation and Internal Simulation . . . . . . . . . . . . . . . . . . . . . . .
7.2.5 Development of the Discipline Social Neuroscience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.3 The Emergence of Shared Understanding . . . . . . . . . . . . . . . . .
7.3.1 The Emergence of Shared Understanding for External World States . . . . . . . . . . . . . . . . . . . . .
7.3.2 The Emergence of Shared Understanding for Internal Mental States . . . . . . . . . . . . . . . . . . . . .
7.4 The Emergence of Collective Power. . . . . . . . . . . . . . . . . . . . .
7.4.1 The Emergence of Collective Action Based on Mirroring . . . . . . . . . . . . . . . . . . . . . . . . . .
7.4.2 The Role of Feelings and Valuing in the Emergence of Collective Action . . . . . . . . . . . . . . . .
7.5 Integration of External Effects and Internal Processes. . . . . . . .
7.6 Abstraction of Complex Internal Temporal-Causal Network Models . . . . . . . . . . . . . . . . . . . . . . . . . .
7.7 Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
183
183
185
185
186
187
187
193
194
195
196
198
198
200
201
202
203
205
8 Am I Going to Do This? Is It Me Who Did This?
Prior and Retrospective Ownership States for Actions . . . . . . . . . . . . .
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.2 Neurological Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.3 A Temporal-Causal Network Model for Ownership . . . . . . . . .
8.3.1 Conceptual Representation of the Temporal-Causal Network Model . . . . . . . . . .
8.3.2 Numerical Representation of the Temporal-Causal Network Model . . . . . . . . . .
8.4 Simulation of Example Scenarios . . . . . . . . . . . . . . . . . . . . . . .
8.4.1 Normal Execution and Attribution of an Action . . . .
8.4.2 Vetoing a Prepared Action Due to Unsatisfactory Predicted Effect . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.4.3 Effects of Poor Prediction; Schizophrenia Case . . . . .
8.4.4 Satisfactory Predicted Effects but Unsatisfactory Actual Effects . . . . . . . . . . . . . . . . . . . .
8.4.5 Mirroring Another Person . . . . . . . . . . . . . . . . . . . . .
8.5 Relations to Neurological Findings . . . . . . . . . . . . . . . . . . . . . .
8.6 Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
209
209
211
213
213
215
220
221
222
224
225
226
227
230
231
9 How Empathic Are You
Displaying and Regulating Different Social Response Patterns . . . . . . . . . . . . . . . . . . . . . . .
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.2 Neurological Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.2.1 Mirror Neurons . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.2.2 Control and Self-other Distinction . . . . . . . . . . . . . . .
9.2.3 Emotion Integration . . . . . . . . . . . . . . . . . . . . . . . . . .
9.2.4 Enhanced Sensory Processing Sensitivity and Emotion Regulation . . . . . . . . . . . . . . . . . . . . . .
9.2.5 Empathic Responses . . . . . . . . . . . . . . . . . . . . . . . . .
9.3 The Temporal-Causal Network Model . . . . . . . . . . . . . . . . . . .
9.3.1 Conceptual Representation of the Model . . . . . . . . . .
9.3.2 Numerical Representation of the Temporal-Causal Network Model . . . . . . . . . .
9.4 Types of Social Response Patterns Shown . . . . . . . . . . . . . . . .
9.4.1 Overview of Basic Patterns . . . . . . . . . . . . . . . . . . . .
9.4.2 Oscillatory Patterns: Limit Cycle Behaviour . . . . . . .
9.4.3 Comparison to Empirical Gaze Data . . . . . . . . . . . . .
9.4.4 Interaction of Two Persons Displaying Regulation of Enhanced Sensory Sensitivity . . . . . . .
9.5 Learning Social Responses by an Adaptive Temporal-Causal Network Model . . . . . . . . . . . . . . . . . . . . . . .
9.6 Example Simulations of Learning Processes . . . . . . . . . . . . . . .
9.7 Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
235
235
237
237
238
239
239
241
243
243
247
252
252
255
256
257
259
260
263
265
10 Are You with Me? Am I with You?
Joint Decision Making Processes Involving Emotion-Related Valuing and
Mutual Empathic Understanding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.2 Mirroring, Internal Simulation and Emotion-Related Valuing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.3 The Temporal-Causal Network Model . . . . . . . . . . . . . . . . . . .
10.3.1 Conceptual Representation of the Temporal-Causal Network Model . . . . . . . . . .
10.3.2 Numerical Representation of the Temporal-Causal Network Model . . . . . . . . . .
10.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.5 Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
271
271
272
274
275
277
281
283
284
11 Changing Yourself, Changing the Other, or Changing Your Connection
Integrative Dynamics of States and Interactions in a Social Context . . . . . . . . . . . . . . . .
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11.2 Small World Networks and Random Networks. . . . . . . . . . . . .
11.2.1 Small World Networks . . . . . . . . . . . . . . . . . . . . . . .
11.2.2 Random Networks . . . . . . . . . . . . . . . . . . . . . . . . . . .
11.3 Distribution of Node Degrees and Scale-Free Networks . . . . . .
11.3.1 Scale-Free Networks . . . . . . . . . . . . . . . . . . . . . . . . .
11.3.2 Identifying a Power Law . . . . . . . . . . . . . . . . . . . . . .
11.3.3 Clusters and Bridges . . . . . . . . . . . . . . . . . . . . . . . . .
11.4 Weak Ties, Strong Ties and Weighted Connections . . . . . . . . .
11.5 Different Types of Dynamics in Networks Based on Social Interaction. . . . . . . . . . . . . . . . . . . . . . . . . . . .
11.6 Social Contagion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11.7 Adaptive Network Dynamics and the Homophily Principle . . .
11.8 Adaptive Networks and the More Becomes More Principle . . .
11.9 Adaptive Networks and Actual Interaction Over Time . . . . . . .
11.10 Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
287
287
288
290
290
291
291
292
294
294
298
301
306
313
315
319
320
Part IV Analysis Methods for Temporal-Causal Network Models
12 Where Is This Going
Verification by Mathematical Analysis: Monotonicity, Equilibria, and Limit Cycles. . . ... . . . . . . . . .
12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12.2 Verifying a Temporal-Causal Network Model by Mathematical Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12.3 Mathematical Analysis for Equilibrium States: An Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12.4 Mathematical Analysis for Equilibrium States: Scaled Sum Combination Function . . . . . . . . . . . . . . . . . . . . . .
12.5 Mathematical Analysis for Equilibrium States: Hebbian Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12.5.1 Analysis of Increase, Decrease or Equilibrium for Hebbian Learning Without Extinction . . . . . . . . .
12.5.2 Analysis of Increase, Decrease or Equilibrium for Hebbian Learning with Extinction . . . . . . . . . . . .
12.5.3 How Much Activation of Is Needed to Let x Increase? . . . . . . . . . . . . . . . . . . . . . . . . . . .
12.6 Mathematical Analysis for Equilibrium States: Homophily Principle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12.7 Mathematical Analysis for Behaviour Ending up in a Limit Cycle Pattern. . . . . . . . . . . . . . . . . . . . . . . . . . . .
12.8 Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
325
325
326
332
335
338
339
340
342
343
345
349
350
13 What Is Happening
Identifying and Verifying Emergent Patterns. . . . . . . . . . . . . . . . . . . . .
353
13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
353
13.2 Dynamic Properties and Temporal-Causal Network Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
355
13.2.1 A Temporal-Causal Network Model Describing Local Dynamics and Dynamic Properties
Describing Patterns Emerging in Overall Dynamics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
355
13.2.2 Identifying Emergent Dynamic Properties for a Given Model. . . . . . . . . . . . . . . . . . . . . . . . . . .
356
13.2.3 Identifying Dynamic Properties Initially as Requirements for a Model. . . . . . . . . . . . . . . . . . .
357
13.3 Dynamic Properties Versus Real World Dynamics Validation, Monitoring, and Analysis . . . . . . . . . . . . . . . . . . . .
358
13.3.1 Validating Dynamic Properties Against Actual Real World Processes. . . . . . . . . . . . . . . . . . .
359
13.3.2 Validating Dynamic Properties Against Patterns Reported in Literature . . . . . . . . . . . . . . . . . . . . . . . .
360
13.3.3 Monitoring and Analysis of Real World Processes Using Dynamic Properties . . . . . . . . . . . . .
360
13.4 Dynamic Properties Versus Model Dynamics: Verification and Personalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360
13.4.1 Testing, Focusing and Analysis of a Model by Verifying It Against Dynamic Properties . . . . . . .
361
13.4.2 Personalizing Characteristics of a Model Based on Dynamic Properties . . . . . . . . . . . . . . . . . .
361
13.4.3 Validation of a Model Based on Validated Dynamic Properties . . . . . . . . . . . . . . . . . . . . . . . . . .
362
13.5 Conceptual Representations of Dynamic Properties . . . . . . . . .
362
13.6 Numerical-Logical Representations of Dynamic Properties. . . .
367
13.6.1 Numerical Representations of State Relations . . . . . .
368
13.6.2 Using Numerical Representations Within a Dynamic Property Expression . . . . . . . . . . . . . . . . . .
370
13.6.3 Numerical-Logical Representation of a Dynamic Property Expression. . . . . . . . . . . . . . . . . . . . . . . . . .
372
13.7 Types of Dynamic Properties and Their Representations . . . . .
375
13.7.1 Basic State Relation, Achievement, Grounding, Representation, Ordering and Monotonicity Properties. .
375
13.7.2 Maintenance, Peak, Speed, Equilibrium and Limit Cycle Properties . . . . . . . . . . . . . . . . . . . .
380
13.7.3 State Comparison, Trace Comparison and Trace Selection Properties. . . . . . . . . . . . . . . . . .
384
13.8 Examples of Dynamic Properties in Some Case Studies. . . . . .
387
13.9 Automatic Checking of Dynamic Properties . . . . . . . . . . . . . . .
391
13.10 Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
393
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
394
14 Who are You
Identifying Characteristics of Persons, Their Networks and Other Contextual Aspects by
Parameter Estimation and Validation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14.2 Determining Characteristics and the Use of Requirements . . . .
14.2.1 The Parameters in a Temporal-Causal Network Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14.2.2 Direct Measuring of Characteristics of a Situation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14.2.3 Using Requirements to Find Characteristics of a Situation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14.2.4 Using Error Measures for Requirements . . . . . . . . . .
14.3 Description of an Example Model . . . . . . . . . . . . . . . . . . . . . .
14.4 Parameter Tuning by Exhaustive Search. . . . . . . . . . . . . . . . . .
14.5 Parameter Estimation by Gradient Descent . . . . . . . . . . . . . . . .
14.6 Parameter Estimation by Random Gradient Descent . . . . . . . . .
14.7 Parameter Estimation by Simulated Annealing . . . . . . . . . . . . .
14.8 Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
397
397
399
399
400
401
402
404
407
410
414
416
421
422
Part V Philosophical, Societal and Educational Perspectives
15 We Don’t Believe in Ghosts, Do We?
What Is It that Drives Dynamics?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
15.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
15.2 Is Motion of Nonliving Entities Driven by Ghosts? . . . . . . . . .
15.2.1 Zeno About Arrows that Are Moving and Unmoving. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
15.2.2 Adding Anticipatory State Properties to Describe a State: Potentialities. . . . . . . . . . . . . . . .
15.3 Is Motion of Living Entities Driven by Ghosts? . . . . . . . . . . . .
15.3.1 Mental States Driving Motion . . . . . . . . . . . . . . . . . .
15.3.2 Can ‘Things of the Soul’ Move Objects? . . . . . . . . .
15.4 Explaining Changed States by Introducing Potentialities. . . . . .
15.4.1 Potentialities and Their Actualisation as a General Perspective on Dynamics . . . . . . . . . . .
15.4.2 Derivatives as Potentialities for Variables in Dynamical Systems . . . . . . . . . . . . . . . . . . . . . . . .
15.4.3 What Kind of State Properties Are Potentialities? . . .
15.4.4 Summary of Assumptions Underlying Potentialities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
15.5 Potentialities in Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
15.6 What Kind of Property Is a Potentiality: Getting Rid of Ghosts?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
15.6.1 Why Velocities and Derivatives by Themselves Are not Genuine State Properties. . . . . . . . . . . . . . . .
15.6.2 Ghost-like Properties or Temporal Relations Involving Genuine Properties?. . . . . . . . . . . . . . . . . .
15.7 Potentialities for Causal Relations and Transition Systems . . . .
15.7.1 Transition Systems and Causal Relations. . . . . . . . . .
15.7.2 Potentialities for Transition Systems and Causal Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
15.8 Realisers for Potentialities and the Role of Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
15.8.1 Realisers of Mental States in Philosophy of Mind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
15.8.2 Realisers of Potentialities from a More General Perspective. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
15.8.3 Realisers for Derivatives: First-Order Differential Equations . . . . . . . . . . . . . . . . . . . . . . . .
15.9 How to Explain Changed Potentialities. . . . . . . . . . . . . . . . . . .
15.9.1 Introducing Higher-Order Potentialities: Potentialities for Potentialities . . . . . . . . . . . . . . . . . .
15.9.2 Higher-Order Potentialities in Cognitive Models . . . .
15.9.3 Mathematical Formalisation of Higher-Order Potentialities in Calculus . . . . . . . . . . . . . . . . . . . . . .
15.9.4 How to Get Rid of an Infinite Chain of Higher Order Potentialities by Realisers . . . . . . . . . . . . . . . .
15.10 Changed Potentialities Due to Interaction . . . . . . . . . . . . . . . . .
15.10.1 Exchange of Potentialities by Interaction . . . . . . . . . .
15.10.2 The Role of Higher-Order Potentialities in the Exchange of Potentialities . . . . . . . . . . . . . . . .
15.10.3 Higher-Order Potentialities to Characterise Interaction in Physics. . . . . . . . . . .
15.11 Multiple Realisation of Potentialities. . . . . . . . . . . . . . . . . . . . .
15.12 State-Determined Systems and Potentialities . . . . . . . . . . . . . . .
15.13 Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
425
425
428
428
431
432
432
433
434
434
435
436
437
437
439
440
442
444
444
445
446
446
447
448
450
451
452
452
453
454
454
456
457
459
461
463
465
16 Making Smart Applications Smarter
Societal Applicability of Computational Models . . . . . . . . . . . . . . . . . .
16.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
16.2 Multidisciplinarity: The Ingredients . . . . . . . . . . . . . . . . . . . . .
16.3 Combining the Ingredients . . . . . . . . . . . . . . . . . . . . . . . . . . . .
16.4 Coupled Reflective Systems . . . . . . . . . . . . . . . . . . . . . . . . . . .
16.5 Integrative Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
16.6 Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
467
467
469
469
471
472
474
475
17 Multidisciplinary Education
Computational Modelling as the Core of a Multidisciplinary Curriculum . . . . . . .. . . . . . . . . . . . . .
17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
17.2 Overall Structure of the Curriculum . . . . . . . . . . . . . . . . . . . . .
17.3 Computational Modelling Stream . . . . . . . . . . . . . . . . . . . . . . .
17.4 The Human Sciences and Exact Sciences Streams . . . . . . . . . .
17.5 Integration and Projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
17.6 Evaluation and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
477
477
479
481
483
484
484
487
Part VI Network-Oriented Modelling: Discussion
18 On the Use of Network-Oriented Modelling
A Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
18.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
18.2 Network-Oriented Modelling . . . . . . . . . . . . . . . . . . . . . . . . . .
18.3 Genericity of a Network-Oriented Modelling Approach . . . . . .
18.4 Applicability of Network-Oriented Modelling. . . . . . . . . . . . . .
18.5 Finally . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
491
491
491
492
494
496
496
499