Network-Oriented Modeling: Addressing Complexity in Cognitive, Affective, and Social Interactions Jan Treur Table of Contents Part I Network-Oriented Modeling: Introduction 1 Network-Oriented Modelling and Its Conceptual Foundations An Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1 Introduction . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 1.2 Addressing Human Complexity by Separation Assumptions . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 1.3 Addressing Complexity by Interaction in Networks Instead of by Separation . . . . . . . .. . . . . . . . . . . . 1.4 Network-Oriented Modelling . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 1.5 The Dynamic Computational Modelling Perspective. . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 1.6 Network-Oriented Modelling Based on Temporal-Causal Networks . . . . . . . .. . . . . . . . . . . . 1.7 Scope of Applicability and Achievements. . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 1.8 Overview of the Book . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . References. . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 3 3 4 11 14 16 18 22 23 29 2 A Temporal-Causal Network Modeling Approach With Biological, Neurological and Social Processes as Inspiration . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1 Introduction 2.2 Modeling Complex Processes by Temporal-Causal Networks . . . . . . . . . . .. . . . . . . . . . . . 2.3 Exploiting Knowledge About Physical and Biological Mechanisms in Modelling. . . . . . . . . . 2.3.1 Addressing Complexity by Higher Level Models Based on Knowledge from Computer Science . . . . 2.3.2 Addressing Complexity by Higher Level Models Based on Knowledge from Neuroscience. . . . 2.4 Conceptual Representation of a Temporal-Causal Network Model. . . . . . . . . . . . . 2.4.1 Conceptual Representations of a Temporal-Causal Network Model . . . . . . . . . . . . . 2.4.2 More Specific Examples of Conceptual Representations of Temporal-Causal Network Models. . . 2.5 Numerical Representation of a Temporal-Causal Network Model . . . . . .. . . . . . . . . . 2.5.1 The Systematic Transformation from Conceptual to Numerical Representation . . . . . . 2.5.2 Illustration of the Transformation for the Example of Fig. 2.10 . . . . . . . 2.5.3 Illustration of the Modelling Perspective for a Social Contagion Process . . . . . . . . . . 2.6 Standard Combination Functions . . . . . . . . . . . . . . . . . . . . . . . 2.6.1 Basic Standard Combination Functions . . . . . . . . . . . 2.6.2 Building More Complex Standard Combination Functions . . . . . . . . . . . .. . . . . . . . . 2.7 Properties for Combination Functions. . . . . . . . . . . . . . . . . . . . 2.8 Applying Computational Methods to Model Representations . . . . . . . . . . . . . .. 2.9 Applicability of the Modelling Perspective . . . . . . . . . . . . . . . . 2.9.1 The State-Determined System Assumption . . . . . . . . 2.9.2 State-Determined Systems and First-Order Differential Equations . . . . . . . . . . 2.9.3 State-Determined Systems and Modeling Based on Temporal-Causal Networks . . . . 2.10 Modelling Adaptive Processes by Adaptive Temporal-Causal Networks . . . . . . . . . . . . . . . . . 2.11 Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 33 38 41 41 42 43 45 47 56 57 62 64 67 67 70 75 79 83 83 84 86 90 97 98 Part II Emotions All the Way 3 How Emotions Come in Between Everything Emotions Serving as Glue in All Mental and Social Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2 Generating Emotional Responses and Feelings . . . . . . . . . . . . . 3.3 Emotion Regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4 Interaction Between Cognitive and Affective States . . . . . . . . . 3.5 Emotion-Related Valuing in Decision-Making . . . . . . . . . . . . . 3.6 Emotions and Social Contagion . . . . . . . . . . . . . . . . . . . . . . . . 3.7 Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 103 105 109 112 116 117 118 4 How Do You Feel Dreaming Using Internal Simulation to Generate Emotional Dream Episodes. . . . . . . . . . . . . . . . . . . . 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2 Memory Elements, Emotions and Internal Simulation in Dreaming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.3 A Temporal-Causal Network Model Generating Dream Episodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.4 Simulations of Example Dream Scenarios . . . . . . . . . . . . . . . . 4.5 Relations to Neurological Theories and Findings . . . . . . . . . . . 4.6 Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 125 126 128 133 136 137 138 5 Dreaming Your Fear Away Fear Extinction Learning During Dreaming . . . . . . . . . . . . . . . . . . . . . 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2 An Adaptive Temporal-Causal Network Model for Fear Extinction Learning. . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2.1 Conceptual Representation of the Adaptive Network Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2.2 Numerical Representation of the Adaptive Network Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3 Simulations of Fear Extinction Learning in Dream Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.4 Relating the Adaptive Temporal-Causal Network Model to Neurological Theories . . . . . . . . . . . . . . . . . . . . . . . . 5.5 Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 141 142 142 146 148 152 153 154 6 Emotions as a Vehicle for Rationality in Decision Making Experiencing Emotions for Decisions Based on Experience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.2 The Adaptive Temporal-Causal Network Model for Decision Making . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.3 Simulation Results for a Deterministic World. . . . . . . . . . . . . . 6.4 Simulation Results for a Stochastic World . . . . . . . . . . . . . . . . 6.5 Simulation Results for a Changing Stochastic World . . . . . . . . 6.6 Evaluating the Adaptive Temporal-Causal Network Model on Rationality . . . . . . . . . . . . . . . . . . 6.7 Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 157 159 167 171 172 175 178 179 Part III Yourself and the Others 7 From Mirroring to the Emergence of Shared Understanding and Collective Power Biological and Computational Perspectives on the Emergence of Social Phenomena. . . .. . 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.2 Mirror Neuron Activation and Internal Simulation . . . . . . . . . . 7.2.1 The Discovery of Mirror Neurons . . . . . . . . . . . . . . . 7.2.2 Neurons for Control and Self-other Distinction . . . . . 7.2.3 Generating Emotions and Feelings by Internal Simulation: As-if Body Loops . . . . . . . . . . . . . . . . . . 7.2.4 Mirroring Process: Mirror Neuron Activation and Internal Simulation . . . . . . . . . . . . . . . . . . . . . . . 7.2.5 Development of the Discipline Social Neuroscience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.3 The Emergence of Shared Understanding . . . . . . . . . . . . . . . . . 7.3.1 The Emergence of Shared Understanding for External World States . . . . . . . . . . . . . . . . . . . . . 7.3.2 The Emergence of Shared Understanding for Internal Mental States . . . . . . . . . . . . . . . . . . . . . 7.4 The Emergence of Collective Power. . . . . . . . . . . . . . . . . . . . . 7.4.1 The Emergence of Collective Action Based on Mirroring . . . . . . . . . . . . . . . . . . . . . . . . . . 7.4.2 The Role of Feelings and Valuing in the Emergence of Collective Action . . . . . . . . . . . . . . . . 7.5 Integration of External Effects and Internal Processes. . . . . . . . 7.6 Abstraction of Complex Internal Temporal-Causal Network Models . . . . . . . . . . . . . . . . . . . . . . . . . . 7.7 Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 183 185 185 186 187 187 193 194 195 196 198 198 200 201 202 203 205 8 Am I Going to Do This? Is It Me Who Did This? Prior and Retrospective Ownership States for Actions . . . . . . . . . . . . . 8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.2 Neurological Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.3 A Temporal-Causal Network Model for Ownership . . . . . . . . . 8.3.1 Conceptual Representation of the Temporal-Causal Network Model . . . . . . . . . . 8.3.2 Numerical Representation of the Temporal-Causal Network Model . . . . . . . . . . 8.4 Simulation of Example Scenarios . . . . . . . . . . . . . . . . . . . . . . . 8.4.1 Normal Execution and Attribution of an Action . . . . 8.4.2 Vetoing a Prepared Action Due to Unsatisfactory Predicted Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.4.3 Effects of Poor Prediction; Schizophrenia Case . . . . . 8.4.4 Satisfactory Predicted Effects but Unsatisfactory Actual Effects . . . . . . . . . . . . . . . . . . . . 8.4.5 Mirroring Another Person . . . . . . . . . . . . . . . . . . . . . 8.5 Relations to Neurological Findings . . . . . . . . . . . . . . . . . . . . . . 8.6 Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 209 211 213 213 215 220 221 222 224 225 226 227 230 231 9 How Empathic Are You Displaying and Regulating Different Social Response Patterns . . . . . . . . . . . . . . . . . . . . . . . 9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.2 Neurological Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.2.1 Mirror Neurons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.2.2 Control and Self-other Distinction . . . . . . . . . . . . . . . 9.2.3 Emotion Integration . . . . . . . . . . . . . . . . . . . . . . . . . . 9.2.4 Enhanced Sensory Processing Sensitivity and Emotion Regulation . . . . . . . . . . . . . . . . . . . . . . 9.2.5 Empathic Responses . . . . . . . . . . . . . . . . . . . . . . . . . 9.3 The Temporal-Causal Network Model . . . . . . . . . . . . . . . . . . . 9.3.1 Conceptual Representation of the Model . . . . . . . . . . 9.3.2 Numerical Representation of the Temporal-Causal Network Model . . . . . . . . . . 9.4 Types of Social Response Patterns Shown . . . . . . . . . . . . . . . . 9.4.1 Overview of Basic Patterns . . . . . . . . . . . . . . . . . . . . 9.4.2 Oscillatory Patterns: Limit Cycle Behaviour . . . . . . . 9.4.3 Comparison to Empirical Gaze Data . . . . . . . . . . . . . 9.4.4 Interaction of Two Persons Displaying Regulation of Enhanced Sensory Sensitivity . . . . . . . 9.5 Learning Social Responses by an Adaptive Temporal-Causal Network Model . . . . . . . . . . . . . . . . . . . . . . . 9.6 Example Simulations of Learning Processes . . . . . . . . . . . . . . . 9.7 Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 235 237 237 238 239 239 241 243 243 247 252 252 255 256 257 259 260 263 265 10 Are You with Me? Am I with You? Joint Decision Making Processes Involving Emotion-Related Valuing and Mutual Empathic Understanding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.2 Mirroring, Internal Simulation and Emotion-Related Valuing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.3 The Temporal-Causal Network Model . . . . . . . . . . . . . . . . . . . 10.3.1 Conceptual Representation of the Temporal-Causal Network Model . . . . . . . . . . 10.3.2 Numerical Representation of the Temporal-Causal Network Model . . . . . . . . . . 10.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.5 Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271 271 272 274 275 277 281 283 284 11 Changing Yourself, Changing the Other, or Changing Your Connection Integrative Dynamics of States and Interactions in a Social Context . . . . . . . . . . . . . . . . 11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2 Small World Networks and Random Networks. . . . . . . . . . . . . 11.2.1 Small World Networks . . . . . . . . . . . . . . . . . . . . . . . 11.2.2 Random Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.3 Distribution of Node Degrees and Scale-Free Networks . . . . . . 11.3.1 Scale-Free Networks . . . . . . . . . . . . . . . . . . . . . . . . . 11.3.2 Identifying a Power Law . . . . . . . . . . . . . . . . . . . . . . 11.3.3 Clusters and Bridges . . . . . . . . . . . . . . . . . . . . . . . . . 11.4 Weak Ties, Strong Ties and Weighted Connections . . . . . . . . . 11.5 Different Types of Dynamics in Networks Based on Social Interaction. . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.6 Social Contagion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.7 Adaptive Network Dynamics and the Homophily Principle . . . 11.8 Adaptive Networks and the More Becomes More Principle . . . 11.9 Adaptive Networks and Actual Interaction Over Time . . . . . . . 11.10 Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287 287 288 290 290 291 291 292 294 294 298 301 306 313 315 319 320 Part IV Analysis Methods for Temporal-Causal Network Models 12 Where Is This Going Verification by Mathematical Analysis: Monotonicity, Equilibria, and Limit Cycles. . . ... . . . . . . . . . 12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.2 Verifying a Temporal-Causal Network Model by Mathematical Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.3 Mathematical Analysis for Equilibrium States: An Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.4 Mathematical Analysis for Equilibrium States: Scaled Sum Combination Function . . . . . . . . . . . . . . . . . . . . . . 12.5 Mathematical Analysis for Equilibrium States: Hebbian Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.5.1 Analysis of Increase, Decrease or Equilibrium for Hebbian Learning Without Extinction . . . . . . . . . 12.5.2 Analysis of Increase, Decrease or Equilibrium for Hebbian Learning with Extinction . . . . . . . . . . . . 12.5.3 How Much Activation of Is Needed to Let x Increase? . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.6 Mathematical Analysis for Equilibrium States: Homophily Principle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.7 Mathematical Analysis for Behaviour Ending up in a Limit Cycle Pattern. . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.8 Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325 325 326 332 335 338 339 340 342 343 345 349 350 13 What Is Happening Identifying and Verifying Emergent Patterns. . . . . . . . . . . . . . . . . . . . . 353 13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353 13.2 Dynamic Properties and Temporal-Causal Network Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355 13.2.1 A Temporal-Causal Network Model Describing Local Dynamics and Dynamic Properties Describing Patterns Emerging in Overall Dynamics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355 13.2.2 Identifying Emergent Dynamic Properties for a Given Model. . . . . . . . . . . . . . . . . . . . . . . . . . . 356 13.2.3 Identifying Dynamic Properties Initially as Requirements for a Model. . . . . . . . . . . . . . . . . . . 357 13.3 Dynamic Properties Versus Real World Dynamics Validation, Monitoring, and Analysis . . . . . . . . . . . . . . . . . . . . 358 13.3.1 Validating Dynamic Properties Against Actual Real World Processes. . . . . . . . . . . . . . . . . . . 359 13.3.2 Validating Dynamic Properties Against Patterns Reported in Literature . . . . . . . . . . . . . . . . . . . . . . . . 360 13.3.3 Monitoring and Analysis of Real World Processes Using Dynamic Properties . . . . . . . . . . . . . 360 13.4 Dynamic Properties Versus Model Dynamics: Verification and Personalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360 13.4.1 Testing, Focusing and Analysis of a Model by Verifying It Against Dynamic Properties . . . . . . . 361 13.4.2 Personalizing Characteristics of a Model Based on Dynamic Properties . . . . . . . . . . . . . . . . . . 361 13.4.3 Validation of a Model Based on Validated Dynamic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . 362 13.5 Conceptual Representations of Dynamic Properties . . . . . . . . . 362 13.6 Numerical-Logical Representations of Dynamic Properties. . . . 367 13.6.1 Numerical Representations of State Relations . . . . . . 368 13.6.2 Using Numerical Representations Within a Dynamic Property Expression . . . . . . . . . . . . . . . . . . 370 13.6.3 Numerical-Logical Representation of a Dynamic Property Expression. . . . . . . . . . . . . . . . . . . . . . . . . . 372 13.7 Types of Dynamic Properties and Their Representations . . . . . 375 13.7.1 Basic State Relation, Achievement, Grounding, Representation, Ordering and Monotonicity Properties. . 375 13.7.2 Maintenance, Peak, Speed, Equilibrium and Limit Cycle Properties . . . . . . . . . . . . . . . . . . . . 380 13.7.3 State Comparison, Trace Comparison and Trace Selection Properties. . . . . . . . . . . . . . . . . . 384 13.8 Examples of Dynamic Properties in Some Case Studies. . . . . . 387 13.9 Automatic Checking of Dynamic Properties . . . . . . . . . . . . . . . 391 13.10 Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394 14 Who are You Identifying Characteristics of Persons, Their Networks and Other Contextual Aspects by Parameter Estimation and Validation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.2 Determining Characteristics and the Use of Requirements . . . . 14.2.1 The Parameters in a Temporal-Causal Network Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.2.2 Direct Measuring of Characteristics of a Situation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.2.3 Using Requirements to Find Characteristics of a Situation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.2.4 Using Error Measures for Requirements . . . . . . . . . . 14.3 Description of an Example Model . . . . . . . . . . . . . . . . . . . . . . 14.4 Parameter Tuning by Exhaustive Search. . . . . . . . . . . . . . . . . . 14.5 Parameter Estimation by Gradient Descent . . . . . . . . . . . . . . . . 14.6 Parameter Estimation by Random Gradient Descent . . . . . . . . . 14.7 Parameter Estimation by Simulated Annealing . . . . . . . . . . . . . 14.8 Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397 397 399 399 400 401 402 404 407 410 414 416 421 422 Part V Philosophical, Societal and Educational Perspectives 15 We Don’t Believe in Ghosts, Do We? What Is It that Drives Dynamics?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.2 Is Motion of Nonliving Entities Driven by Ghosts? . . . . . . . . . 15.2.1 Zeno About Arrows that Are Moving and Unmoving. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.2.2 Adding Anticipatory State Properties to Describe a State: Potentialities. . . . . . . . . . . . . . . . 15.3 Is Motion of Living Entities Driven by Ghosts? . . . . . . . . . . . . 15.3.1 Mental States Driving Motion . . . . . . . . . . . . . . . . . . 15.3.2 Can ‘Things of the Soul’ Move Objects? . . . . . . . . . 15.4 Explaining Changed States by Introducing Potentialities. . . . . . 15.4.1 Potentialities and Their Actualisation as a General Perspective on Dynamics . . . . . . . . . . . 15.4.2 Derivatives as Potentialities for Variables in Dynamical Systems . . . . . . . . . . . . . . . . . . . . . . . . 15.4.3 What Kind of State Properties Are Potentialities? . . . 15.4.4 Summary of Assumptions Underlying Potentialities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.5 Potentialities in Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.6 What Kind of Property Is a Potentiality: Getting Rid of Ghosts?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.6.1 Why Velocities and Derivatives by Themselves Are not Genuine State Properties. . . . . . . . . . . . . . . . 15.6.2 Ghost-like Properties or Temporal Relations Involving Genuine Properties?. . . . . . . . . . . . . . . . . . 15.7 Potentialities for Causal Relations and Transition Systems . . . . 15.7.1 Transition Systems and Causal Relations. . . . . . . . . . 15.7.2 Potentialities for Transition Systems and Causal Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.8 Realisers for Potentialities and the Role of Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.8.1 Realisers of Mental States in Philosophy of Mind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.8.2 Realisers of Potentialities from a More General Perspective. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.8.3 Realisers for Derivatives: First-Order Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . 15.9 How to Explain Changed Potentialities. . . . . . . . . . . . . . . . . . . 15.9.1 Introducing Higher-Order Potentialities: Potentialities for Potentialities . . . . . . . . . . . . . . . . . . 15.9.2 Higher-Order Potentialities in Cognitive Models . . . . 15.9.3 Mathematical Formalisation of Higher-Order Potentialities in Calculus . . . . . . . . . . . . . . . . . . . . . . 15.9.4 How to Get Rid of an Infinite Chain of Higher Order Potentialities by Realisers . . . . . . . . . . . . . . . . 15.10 Changed Potentialities Due to Interaction . . . . . . . . . . . . . . . . . 15.10.1 Exchange of Potentialities by Interaction . . . . . . . . . . 15.10.2 The Role of Higher-Order Potentialities in the Exchange of Potentialities . . . . . . . . . . . . . . . . 15.10.3 Higher-Order Potentialities to Characterise Interaction in Physics. . . . . . . . . . . 15.11 Multiple Realisation of Potentialities. . . . . . . . . . . . . . . . . . . . . 15.12 State-Determined Systems and Potentialities . . . . . . . . . . . . . . . 15.13 Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425 425 428 428 431 432 432 433 434 434 435 436 437 437 439 440 442 444 444 445 446 446 447 448 450 451 452 452 453 454 454 456 457 459 461 463 465 16 Making Smart Applications Smarter Societal Applicability of Computational Models . . . . . . . . . . . . . . . . . . 16.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.2 Multidisciplinarity: The Ingredients . . . . . . . . . . . . . . . . . . . . . 16.3 Combining the Ingredients . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.4 Coupled Reflective Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.5 Integrative Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.6 Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467 467 469 469 471 472 474 475 17 Multidisciplinary Education Computational Modelling as the Core of a Multidisciplinary Curriculum . . . . . . .. . . . . . . . . . . . . . 17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17.2 Overall Structure of the Curriculum . . . . . . . . . . . . . . . . . . . . . 17.3 Computational Modelling Stream . . . . . . . . . . . . . . . . . . . . . . . 17.4 The Human Sciences and Exact Sciences Streams . . . . . . . . . . 17.5 Integration and Projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17.6 Evaluation and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477 477 479 481 483 484 484 487 Part VI Network-Oriented Modelling: Discussion 18 On the Use of Network-Oriented Modelling A Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18.2 Network-Oriented Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . 18.3 Genericity of a Network-Oriented Modelling Approach . . . . . . 18.4 Applicability of Network-Oriented Modelling. . . . . . . . . . . . . . 18.5 Finally . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491 491 491 492 494 496 496 499
© Copyright 2026 Paperzz