nuclear structure with heavy-ion transfer reactions

NUCLEAR STRUCTURE WITH HEAVY-ION
TRANSFER REACTIONS
G. Morrison
To cite this version:
G. Morrison.
NUCLEAR STRUCTURE WITH HEAVY-ION TRANSFER REACTIONS. Journal de Physique Colloques, 1972, 33 (C5), pp.C5-111-C5-126.
<10.1051/jphyscol:1972509>. <jpa-00215111>
HAL Id: jpa-00215111
https://hal.archives-ouvertes.fr/jpa-00215111
Submitted on 1 Jan 1972
HAL is a multi-disciplinary open access
archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.
JOURNAL DE PHYSIQUE
C o l l o q u e C 5 , supplement au n o 8-9, Tome 33, AoGt-Septembrc
1972, page C 5 - i l l
G.C. MORRISON
Argonne N a t i o n a l L a b o r a t o r y , U.S,A.,and
C.E.N.
S a c l a y , France.
A b s t r a c t . - A t t h e p r e s e n t t i m e t h e s t u d y of n u c l e a r s t r u c t u r e w i t h heavy-ion t r a n s f e r rea c t i o n s i s t h e f o c u s of i n c r e a s e d a t t e n t i o n , b o t h e x p e r i m e n t a l and t h e o r e t i c a l . The g e n e r a l
f e a t u r e s e n c o u n t e r e d i n t h e m a j o r i t y of s u c h r e a c t i o n s a r e surveyed i n terms of t h e w e l l known s e m i - c l a s s i c a l d e s c r i p t i o n . T h i s i s followed by a d e s c r i p t i o n of c u r r e n t DWBA app r o a c h e s and t h e i r u s e t o e x t r a c t q u a n t i t a t i v e s p e c t r o s c o p i c i n f o r m a t i o n from s i n g l e and
multi-nucleon t r a n s f e r r e a c t i o n s . F i n a l l y t h e s t r i k i n g s e l e c t i v i t y i n l e v e l s e x c i t e d and
o t h e r f e a t u r e s revealed i n recent experimental r e s u l t s a t high energies a r e discussed.
-
R6sum6,
A l ' h e u r e a c t u e l l e 1 1 6 t u d e de l a s t r u c t u r e n u c l s a i r e 3 l ' a i d e des r i a c t i o n s de
t r a n s f e r t p a r i o n s l o u r d s e s t un c e n t r e d ' i n t i r z t c r o i s s a n t a u s s i b i e n s u r l e p l a n e x p i r i men,tal que t h s o r i q u e . Les a s p e c t s gdn6raux r e n c o n t r h s dans l a m a j o r i t i d e c e s r i a c t i o n s s o n t
e x p o s i s e n termes d e l a d e s c r i p t i o n s e m i - c l a s s i q u e b i e n connue. S u i t une d e s c r i p t i o n d e s app r o c h e s c o u r a n t e s en DWBA e t d e l e u r u t i l i s a t i o n pour e x t r a i r e l e s i n f o r m a t i o n s s p e c t r o s c o p i q u e s q u a n t i t a t i v e s 1 p a r t i r d e s r g a c t i o n s 1 un ou p l u s i e u r s nucl8ons. Finalement l a s 6 l e c t i v i t i f r a p p a n t e dans l c s n i v e a u x e x c i t i s e t l e s a u t r e s a s p e c t s r i v 6 l i s p a r l e s r s s u l t a t s
expirimentaux 3 haute 6nergie sont d i s c u t e s .
I
. Introduction.
-
During t h e p a s t few y e a r s an
i n d i c a t i o n b o t h of p r e s e n t t r e n d s and t h e d i r e c -
i n c r e a s i n g f r a c t i o n of n u c l e a r r e a c t i o n s t u d i e s h a s
t i o n of f u t u r e developments. But by way of i n t r o -
i n v o l v e d t h e u s e of heavy i o n s a s p r o j e c t i l e s . Such
d u c t i o n i t would seem a p p r o p r i a t e t o b r i e f l y s u r -
i n v e s t i g a t i o n s o f heavy-ion
vey some f e a t u r e s which a r e e n c o u n t e r e d i n t h e ma-
t r a n s f e r r e a c t i o n s have
been s t i m u l a t e d by t h r e e r e c e n t developments : ( a )
j o r i t y of heavy-ion
t h e a v a i l a b i l i t y o f a v a r i e t y of h i g h - q u a l i t y
be based on t h e well-known s e m i - c l a s s i c a l
[I:,
r e a c t i o n s , The d i s c u s s i o n w i l l
descrip-
heavy-ion beams of s u f f i c i e n r e n e r g y and i n t e n s i t y ,
tion
t o g e t h e r w i t h improved p a r t i c l e - i d e n t i f i c a t i o n
a c t i o n s . T h i s d e s c r i p t i o n has t h e a d v a n t a g e s of
and
d a t a - h a n d l i n g systems ; (b) t h e i n t e n s i v e work on
o r i g i n a l l y developed f o r sub-Coulomb
re-
b e i n g t r a n s p a r e n t , of i n d i c a t i n g t h e main f e a t u r e s
r e a c t i o n t h e o r i e s and codes based on s e m i c l a s s i c a l
of t h e r e a c t i o n mechanism, and o f b e i n g a p p l i c a b l e
and d i f f r a c t i o n models a s w e l l a s on t h e DWBA, and
even a t e n e r g i e s above t h e Coulomb b a r r i e r .
( c ) t h e i n t e r e s t i n few-nucleon c o r r e l a t i o n s , espec i a l l y t h e p o s s i b i l i t y o f q u a r t e t t i n g phenomena i n
fp-shell nuclei.
2 . S e m i - c l a s s i c a l D z s c r i p t i o n . - a ) Cenemz
twes.
-
feu-
Because o f t h e i r l a r g e c h a r g e p r o d u c t
Z t.Z 2 and s m a l l v e l o c i t y v , heavy i o n r e a c t i o n s a r e
-
The u s e o f complex n u c l e i a s p r o j e c t i l e s l e a d s t o
c h a r a c t e r i z e d by l a r g e v a l u e s of t h e Sommerfeld
b o t h q u a l i t a t i v e and even q u a n t i t a t i v e d i f f e r e n c e s
p a r a m e t e r ri = z 1 z 2 e 2 / 6 v = b/2K, where b i s t h e
from t h e f a m i l i a r t r a n s f e r r e a c t i o n s produced by
d i s t a n c e o f c l o s e s t approach i n a head-on
l i g h t i o n s , More than i n l i g h t i o n t r a n s f e r t h e
s i o n . A l a r g e n i m p l i e s a small. X and hence a w e l l
colli-
s t r u c t u r e o f t h e p r o j e c t i l e and t h e dynamics of t h e
localized Rutherford t r a j e c t o r y f o r the s c a t t e r i n g
reaction a r e interlinked.Thus the s p e c i f i c features
process.
o f t h e r e a c t i o n p r o c e s s have t o b e w e l l u n d e r s t o o d
n s m a l l . ) For a f i x e d s c a t t e r i n g a n g l e 8, t h e d i s -
t o hope t o r e a c h t h e l e v e l where n u c l e a r s t r u c t u r e
t a n c e of c l o s e s t a p p r o a c h i n such a t r a j e c t o r y
p r o p e r t i e s c a n be d e t e r m i n e d . Much o f t h e i n i t i a l
( F i g . 1 ) i s g i v e n by :
( o f course,
x
may
be smalleven for
s t u d i e s have i n v o l v e d t h e t r a n s f e r of s i n g l e nuc l e o n s whereby t h e n o v e l f e a t u r e s o f heavy-ion
re-
a c t i o n s may b e d e t e r m i n e d by comparison w i t h c o r responding l i g h t-ion reactions.
I n t h i s p a p e r , I c a n n o t of n e c e s s i t y r e v i e w ex-
Rmin
=
n
(1 +
CSC
1
8)
2
( 1 + CSE
=
f
8 ) . (1)
2Ec.m.
This r e l a t i o n a l s o gives the distance of c l o s e s t
approach i n t h e i n i t i a l and f i n a l t r a j e c t o r i e s , R;
t e n s i v e l y t h e f i e l d of heavy-ion r e a c t i o n s , b u t
and Rf f o r a t r a n s f e r r e a c t i o n a t a n a n g l e 8.
r a t h e r s h a l l c o v e r a few t o p i c s i n some d e t a i l a s an
Semi-c-assically t h e r e a c t i o n w i l l o n l y t a k e p l a c e
Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1972509
G.C. MORRISON
which the a n g u l a r d i s t r i b u t i o n s peak is mainly determined by the e l a s t i c s c a t t e r i n g b e f o r e and
a f t e r the t r a n s f e r , even f o r 2 t r a n s f e r o t h e r than
optimum.
The matching requirements on t h e ingoing and
outgoing o r b i t s i n coordinate o r a n g u l a r momentum
space lead t o an optimum Q value [2]
f o r the t r a n s -
f e r r e a c t i o n . The value can be found from the semic l a s s i c a l condition f o r an undisturbed t r a j e c t o r y
a t the n u c l e a r s u r f a c e , i . e .
2 Ref.
and ROi
Fig. 1.
-
2
BE
(2
Ograzing),
Hence :
-2.
1
1 1
C l a s s i c a l Rutherford t r a j e c t o r y .
Bi
( 1 + csc - 8 . ) =
2 1
2Ec.m.
with appreciable probability i f t h e i r difference
does n o t exceed t h e o r d e r of A.
The f u r t h e r c h a r a c t e r i s t i c f e a t u r e of the heavy
ion r e a c t i o n i s t h e s t r o n g absorption a t small
which f o r €Ii
= 0
f
leads t o an optimum r e a c t i o n Q
value :
i n t e r - n u c l e a r d i s t a n c e s . A s the overlap between the
two n u c l e i i n c r e a s e s the p r o b a b i l i t y f o r t r a n s f e r
i n c r e a s e s . However, i f the minimum d i s t a n c e becomes
s m a l l e r than a c e r t a i n r a d i u s - t h e s t r o n g i n t e r a c t i o n r a d i u s , Ro
-
t h e p r o b a b i l i t y f o r a d i r e c t re-
For e n e r g i e s below the Coulomb b a r r i e r ,
a c t i o n decreases d r a s t i c a l l y and the incoming f l u x
8. = 8 = 180°, and the matching condition i s inde1
f
pendent of P t r a n s f e r ; above t h e b a r r i e r , Q i = O f
is absorbed i n t o a compound nucleus. Thus the s t r o n g
implies Li # Lf (equ. 2) and hence t h e c a l c u l a t e d
a b s o r p t i o n optimizes the t r a n s f e r r e a c t i o n t o t r a -
Qopt d e s c r i b e s a p a r t i c u l a r L
j e c t o r i e s matched a t t h e n u c l e a r s u r f a c e .
The l o c a l i z a t i o n i n coordinate space has an equiva l e n t l o c a l i z a t i o n i n angular momentum space
-
which
has the advantage t h a t t h e angular momentum t r a n s f e r
I
-
I.
= L~
L
DeviOP t
f
a t i o n s from the optimum Q value r e s u l t i n a de-
crease i n t h e t r a n s f e r c r o s s s e c t i o n . However, the
heavy-ion
r e a c t i o n i s c h a r a c t e r i z e d by a s e v e r i t y
of Q dependence not found i n l i g h t - i o n r e a c t i o n s .
is made e x p l i c i t . Associated with a p a r t i c u l a r t r a -
The r e a c t i o n i s e i t h e r a t t e n u a t e d by the Coulomb
j e c t o r y i s a w e l l defined angular momentum L where :
b a r r i e r (Q
) o r is forced t o take p l a c e f a r
OP t
out with l i t t l e overlap (Q
Q
) The semi-clasOP t
s i c a l c o n s i d e r a t i o n s can a l s o be extended t o o b t a i n
Q
.
the optimum Q value f o r o t h e r .P t r a n s f e r s - o r t h e
Because of t h e s h o r t wavelength ?C of t h e heavy-ion,
causing both l a r g e L values and rapid changes i n
barrier penetrability,
only a narrow band of L v a l -
ues marks the n u c l e a r s u r f a c e . For t h e t r a n s f e r rea c t i o n t o proceed s t r o n g l y , the few values of L
a s s o c i a t e d with t h e n u c l e a r s u r f a c e i n the ingoing
optimum k t r a n s f e r f o r a p a r t i c u l a r Q value. However, f o r % ' c
kept,
t h e optimum c r o s s s e c t i o n s
a r e smaller i n magnitude and t h e i r dependence on Q
value i s l e s s sharp.
The expression f o r Qopt
(equ. 4) a l s o d i s t i n -
guishes t h e s p e c i f i c t r a n s f e r process which occurs
and outgoing channels must be matched a p p r o p r i a t e l y
(Fig. 2). For neutron t r a n s f e r o r t h e t r a n s f e r o f
-
which d e f i n e s an optimum a n g u l a r momentum t r a n s f e r
charge between n u c l e i w i t h s i m i l a r charges,
9,
=
l~~ - ~ ~ I t1 can
.
a l s o be understood t h a t , s i n c e
the momentum t r a n s f e r t o t h e t a r g e t is much l e s s
Qopt
2
0 . For n u c l e i w i t h d i f f e r e n t charges, t h e
than t h e momentum of the heavy-ion p r o j e c t i l e ( a t
i s negative o r p o s i t i v e , depending on
s i g n of Q
OP t
whether charge is t r a n s f e r r e d i n a s t r i p p i n g o r a
l e a s t f o r few nucleons t r a n s f e r r e d ) , t h e a n g l e a t
pick-up r e a c t i o n . Since t h e Q values of mcst heavy-
HEAVY-ION TRANSFER REACTIONS
F i g . 2.
-
Q dependence f o r d i f f e r e n t
transfer reactions.
ion reactions a r e negative, stripping reactions a r e
strongly favored. Semi-classically
d i s t r i b u t i o n around Q
t h e w i d t h of t h e
a l s o depends on t h e t y p e of
opt
t r a n s f e r reaction, being l e a s t f o r neutron t r a n s f e r
and low i n c i d e n t e n e r g i e s .
b) Comparison w i t h experiment. - The v a l i d i t y of
the foregoing semi-classical
c o n s i d e r a t i o n s may b e
e x e m p l i f i e d w i t h r e s u l t s taken from a s u r v e y [3] of
lp t r a n s f e r induced by 160 p r o j e c t i l e s i n t h e f p
s h e l l . For e n e r g i e s above t h e Coulomb b a r r i e r
(Q &
Fig. 3 . - 4 8 ~ a ( 1 6 01, 5 ~4) 9 ~ ca n g u l a r d i s t r i b u t i o n
a t Elab = 42, 48 and 56 MeV f o r t r a n s i t i o n s t o
t h e 712- ground s t a t e and t h e l o w e s t 312- e x c i t e d
s t a t e . The L v a l u e s d e n o t e t h e t o t a l a n g u l a r
momentum t r a n s f e r . The s o l i d c u r v e s a r e f i n i t e range DWBA c a l c u l a t i o n s .
1 5 ) , one o b s e r v e s t h e c h a r a c t e r i s t i c b e l l -
shaped a n g u l a r d i s t r i b u t i o n s shown i n f i g u r e 3.
T h e i r s i m p l e shape h a s a n a t u r a l i n t e r p r e t a t i o n
based on t h e c l a s s i c a l r e l a t i o n ( I ) . The t r a n s f e r
c r o s s s e c t i o n i n c r e a s e s w i t h a n g l e because of t h e
i n c r e a s i n g o v e r l a p between t h e two n u c l e i , r e a c h e s
a maximum a t an a n g l e
-
the grazing angle
-
which
d e f i n e s an i n t e r a c t i o n r a d i u s , Ro f o r t h e c o n t a c t
c o l l i s i o n , then f a l l s a t backward a n g l e s a s absorpt i o n p r o c e s s predominate o v e r t h e s i m p l e t r a n s f e r
p r o c e s s . Moreover, t h e g r a z i n g a n g l e i s found t o be
r e l a t i v e l y i n s e n s i t i v e t o t r a n s f e r r e d .t.
Equation ( I )
a l s o p r e d i c t s thar the t r a n s f e r re-
a c t i o n should peak a t more backward a n g l e s f o r
l o v e r bombarding e n e r g i e s , more n c g a t i v e Q v a l u e s ,
and i n c r e a s e d Z of t h e t a r g e t - a s i s indeed found.
For E
Q
VALUE,
MeV
d EB, t h e g r a z i n g a n g l e i s 180°, a s i t u a -
c.m.
t i o n c h a r a c t e r i s t i c of t h e sub-Coulomb
domain. Kela-
t i o n ( I ) a l s o implies f o r the t r a n s f e r reaction the
e q u i v a l e n c e o f e x c i t a t i o n f u n c t i o n s and a n g u l a r d i s t r i b u t i o n s ; i n b o t h c a s e s t h e peak i n t h e c r o s s
section defines R
.
The s i n g l e n u c l e o n t r a n s f e r d a t a a l s o d e m o n s t r a t e
F i g . 4 . - Experimental peak c r o s s s e c t i o n s d i v i d e d
by t h e c o r r e s p o n d i n g ( 3 ~ e , d ) s p e c t r o s c o p i c f a c t o r s
f o r t h e f 7 / 2 ground s t a t e and f c r prominent ~ 3 1 2
s t a t e s . 'The s o l i d c u r v e s a r e DlJM peak c r o s s
s e c t i o n s ( m u l t i p l i e d by a n o v e r a l l n o r m a l i z a t i o n
f a c t o r N = 1.5).
C5-i 14
G .C.
MORRISON
t h e s e v e r e e f f e c t o f Q v a l u e on t h e magnitude of
t h e peak c r o s s - s e c t i o n .
This i s displayed i n a p l o t
o f t h e "reduced" peak c r o s s s e c t i o n s - t h e e x p e r i m e n t a l v a l u e s d i v i d e d by t h e p r o t o n s p e c t r o s c o p i c
s t r e n g t h (25 + 1 ) ~ ' s from ( 3He,d) e x p e r i m e n t s - a s
a f u n c t i o n o f t h e Q v a l u e ( F i g . 4 ) . The optimum Q
v a l u e demonstrated i n t h i s way i s a p p r o x i m a t e l y
?, - 2.9 MeV and
OP t
m e c r o s s s e c t i o n f o r low II t r a n s f e r i s
t h a t given by equ. 4 , namely Q
II
I.
OP t
a l s o s e e n t o b e more r a p i d l y a f f e c t e d a s Q d e v i a t e s
-
from t h e optimum v a l u e
a consequence of t h e
t i g h t e r a n g u l a r m o m e n t u ~ m a t c h i n gr e s t r i c t i o n s .
Such a Q window r e p r e s e n t s b o t h an a d v a n t a g e and
d i s a d v a n t a g e f o r t h e heavy-ion
reaction. I t has the
obvious advantage of any window e f f e c t f o r t h e f a v o r e d r e g i o n of e x c i t a t i o n , b u t t h e d i s a d v a n t a g e
that Q
"t
may be such a s t o s e v e r e l y l i m i t t h e range
of e x c ~ t a t i o ne n e r g i e s . However, t h e wide v a r i e t y of
heavy-ion p r o j e c t i l e s now a v a i l a b l e f a c i l i t a t e s t h e
s e l e c t i o n of p a r t i c u l a r e x c i t a t i o n e n e r g i e s . F i g u r e
5 shows t h e Ip pick-up r e a c t i o n on 4 0 ~ ai n i t i a t e d by
two d i f f e r e n t p r o j e c t i l e s . F o r t h e ( 1 8 0 , 1 9 F ) and
( I 5 ~ , l 6 0 ) r e a c t i o n s t h e optimum Q v a l u e s a r e + 2 . 3
and + 3.0 MeV, r e s p e c t i v e l y . Thus Q
f a l l s well
OP t
beyond t h e ground s t a t e i n t h e former r e a c t i o n and
a t about E
=
0 . 8 MeV i n t h e l a t t e r . The e f f e c t s on
t h e Q window a r e o b v i o u s .
The s y s t e m a t i c f e a t u r e s a s have been p r e s e n t e d
h e r e have been found f o r a v a r i e t y of heavy-ion r e a c t i o n s on medium t o heavy n u c l e i f o r e n e r g i e s a t
and above t h e Coulomb b a r r i e r (n >> I ) .
Thus t h e i r
c o n s i s t e n t e x p l a n a t i o n w i t h a s e m i - c l a s s i c a l des c r i p t i o n serves t o confirm t h e i r i n t e r p r e t a t i o n a s
a direct reaction
-
even f o r t h o s e r e a c t i o n s i n -
v o l v i n g t h e t r a n s f e r of s e v e r a l n u c l e o n s , where a
d i r e c t comparison w i t h l i g h t i o n r e a c t i o n s i s n o t
p o s s i b l e . However, e v i d e n c e now e x i s t s [3]
simple semi-classical
that the
p i c t u r e based on R u t h e r f o r d
t r a j e c t o r i e s appears inadequate t o i n t e r p r e t "interaction radii" etc.
-
particularly for reactions in-
F i g . 5. - Energy s p e c t r a of 3 9 p~o p u l a t e d in two
d i f f e r e n t p r o t o n pick-up r e a c t i o n s on 4 0 ~ a .
3 . DWBA A n a l y s i s . - A l l c u r r e n t a p p r o a c h e s t o t h e
e x t r a c t i o n o f s p e c t r o s c o p i c i n f o r m a t i o n from heavy
i o n t r a n s f e r r e a c t i o n s a r e based on o r d e r i v e from
DWBA a n a l y s i s . Although such a framework i s w e l l
a c c e p t e d f o r l i g h t i o n s , i t s a p p l i c a t i o n t o heavy
i o n s r a i s e s c o n s i d e r a b l e problems i n p r a c t i c e (and
in principle).
These p r i m a r i l y a r i s e from t h e
need t o t r e a t t h e f i n i t e e x t e n s i o n of t h e heavy
ion
which makes d i f f i c u l t b o t h t h e c o r r e c t t r e a t -
ment of t h e k i n e m a t i c s and t h e complete d e s c r i p t i o n
of t h e form f a c t o r .
F u r t h e r d i s c u s s i o n r e q u i r e s a b r i e f s k e t c h of t h e
v o l v i n g more than one n u c l e o n t r a n s f e r . Thus t h e
DWBA formalism. Let u s c o n s i d e r a t r a n s f e r r e a c t i o n
f o r e g o i n g d e s c r i p t i o n i s mainly u s e f u l a s a f i r s t
A(a,b)B, where a = b
A detailed
i n t e r p r e t a t i oonf the angu-
+ x and B
=
lar d i s t r i b u t i o n and t h e e x t r a c t i o n o f q u a n t i t a t i v e
r e a c t i o n ( F i g . 6),
s p e c t r o s c o p i c i n f o r m a t i o n r e q u i r e a complete and
ten i n the post approximation :
a c c u r a t e t r e a t m e n t of t h e n u c l e a r d i s t o r t i o n s . Such
an approach i s c o n t a i n e d i n t h e DWBA a n a l y s i s .
a + x. R e f e r r i n g
t o t h e f a m i l i a r " t r i a n g l e " diagram f o r a t r a n s f e r
t h e DWBA a m p l i t u d e can be w r i t -
H E 4 W-ION TRRNSFER REACT IONS
C 5 - i 19
t h a t the t r a n s f e r r e d p a r t i c l e i s on the s u r f a c e of
a, t h i s approach [2]
permits a r e d e f i n i n g of t h e
r e l a t i v e c o o r d i n a t e s i n the i n i t i a l and f i n a l chann e l , namely :
This expression e x p l i c i t l y r e v e a l s the i n t e r l i n k e d
dependence on the coordinates of the system. Since
f o r heavy ions the s i m p l i f y i n g zero-range approximat i o n ( r x b = 0) i s c l e a r l y i n j u s t i f i e d , t h e evaluat i o n of the DWBA t r a n s i t i o n amplitude is formidable.
-f
The c o r r e c t treatment of t h e kinematics r e q u i r e s
where r i s t h e d i s t a n c e between t h e two cores.
e i t h e r the c a l c u l a t i o n of the f u l l six-dimensional
While a n a l y s i s i n v o l v i n g the use of these "scaling"
i n t e g r a l o r i t s reduction t o two three-dimensional
f a c t o r s has been mainly a t e n e r g i e s about t h e
i n t e g r a l s by reasonable approximations wich permit
Coulomb b a r r i e r , t h e approach would appear t o o f f e r
a s e p a r a t i o n of v a r i a b l e s .
wider a p p l i c a b i l i t y . I t a l s o l e a d s t o an e x p r e s s i o n
which i n c l u d e s r e c o i l c o r r e c t i o n s ( t h e
OP t
term zfZf/ziZi i n equ. 4 being m u l t i p l i e d by ulv).
for Q
F i n a l l y t h e r e now e x i s t various DWBA codes [7]
which perform the f u l l six-dimensional i n t e g r a l
(equ. 5). Their wide spread a p p l i c a b i l i t y i s l i m i t e d by the s i z e of the computer r e q u i r e d and by
the time involved i n t h e c a l c u l a t i o n
-
t h e i r use
becomes u n f e a s i b l e f o r e l a s t i c channels involving
Fig. 6 .
a l a r g e number of p a r t i a l waves (>50-80). Neverthe-
- Relative
coordinate system f o r
transfer reaction.
l e s s , t h e i r e x i s t e n c e i s comforting, p a r t i c u l a r l y
i n view of the need t o t h e t e s t the r e l i a b i l i t y of
A common approximation i s the n e g l e c t of so-called
r e c o i l terms, which assumes t h a t the mass of the
t r a n s f e r r e d p a r t i c l e i s small compared t o t h e cores
A and b , and hence t h a t a and b have t h e same cent r o i d . This approach has been used by Tobocman [4]
and e a r l i e r by B u t t l e and Goldfarb [5]
t o achieve a
s e p a r a t i o n of v a r i a b l e s . However, t h e s e treatments
s t i l l take f i n i t e range i n t o account i n t h e formf a c t o r i n t e g r a t i o n . They should be most a p p l i c a b l e
f o r single-nucleon
t r a n s f e r where the r e c o i l terms
(% I/ma) w i l l be s m a l l e s t .
programmes u t i l i z i n g v a r i o u s kinematic approximat i o n s . In p a r t i c u l a r the approximate methods d i s cussed above obey the usual f a r i t y r e s t r i c t i o n s on
1+L2+L
the it t r a n s f e r , namely ( - I )
should be even,
where i t I and it2 r e f e r t o the angular momentum i n
t h e p r o j e c t i l e and f i n a l nucleus, r e s p e c t i v e l y . The
f u l l f i n i t e range c a l c u l a t i o n r e l a x e s t h i s r e s t r i c tion
- possible
L t r a n s f e r being determined by t h e
more general s e l e c t i o n r u l e ,
I jl -
j214i<jl + j2.
Such r e c o i l e f f e c t s a r e expected t o be of i n c r e a s i n g importance a t h i g h e r e n e r g i e s and f o r h e a v i e r
targets
.
More r e c e n t approximations attempt t o allow corr e c t l y f o r t h e t r a n s f e r of mass by appealing t o phys i c a l i n s i g h t t o determine from where the maximum
c o n t r i b u t i o n t o the i n t e g r a l a r i s e s and t o determine
the r e l a t i o n between the c o o r d i n a t e s a t t h a t p o i n t .
The usual assumption i s t h a t the p a r t i c l e is on t h e
i n t e r c o n n e c t i n g l i n e of the two n u c l e i . (The "fixed
range" approximation of Piihlhofer 161 i s an e a r l y
example of such a method although i t reduces t o a
zero-range c a l c u l a t i o n ) . When i t i s f u r t h e r assumed
A d i f f e r e n t approach t o the heavy-ion
reaction i s
the s e m i - c l a s s i c a l treatment of Broglia and
Winther r8]. Although i n s p i r e d by an a n a l y s i s of
the s e m i - c l a s s i c a l l i m i t of DWBA i91, i t i s formul a t e d i n t h e framework of the coupled-channel
theory of Coulomb e x c i t a t i o n
- extended
i o include
nucleon t r a n s f e r r e a c t i o n s . I t s advantages should
become i n c r e a s i n g l y more important when thq number
of p a r t i a l waves becomes very l a r g e and when 2nd
order e f f e c t s involving i n e l a s t i c e x c i t a t i o n s have
MORRISON
C.C.
t o be considered.
Even i f the kinematic e f f e c t s a r e t r e a t e d properl y , t h e r e s t i l l a r i s e s the problem of c a l c u l a t i n g
form f a c t o r s f o r more than one nucleon t r a n s f e r
-
a
problem whose complexity i n c r e a s e s r a p i d l y f o r t h e
t r a n s f e r of s e v e r a l nucleons. I n p a r t i c u l a r f o r
heavy ions, t h e convenient assunrption of a r e l a t i v e
Is c o n f i g u r a t i o n f o r the i n t e r n a l motion of t h e
t r a n s f e r r e d c l u s t e r , i s n o t v a l i d [gal. Thus the
t r a n s i t i o n amplitude has t o be considered a s a coh e r e n t sum over a l l p o s s i b l e internrediate s t a t e s of
the t r a n s f e r r e d nucleons, and ltence a l l p o s s i b l e
quantum numbers of t h e c l u s t e r r e l a t i v e ntotion.
This f a c t may lead t o considerable d i f f i c u l t i e s f o r
t h e conventional treatment.
4. Conrparison w i t h Experimnt.
tmsfe'ep.
- The
- a)
Oyla-nuoleon
success of t h e DWBA d e s c r i p t i o n of
one-nucleon t r a n s f e r t o g i v e q u a n t i t a t i v e spectros c o p i c information i s now w e l l e s t a b l i s h e d f o r ene r g i e s a t and above t h e Coulomb b a r r i e r [3,10].
5-
p i c a l l y , i t has been demonstrated i n a comparison
of t h e ( l 6 0 , I 5 ~ ) r e a c t i o n on n u c l e i i n t h e f p s h e l l
133 w i t h the p r e d i c t i o n s of t h e RDXC program of
Tobocman [4]. Examples of t h e goodness of the f i t s
both f o r angular d i s t r i b u t i o n s and f o r t h e v a r i a t i o n o f peak c r o s s s e c t i o n with Q value a r e shown
Fig. 7.
on
- Energy st apregcet rt as ofa t ~t h(e1 6( 01 )6- ~48, i MeV,
S ~r e)a c t i o n
62364Ni
i n F i g s . 3 and 4. The t h e o r e t i c a l curves were c a l c u l a t e d with s t r o n g l y absorbing p o t e n t i a l s [I l]
which o b v i a t e the need f o r a cut-off r a d i u s . The
p a r a m t e r s f o r t h e ingoing 160 c h a n ~ % egli v e a good
d e s c r i p t i o n of t h e e l a s t i c s c a t t e r i n g d a t a ;
the parameters f o r t h e outgoing 15N channel a r e t h e
same except t h a t the d i f f u s e n e s s was s l i g h t l y increased t o y i e l d a b e s t f i t t o t h e 48 MeV d a t a of
f i g u r e 3 , A t p r e s e n t no "N
exist
e l a s t i c scattering data
i n t h i s mass region.
I n t h i s work a somewhat unexpected J dependence
of the ( 1 6 0 , 1 5 ~ )c r o s s s e c t i o n was found. The e f f e c t i s demonstrated i n the s p e c t r a of t h e
6 2 7 6 4 ~ i ( 1 61 ~5 ,~6) 3 7 6 5 r~e~a c t i o n s (Fig. 7). For
example t h e 0.67 KeV 112- s t a t e i n 6 2 ~
i si conside r a b l y weaker than the 312- ground s t a t e , whereas
t h e measured s p e c t r o s c o p i c s t r e n g t h s a r e comparable
2
CC S = 0.66 and 0.70 f o r t h e 312- and 112- s t a t e s ,
r e s p e c t i v e l y ) . The observed reduction i s w e l l des c r i b e d by DWBA c a l c u l a t i o n s (Fig. 8).
It can be
-
Fig, 8.
Calculated DWBG d i s t r i b u t i o n s f o r
L = 0, 2, 4 t r a n s i t i o n s l e a d i n t o various f i n a l
s t a t e s i n t h e 62Ni(i60, 15N)68Cu r e a c t i o n a t
~ ( ~ =~480 MeV.
)
HEkW-ION TRANSFER REACTIONS
e x p e c t e d t o be a g e n e r a l f e a t u r e o f heavy-ion
C5-117
The j u s t i f i c a t i o n f o r u s i n g p o t e n t i a l s from e l a s -
- 112 o r b i t a l t o
I =R1
112 o r b i t a l , f o r which t h e s e m i - c l a s s i -
t i c scattering to describe t h e transfer reaction i s
c a l l y f a v o r e d L! t r a n s f e r (= L I + 2, ) i s n o t a l 2
lowed. The J dependent f a v o r i n g of j 2 = i 2 + 112
f e r r e a c t i o n s owing t o t h e i n c r e a s e d p o s s i b i l i t y of
t r a n s f e r from a j
j2
= E2
-
l e s s c l e a r f o r heavy-ion
than f o r l i g h t - i o n t r a n s -
core-core e x c i t a t i o n s . Even t h e u s e of " s t a n d a r d "
o p t i c a l p o t e n t i a l s f o r heavy-ion
s c a t t e r i n g has
m y be e x p l o i t e d by comparing t h e r e l a t i v e i n t e n s i 160 15
N) r e a c t i o n of t h o s e s t a t e s
t i e s i n the (
3
which have t h e same 2 t r a n s f e r i n t h e ( He,d) r e -
been r e c e n t l y q u e s t i o n e d [13],
a c t i o n . Moreover, d i f f e r e n t i n t e n s i t y r a t i o s should
a c c o u n t of t h e s i z e of t h e p r o j e c t i l e . However, i t
be e x p e c t e d i n a comparison of j 2 = R 2
can be n o t e d a t t h i s p o i n t t h a t a v e r y s e n s i t i v e
,
f
112 s t a t e s
and i t has been sug-
gested t h a t c o r r e c t procedure should take proper
p o p u l a t e d by two heavy i o n r e a c t i o n s such a s
t e s t of o p t i c a l p a r a m e t e r s now e x i s t s a s a r e s u l t
(I60,l5N) a n d ( 1 2 ~ , 1 1 ~ f) o, r which t h e t r a n s f e r r e d
o f t h e r e c e n t d i s c o v e r y of t h e d e s t r u c t i v e i n t e r -
n u c l e o n comes from a p I l 2 and p31Z o r b i t a l , r e s p e c -
f e r e n c e between Coulomb and n u c l e a r e x c i t a t i o n i n
tively.
heavy-ion
Perhaps a p a r t i a l f a i l u r e of t h e DWBA a n a l y s i s of
r e)a c t i o n was an i n a b i l i t y i n some
the ( 1 6 ~ , 1 5 ~
c a s e s t o r e p r o d u c e t h e d a t a a t t h e most f o r d a r d ang l e s , e s p e c i a l l y a t v e r y n e g a t i v e Q v a l u e s ( F i g . 9,
i n e l a s t i c s c a t t e r i n g [14].
The experimen-
t a l e f f e c t i s shown i n F i g . 10 f o r e x c i t a t i o n of
byi 160 ; t h e c u r v e s a r e p r e t h e 2+ s t a t e i n 5 8 ~
d i c t i o n s of t h e a n g u l a r d i s t r i b u t i o n s by semi-class i c a l and q u a n t a 1 c a l c u l a t i o n s D 5 j .
s o l i d l i n e s ) . T h i s c a u s e s some concern i n view of
the semi-classical picture that a t these angles
o n l y Coulomb d i s t o r t i o n s s h o u l d be e f f e c t i v e .
However, a b e t t e r f i t t o t h e d a t a can be o b t a i n e d
( F i g . 9, d a s h e d l i n e s ) w i t h a s l i g h t l y m o d i f i e d s e t
of p a r a m e t e r s l123, b u t one which d o e s n o t now r e p r o d u c e t h e e l a s t i c s c a t t e r i n g . (The same s i t u a t i o n
1Fmi
3.L 1.56 0.60
imaginary 6.0 1.27 0.5L
1fiO+5BNi
E~~~= LLMeV
w i l l b e a g a i n found i n t h e a n a l y s i s o f s e v e r a l nucleon t r a n s f e r ) .
pl
P
160 15
F i g . 9. - Angular d i s t r i b u t i o n s of t h e (
, N)
r e a c t i o n on even-A Ca i s o t o p e s a t 48 MeV l e a d i n g
t o t h e f i n a l s t a t e s shown. DWBA d i s t r i b u t i o n s
a r e discussed i n the t e x t .
quantum mechanical
( qne~astic/ ~ e ~ a s t i c ) e x p t .
F i g . 10. - Experimental and t h e o r e t i c a l a n g u l a r
d i s t r i b u t i o n s f o r e l a s t i c and i n e l a s t i c s c a t t e r i n g
0 )
of 160 on 5 8 ~a it ~ ( ~ =~ 44MeV.
G . C . MORRISON
(25-1 18
F i n a l l y , i t may be remarked t h a t t h e r e s u l t s of
the ( 1 6 ~ , 1 5 ~
experiments
)
i n t h e f-p s h e l l give no
evidence t h a t the r e a c t i o n has any p e c u l i a r a s p e c t
unique t o heavy-ion
reactions, contrary t o e a r l i e r
b e l i e f . The s p e c t r o s c o p i c s t r e n g t h s e x t r a c t e d from
75
-
-
-
"?
"?
r.
-
1
t h e ( 1 6 0 , 1 5 ~ ) r e a c t i o n a r e found t o be c l o s e l y the
3
same a s those e x t r a c t e d from ( He,d) - so t h a t twos t e p processes appear unimportant. The s i t u a t i o n
3
U
should be very d i f f e r e n t f o r h e a v i e r , deformed t a r g e t n u c l e i , and even the p o s s i b i l i t y of a s t r o n g
25 -
c o n t r i b u t i o n of two-step processes i n t h e mass-90
region cannot be excluded [16].
b) MuZti-nuoZeo?~ t r a n s f e ~ .
- As
500
discussed e a r l i e r
t h e DWBA a n a l y s i s of multi-nucleon t r a n s f e r is com-
Fig. 1 1 .
550
-
600
650
700
750
Bill
CHANNEL NUMBER
Energy s p e c t r a of the 4 8 ~ a ( 1 6 0 , 1 4 ~ ) 5 0 ~ i
r e a c t i o n a t ~ ( ' ~ 0= )59.5 MeV.
p l i c a t e d by two f e a t u r e s : the need t o take account
of r e c o i l e f f e c t s and the need to consider i n t e r n a l
c l u s t e r c o n f i g u r a t i o n s . Ln connection with t h e l a t t e r problem, a new approach by Bonche and Giraud
[17] appears of i n t e r e s t . Their a n a l y s i s i s based
-Bonche
---E.FR.
I
on a generator-coordinate
d e s c r i p t i o n of t h e s c a t -
E= L8'M eV
t e r i n g waves. It uses d i r e c t l y s h e l l model wave
f u n c t i o n s , without e x t r a c t i n g t h e c e n t r e of mass
motion, t o d e s c r i b e the t r a n s f e r r e d nucleons i n the
i n i t i a l and f i n a l n u c l e i ,
and thereby takes ac-
count e x p l i c i t l y of a l l o r d e r s of i n t e r n a l configur a t i o n s of the t r a n s f e r r e d c l u s t e r , With such a m i c r o s c o p i c d e s c r i p t i o n of the t r a n s f e r form f a c t o r ,
s p e c t r o s c o p i c wave f u n c t i o n s can be d i r e c t l y analysed. In t h e o p t i c a l waves t h e c e n t e r of mass of
t h e t r a n s f e r r e d p a r t i c l e s i s assumed to be a t the
c e n t e r of mass of t h e two c o r e s . Thus t h e treatment
of r e c o i l e f f e c t s may s t i l l be inadequate f o r c o r e s
of unequal masses.
F i g . 12. - Experimental and t h e o r e t i c a l angular
d i s t r i b u t i o n s of t h e 4 8 ~ a ( 1 b 0 ,4 ~5) 0 ~r eia c t i o n
)
l e a d i n g t o t h e f i n a l s t a t e s shown. ~ ( ~ =~ 480 MeV.
The ' * 8 ~ a ( 1 6 1
~ ,4 ~ ) 5 0 r~e ai c t i o n i s a good t e s t of
t h i s new approach f o r the c a s e of two-proton
trans-
they peak much forward of the "grazing" angle pre-
f e r . Fig. 1 1 shows a spectrum obtained a t 59.5 MeV.
d i c t e d by t h e customary s t r o n g i n t e r a c t i o n r a d i u s .
a rie known t o have
The f i r s t f o u r s t a t e s i n 5 0 ~
This e f f e c t i s not accounted f o r i n DWBR c a l c u l a -
s p i n s 0+, 2 + , 4+ and 6+ r e s p e c t i v e l y based on a
t i o n s i n c l u d i n g r e c o i l with parameters which f i t
r e l a t i v e l y pure (n f 7,Z)2
c o n f i g u r a t i o n . Thus t h e
p r e d i c t e d shape and magnitude of the d i f f e r e n t i a l
c r o s s s e c t i o n s can be compared with experiment f o r
different L transfer, d i f f e r e n t excitation energies
and d i f f e r e n t bombarding e n e r g i e s .
[ ~ e v r i e s ] ) r e q u i r e a l a r g e r value of d i f f u s e n e s s a
(= 0.7)
i n e n t r a n c e and e x i t channels [or equiv-
a l e n t l y a l a r g e r value of r a d i u s parameter ro
Angular d i s t r i b u t i o n s obtained a t 48 MeV f o r t h e
f i r s t f o u r s t a t e s i n " ~ ia r e shown i n Fig.
t h e (160, I5N) r e a c t i o n . The f i t s obtained i n both
c a l c u l a t i o n s (Bonche and exact f i n i t e range, E.F.R.
12.
(- 1.3513
. Such changes
e s s e n t i a l l y force the
r e a c t i o n t o take p l a c e f a r out and hence reproduce
They a r e s i m i l a r i n shape t o those observed i n Ip
the observed forward peaking. However, with t h i s
t r a n s f e r except, a s has been noted p r e v i o u s l y [3],
choice of parameters, the observed q u a l i t y of f i t
HEA W-ION TRANSFER REACI'IONS
was maintained a t 42, 56 and 59.5 MeV bombarding
energy.
T a ~ l eI g i v e s t h e e x p e r i m e n t a l peak c r o s s s e c t i o n
a l p h a t r a n s f e r r e a c t i o n should be p a r t i c u l a r l y sans i t i v e t o 2p3/2 a d m i x t u r e s .
a t 48 MeV and t h e t h e o r e t i c a l p r e d i c t i o n s assuming
t h a t t h e two p r o t o n s i n ' O T ~ occupy e i t h e r I f
2p3,2
712
s u b s h e l l s . The f i n a l column g i v e s t h e re-
q u i r e d n o r m a l i z a t i o n f o r a pure (I f
t i o n . I t i s s e e n t h a t a small (
t h e 0'
2
Or
) 2 configura-
7/$
~ admixture
~ ~ ~ )i n
and 2' wave f u n c t i o n s could l e a d t o an over-
C5-119
The DWBA a n a l y s i s of t h e f o u r nucleon t r a n s f e r by
means of t h e Bonche code i s a l s o p r o c e e d i n g a t
S a c l a y , indeed h i s t o r i c a l l y i t was f i r s t used i n a
r e a c t i o n mechanism s t u d y of t h e (160, "c)
[18]
. In a p p a r e n t c o n t r a s t
reaction
t o t h e ( I 6 0 , l 4 c ) re-
a l l improvement i n n o r m a l i z a t i o n . A s i m i l a r en-
a c t i o n , i t i s found t h a t t h e peak p o s i t i o n i n t h e
a n g u l a r d i s t r i b u t i o n a p p e a r s t o be r e a s o n a b l y w e l l
hancement of t h e 0+ and 2+ c r o s s s e c t i o n s i s found
d e s c r i b e d by o p t i c a l p a r a m e t e r s d e r i v e d from t h e
c o n s i s t e n t l y a t each of t h e o t h e r e n e r g i e s s t u d i e d .
elastic scattering
-
a t l e a s t for the
5 4 ~ e ( 1 4 0 , 1 2 ~ ) 5 8r ~e ai c t i o n . Moreover t h e a n a l y s i s
Table I
EjperimentaZ and calcuZated peak cross sections
for the ( 1 8 ~ a f i Gi 4
~ ,~ . J 5
~ e0
a c~t iio na t 40 MeV.
Ex
(MeV)
0
1.55
2.68
3.20
o
J~
s
of
2'
4'
6+
due t o r e a c t i o n mechanism - t h e Q
be e s t i m a t e d .
2
exp
uth(f7/2)
s
200
290
190
85
'th(~3i2)~
'exp
'
( ~ b l s r ) oth(f7,2)
2.8
5.7
4.3
2.1
16.8
32.3
72
51
43
39
-
-
T h i s i n i t i a l s t u d y was based, n o t unreasonably,
2
on t e s t i n g p u r e stretch-scheme f o u r - p a r t i c l e wave
f u n c t i o n s . I-lowever, t h e extreme s e n s i t i v i t y t o t h e
p r e s e n c e of (
t h e l a r g e n o r m a l i z a t i o n f a c t o r s r e q u i r e d -one i s
reminded o f s i m i l a r problems i n t h e a n a l y s i s of
( t , p ) r e a c t i o n s . Furthermore, t h e s i t u a t i o n i s exa c e r b a t e d by t h e extreme o p t i c a l p a r a m e t e r s r e q u i r e d t o f i t t h e a n g u l a r d i s t r i b u t i o n s , Neverthel e s s , i t s h o u l d be renarked t h a t t h e Bonche analys i s s t i l l does n o t g i v e a good d e s c r i p t i o n of t h e
e n e r g y dependence o f t h e c r o s s s e c t i o n
calculations
-
in
- perhaps
2
~
c~o n ~
f i g u~r a t)i o n presumably a l s o
implies a s e n s i t i v i t y t o configurations containing
(
I t is beyond t h e scope o f t h i s review t o d i s c u s s
c o n t r a s t t o t h e E.F.R.
I2c s p e c t r a
dependence - t o
permits the i n t e n s i t y v a r i a t i o n i n the
2
~ components.
~
~
~ I n) t h~i s c o n n e c t i o n , a r e c e n t
comparison
[lq
o f ( a , u t ) and a l p h a t r a n s f e r reac-
t i o n s t o 5 8 ~s iu g g e s t t h e importance o f t r a n s f e r
t o 3- s t a t e s . The s t r o n g e x c i t a t i o n o f s t a t e s based
on such o b v i o u s l y mixed components i m p l i e s t h e need
t o c o n s i d e r t h e c o n t r i b u t i o n of mixed components i n
o t h e r c a s e s ( e . g . even p a r i t y s t a t e s ) . However,
then t h e l a r g e number of p o s s i b l e c o n f i g u r a t i o n s
based on f o u r p a r t i c l e e x c i t a t i o n s , p r e v e n t s a d i r e c t i n t e r p r e t a t i o n from t h e d a t a
- even f o r s t a t e s
i n d i c a t i n g some inadequacy of t h e r e c o i l approxima-
of known s p i n . One is l e f t i n t h e p o s i t i o n o f
tion.
The s e n s i t i v i t y of t h e c a l c u l a t e d c r o s s s e c t i o n s
p r o p o s i t i o n only f o r low-lying s t a t e s .
t e s t i n g t h e o r e t i c a l wave f u n c t i o n s
-
a realistic
t o s m a l l a d m i x t u r e s o f 2p312 i n If7l2 c o n f i g u r a t i o n s h a s been remarked (Table 1 ) .
S i n c e t h e heavy-
i o n r e a c t i o n i s s t r o n g l y l o c a l i z e d a t t h e nucleon
5. T r a n s f e r Keaations a t High E n e r g i e s .
I
would l i k e now t o conclude t h i s review by d i s c u s -
s u r f a c e , t h e d i f f e r e n t magnitude of t h e p u r e con-
s i o n o f some r e c e n t t r a n s f e r e x p e r i m e n t s performed
f i g u r a t i o n s stems from d i f f e r e n c e s i n t h e form f a c -
a t h i g h e r e n c r g i e s (5-10 MeV p e r n u c l e o n ) . These
t o r of the t r a n s f e r r e d n u c l e o n s t h e r e , I n t u r n t h i s
a r e mainly c y c l o t r o n e x p e r i e n t s i n which a v a r i e t y
depends on t h e s i n g l e nucleon bound-state wave
of p r o j e c t i l e s have been used t o bombard mainly
f u n c t i o n s , t h e 2p3,2 p e a k i n g f u r t h e r o u t t h a n t h e
l i g h t and heavy t a r g e t s . T h e i r d i s c u s s i o n h a s t h e
I f l f 2 . ( I t can depend i n a d d i t i o n on t h e matching
advantage o f e n d i n g w i t h r c s u l t s which, i n t h e i r
of t h e t r a n s f e r r e d nucleon c o n f i g u r a r i o n s i n t h e
remarkable s e l e c t i v i t y , r e v e a l new a s p e c t s o f t h e
p r o j e c t i l e and f i n a l n u c l e u s ) . The e f f e c t s h o u l d
heavy i o n t r a n s f e r r e a c t i o n and t h u s a r e a d i r e c t
i n c r e a s e a s t h e p r o d u c t o f t h e number o f n u c l e o n s
encouragement t o t h e more widespread achievement o f
t r a n s f e r r e d , a s i s indeed a p p r o x i m a t e l y observed
h i g h e r e n e r g y heavy i o n s .
i n t h e c a l c u l a t i o n s of a l p h a t r a n s f e r . Thus t h e
C5-120
G.C.
The b a s i c f e a t u r e of t h e heavy-ion
t r a n s f e r reac-
MORRISON
These q u a l i t a t i v e c o n s i d e r a t i o n s have been ex-
t i o n a t h i g h e n e r g i e s a p p e a r s t o be t h e f a v o r i n g of
tended by Brink 1223 t o d e r i v e q u a n t i t a t i v e kine-
l a r g e a n g u l a r momentum t r a n s f e r [20].
m a t i c a l c o n d i t i o n s on t h e t r a n s f e r r e a c t i o n a t en-
t i v i t y i s shown i n F i g s .
three-nucleon
nuclei.
This selec-
13 and 14 f o r one and
t r a n s f e r s [21]
on r e l a t i v e l y l i g h t
I t i s most c l e a r l y demonstrated i n t h e l a t -
e r g i e s w e l l above t h e Coulomb b a r r i e r . These r e l a t e t h e Q v a l u e of t h e r e a c t i o n t o t h e a n g u l a r
momentum o f t h e t r a n s f e r r e d n u c l e o n s i n the i n i -
t e r example i n which the s t a t e s of maximum p o s s i b l e
t i a l and f i n a l n u c l e u s . S i n c e l a r g e c r o s s s e c t i o n s
a l i g n m e n t a r e most s t r o n g l y p o p u l a t e d . T h i s r e s u l t
a r e only possible i f these kinematical conditions
a p p e a r s t o be a n a t u r a l consequence of t h e l a r g e
a r e s a t i s f i e d , one can t h e r e b y o b t a i n d i r e c t i n -
l i n e a r momentum o f the t r a n s f e r r e d nucleon o r c l u s -
formation on t h e s t r u c t u r e o f the s t a t e s s e l e c -
t e r of n u c l e a r
t i v e l y populated.
which h a s t o be c o n v e r t e d i n t o an-
g u l a r momentum. Thus, i f t h e r e a c t i o n t a k e s p l a c e
a t t h e n u c l e a r s u r f a c e , e a c h nucleon c a n be thought
t o t r a n s f e r a n g u l a r momentum L
%
k R , where ko i s
t h e wave number of t h e r e l a t i v e nucleon v e l o c i t y
and R is the r a d i u s of t h e t a r g e t . Moreover, t h e
s e l e c t i v i t y w i l l be g r e a t e s t and t h e c r o s s s e c t i o n
l a r g e s t f o r r e a c t i o n s whose Q v a l u e s f a v o r t h e
l a r g e momentum t r a n s f e r . T h i s c o n t r a s t s w i t h t h e
s i t u a t i o n a t e n e r g i e s n e a r t h e Coulomb b a r r i e r
where k
2
0.
The Oxford group [23]
has
a l s o used t h e b a s i c
one-nucleon s e l e c t i v i t y a s a b u i l d i n g b l o c k t o
s t u d y t h e same f i n a l n u c l e u s formed by r e a c t i o n s
which t r a n s f e r a d i f f e r e n t number of nucleons. For
example t h e two-neutron
t r a n s f e r r e a c t i o n on 1 2 c
may be compared w i t h t h e one-neutron
a c t i o n on
I3c
state in
14c,
t r a n s f e r re-
( F i g . 15) .One f i n d s t h a t o n l y t h e 3based on t h e diI2 @ p I ,?
configcra-
t i o n , i s p o p u l a t e d i n t h e 2n ( o r 2p) t r a n s f e r
whereas t h e r e a c t i o n on 13c p o p u l a t e s b o t h t h e 3and 2 - s t a t e s (Table 1 1 ) . The i n h i b i t i o n o f unnatu r a l p a r i t y s t a t e s i n 2n ( o r 2p) t r a n s f e r a p p e a r s
a's a n a t u r a l consequence i f t h e two
c l e o n s a r e t r a n s f e r r e d i n a 0'
uration
-
i d e n t i c a l nu-
r e l a t i v e I s config-
t h e c o r r e s p o n d i n g 3- and 2- s t a t e s a r e
both p o p u l a t e d i n np c r a n s f e r l e a d i n g t o I4F4.
How-
e v e r . i t i s a l s o found t h a t t h e 2n and 22 t r a n s f e r
Fig.
(
13. - S i n g l e - p r o t o n t r a n s f e r r e a c t i o n induced
by 1 1 4 MeV I2c i o n s on I ~ c , 160 and , 4 0 ~ a .
12Fi8. 14. - Three-nucleon t r a n s f e r r e a c t i o n
C Be) induced by 1 1 4 MeV 1% i o n s ( a ) on
and (b) on I ~ c , 160 and 4 0 ~ a ,
-
F i g . 15.
P o p u l a t i o n of s t a t e s of I4c by one and
two-neutron t r a n s f e r r e a c t i o n s on 13c and I2c,
r e s p e c t i v e l y . Einc 2 10 MeV/nucleon,
HEAW-ION TRANSFER REACTIONS
Table 11
States select.tvely eazited i n sin Ze-and
two-nsutrm stripping reactions on 2% and 2 3 ~ .
J"
Configuration
~ e atcion
Ex
3~
( a ) 1 2 ~ ( 1 1 ~ , 1 0 ~ ) 10.0
3.85
112-
VP1/2
512'
vd
512
is much reduced compared with the np t r a n s f e r
- and
even with t h r e e nucleon ( t o r 3 ~ e )t r a n s f e r . This
r e s u l t , which i s n o t an e f f e c t of Q value, i s n o t
understood a t p r e s e n t .
The e f f e c t of t h e "spectator" nucleon has been
c a r r i e d t o higher 0rde.r f o r 160 by comparing the
s t a t e s e x c i t e d i n three-nucleon t r a n s f e r r e a c t i o n s
on
12c with
those populated i n two-nucleon t r a n s f e r
r e a c t i o n s on
I3c,
Such s t u d i e s make use of the wide
v a r i e t y of a v a i l a b l e p r o j e c t i l e s so t h a t problems
of d i s t i n g u i s h i n g between e x c i t e d s t a t e s of the
outgoing p a r t i c l e and t h e new s t a t e s of i n t e r e s t i n
t h e f i n a l nucleus can be overcome. This combination
of t h e t r a d i t i o n a l methods used t o examine weak
-excitat~on
energy
channel number-
coupling w i t h the high s e l e c t i v i t y of the heavy-ion
r e a c t i o n appears t o have g r e a t p o t e n t i a l .
A f u r t h e r source of s e l e c t i v i t y i n r e a c t i o n s on
Fig. 16.
-
S e l e c t i v e p o p u l a t i o n of s t a t e s of I5N
by d i f f e r e n t t r a n s f e r r e a c t i o n s .
l i g h t n u c l e i has been e a r l i e r observed by von
Oertzen [24],
nameiy, t h a t t h e t r a n s f e r of s e v e r a l
2 0 8 ~ b ( 1 2"B)
~,
r e a c t i o n s a t 78 MeV [252 a r e shown
nucleons i s s t r o n g l y favored when t h e i r i n t e r n a l
i n Figure 17. (They have been obtained w i t h t h e
s t r u c t u r e i s n o t changed i n the i n i t i a l and f i n a l
Berkeley magnetic spectrometer system using a fo-
nucleus.
c a l plane d e t e c t o r and represent t h e c u r r e n t o p t i -
This i s demonstrated i n Figure 16 which shows
mum i n p a r t i c l e i d e n t i f i c a t i o n and energy r e s o l u -
t h a t t h e 1 2 ~ ( 1 960)
~ , 1 5 ~r e a c t i o n populates most
t i o n f o r heavy ions.) C l e a r l y seen i s the wide
s t r o n g l y t h e 1/2+ s t a t e a t 5.3 MeV i n 15N which was
range of j,R values of t h e s i n g l e p a r t i c l e s t a t e s .
More than i n the r e a c t i o n s on l i g h t n u c l e i , the
the same c o n f i g u r a t i o n a s the p r o j e c t i l e , namely
(Pl12)-4(sd)3.
The d i f f e r e n t s e l e c t i v i t i e s of t h e
( 1 60, 'N) and ( 160,
r e a c t i o n s a r e a l s o apparent.
s p e c i f i c dependence of angular momentum t r a n s f e r on
the p a r t i c u l a r p r o j e c t i l e and r e a c t i o n i s revealed.
The main f e a t u r e s again seem t o have t h e i r i n t e r p r e -
A p r e f e r e n t i a l e x c i t a t i o n of s p e c i f i c s t a t e s i s
observed i n t h e one-nucleon t r a n s f e r r e a c t i o n s on
Pb [23],
[25]
a t high e n e r g i e s
-a
f a v o r i n g of high
s p i n s t a t e s f o r n e g a t i v e Q values is a l s o found 1261
i n two-nucleon t r a n s f e r r e a c t i o n s on some f p - s h e l l
n u c l e i . S p e c t r a o f t h e 2 0 8 ~ b (I2c, I3c) and
t a t i o n i n t h e kinematic s e l e c t i o n r u l e s [22]relating
Q v a l u e and angular momentum t r a n s f e r , One may a l s o
a n t i c i p a t e i n multi-nucleon t r a n s f e r r e a c t i o n s an
i n c r e a s i n g l y important r o l e of r e a c t i o n s such a s
("c,
lone) and ( 1 3 c , ' ~ e ) i t high e n e r g i e s i n o r d e r
t o use t h e i r more negative Q v a l u e s t o enhance high
C.C.
MORRISON
("c."c)
b"
60'
:%a-
- - -.
.-
-
-.
'O'P~
lab
- - -.
I
1
1oaPb(s2C,"8) '098i
60' lob
2' 1.
1
i
'R
CHANNEL
Fig.
17.
- Single-nucleon
t r a n s f e r r e a c t i o n s induced by 7 8 MeV
angular rnomentum s t a t e s .
12c i o n s
on '08pb.
compound nucleus w i l l be r e s t r i c t e d t o small i m -
The Berkeley d a t a a l s o shows c l e a r evidence f o r
p a c t parameters and the c r o s s s e c t i o n f o r d i r e c t
the J dependent e f f e c t s discussed e a r l i e r . A com-
r e a c t i o n enhanced. While t h e experimental conse-
parison of the r e a c t i o n s (160, 1 5 ~ ) and ( 1 2 c , 1 1 ~ )on
quences a r e n o t completely c h a r t e d , i t would ap-
2 0 8 ~ b (Fig. 18) shows the reduction i n i n t e n s i t y of
160 15
N) r e a c t i o n .
the j2 = i2 1 / 2 s t a t e s i n the (
pear most l i k e l y t h a t the phenomenon manifests i t -
-
,
s e l f i n an increased p r o b a b i l i t y of very i n e l a s t i c
However, the r e d u c t i o n i s l e s s than p r e d i c t e d by
s c a t t e r i n g c o l l i s i o n s showing up a t very forward
DWBA c a l c u l a t i o n s [4] which n e g l e c t r e c o i l . Since
angles. W e v e r r e c e n t experiments 1281 a l s o sug-
a t high e n e r g i e s , r e c o i l e f f e c t s a r e not n e g l i g i b l e ,
g e s t an e f f e c t on t h e t r a n s f e r t o low l y i n g s t a t e s
t h i s discrepancy may be evidence f o r t h e p a r i t y -
-
v i o l a t i n g & t r a n s f e r (= t1 + E2
-
1) c o n t r i b u t i n g
t o the r e a c t i o n ;p a r t i c u l a r l y a s t h i s would permit
a l a r g e r angular momentum t r a n s f e r than t h a t a l lowed by p a r i t y . I f confirmed by e x a c t f i n i t e range
c a l c u l a t i o n s , i t would c o n s t i t u t e d i r e c t evidence
f o r the importance of such r e c o i l e f f e c t s i n heavyion t r a n s f e r .
A t s t i l l h i g h e r e n e r g i e s a new f e a t u r e of the
heavy-ion
r e a c t i o n i s revealed. This is the possi-
although the observations do n o t exclude an in-
t e r p r e t a t i o n i n terms of r e c o i l e f f e c t s 1203.
This c l e a r l y is an a r e a of much f u t u r e i n t e r e s t
-
and one whose understanding may provide t h e necess a r y l i n k between heavy-ion t r a n s f e r used t o o b t a i n
t r a d i t i o n a l microscopic n u c l e a r s t r u c t u r e informat i o n , a s discussed i n t h i s review, and the heavyi o n r e a c t i o n used t o explore macroscopic p r o p e r t i e s
of t h e nucleus. One r e a l i z e s a l s o t h a t our c u r r e n t
p r o j e c t i l e s a r e mainly a t t h e l i g h t end of the
b i l i t y t h a t t h e heavy i o n beam may c a r r y i n a n g u l a r
heavy-ion
momenta above t h e c r i t i c a l a n g u l a r momentum of the
beginning of t h e heavy-ion
compound nucleus [ 2 7 ] . Thus t h e formation of the
e x c i t i n g , many-f aceted field of r e s e a r c h .
r e g i s t e r , C l e a r l y we a r e o n l y s e e i n g t h e
transfer reaction a s an
HEA W-ION TRANSFER REACTIONS
P~~~(C
6 "" ),Bi
EC12 = 78 MeV
e,
=
60 Deg
CHANNEL
F i g . 18.
-
Single-proton
Acknowledgements. -
NUMBER
s t r i p p i n g r e a c t i o n s induced by 104 MeV 160 and 7 8 MeV
I am p l e a s e d t o acknowledge
'*c
i o n s on *08pb.
t o spend a y e a r s a b b a t i c a l i n F r a n c e
- and
i n par-
h e l p f u l d i s c u s s i o n s w i t h D r s . P. Bonche, R. DeVries
t i c u l a r t o acknowledge t h e h o s p i t a l i t y extended
and R , ' S c h a e f f e r . I a l s o wish t o t a k e t h i s opportu-
throughout by Mme H. F a r a g g i and D r . E. C o t t o n .
n i t y t o thank C.E.N.
S a c l a y f o r making i t p o s s i b l e
References
(#)work performed i n p a r t under t h e a u s p i c e s o f t h e
U.S. Atomic Energy Commission.
P r e s s , New York, t o be p u b l i s h e d .
[I]
The Proceedings of t h e Symposium on Heavy Ion
2, C6 -
-
1956,
103, 679.
R e a c t i o n s and Many P a r t i c l e E x c i t a t i o n s , S a c l a y
(19711, Suppl. J. Physique, 1971,
BREIT (G.) and EBEL (M.), Phys. Rev.,
BREIT (G.), Phys. Rev.,
abbre-
FRAHN (W.E.)
v i a t e d t o S a c l a y Conf. - g i v e a good a c c o u n t o f
1964,
1964,
and VENTER (R.H.)
135, B1323.
, Nucl,
Phys,
,
2, 651.
r e c e n t work.
[2]
A r e c e n t comprehensive review i s "Single and
Multinucleon T r a n s f e r Reactions",
BUTTLE (P.J.A.)
Phys.,
1971,
and GOLDFARB (L.J.B.),
-,
299.
Von Oertzen (W.),
i n Nuclear Spectroscopy (ed. J, Cerny)
, Academic
[3]
MORRISON (G.C.),
S a c l a y Conf.,
C6-69.
Nucl.
C5-124
G.C.
MORRISON (G.C.),
Phys. Rev. L e t t e r s ,
8,
1662.
1972,
KORNER (H.J.),
28,
-
GREENWOOD (L.R.)
KORNER ( H . J . ) ,
and SIEMSSEN (R.H.),
MORRISON
1072.
,
[I 51 BROGLIA (R.A.)
LANDOWNE ( S . ) and WINTER (A.)
Phys. L e t t e r s ,
MORRISON (G.C.),
, Phys.
and SIEMSSEN (R.H.)
GREENWOOD (L.R.)
Rev.,
t o b e pub-
[lq
NICKLES (R.3 .) , MANKO (V.I.)
(P.R.)
lished.
SCHMITTROTH ( F . ) ,
(A.A.),
E,
1970,
[17]
377.
and GIRAUD (B.),
BONCHE (P.)
Phys.,
and GOLDFARB (L.J.B.),
78,
1966,
e,
461.
[6]
PUHLHOFER (H.)
,
,
El81 FARAGGI (H.) e t a l . , Ann. Phys. (N.Y.),
, BOCK
,
, Nucl.
c,
625.
(J.L.),
(M.C.)
and QUEBERT
comunication t o t h i s conference,
p . 84 ; and t o b e p u b l i s h e d .
Phys.,
[I
93 BRUGE
Phys.
,
(G.)
CHAUMEAUX (A.)
Nucl. P h y s . ,
,
DEVRIES (R.M.)
and
Phys. Rev. L e t t e r s , t o be
published.
g,
18.
BOCK (R.) a n d YOSHIDA (H.),
CUNSOLO (A.),
, MERMAZ
MORRISON (G.C.),
and DEVRIES (R.M.),
L e t t e r s , 1971,
GIRAUD ( B . ) ,
LEMAIRE (M.C.)
w,258.
1970,
KAMMURI (T.) and YOSHIDA (H.)
PERRENOUD ( J . L . )
(R.)
1971,
905.
BONCHE ( P . ) ,
SCHMIDT (H.) and BETHGE
(K.), Nucl. Phys.,
1969,
1968,
66,
-
BROMMLINDT (G.)
[7]
Nucl.
409 ; Nucl. Phys.,
RITTER (H.G.)
Phys. Rev.
8,
1720.
L e t t e r s , 1972,
151 BUTTLE (P.J.A.)
Phys. Rev.
2, 1267.
TOBOCMAN (W.) a n d GOLESTANEH
P h y s . Rev.,
, CHRISTENSEN
and BECCHETTI (F.D.),
L e t t e r s , 1971,
[4]
,
t o be published.
1972,
[20J
DODD (L.R.)
and GEIDER (K.R.),
L e t t e r s , 1965,
A S , 177.
14,959
P h y s . Rev.
; Phys. Rev.,
1969,
-
180, 1187.
[~]BROGLIA
(R.) and WIKTHER ( A . )
1972,
c,
112.
, Nucl.
Ld ROTTER
POTH ( J . E . ) ,
OVERLEY ( J . C . )
Phys. Rev.,
192 TILZUTHANEI (D.) and ALDER (K.),
1970,
~hys.,
Helv. Phys. A c t a ,
[21]
2,363.
SCOTT (D.K.)
2,
1295.
1967,
e t al.,
and BROMLEY (D.A.),
Phys. Rev. L e t t e r s , 1972,
28, 1659.
-
( I . ) , S a c l a y Conf., C6-113 and r e f e r -
, Phys.
1 2 4 BRINK (D.M.)
L e t t e r s , 1972,
+,
37.
ences therein.
-~
01
~
SCHLOTTHAUER-VOOS (U .C .), BOHLEN (H. G.)
[23]
,
1972,
(V.I.)
and NICKLES ( R . J . ) ,
MAHER (J.V.)
, ERB
Phys. Rev.,
[I I]
vooS (M.C.),
, MANKO
[2<1
a n d MILLER (R.W.)
BROGLIA (R.A.),
1969,
r25]
-
, private
g , 207.
Nucl. P h y s . ,
, DOST
GASTEBOIS ( J . ) ,
(M.)
[26]
, FERNANDEZ
[27]
GALIN ( J . ) ,
(J.),
(B.) and
, ROUSSEL
t h i s c o n f e r e n c e , p . 80.
(P.)
GLIERREAU (D.),
TARRAGO (X.;
Phys.,
c o m u n i c a t i o n t o t h i s con-
1970,
PWLHOFER (F.)
, COI.J3fBANI (P.)
t h i s con-
LEFORT (M.) , PETER
and BASILE ( R . ) , Nucl.
e,461.
and DIAMOND (R.M.),
t o be pub-
lished.
[I 41 VIDEBOEK ( F .) , CHERNOV ( I .) , CHRISTENSEN (P.R.)
Phys. Rev. L e t t e r s , 1972,
private comunication.
e t al.,
POUGHEON (F.)
E ,225.
f e r e n c e , p. 8 3 ; and t o be p u b l i s h e d .
f e r e n c e , p . 40 ; and t o b e p u b l i s h e d .
and GROSSE (E.E.),
HARVEY (B.G.),
and VON OERTZEN
1972,
DOUBRE (H.) and ROYNElTE ( J . C . ) ,
LIOTTA ( R . ) and
t o be published.
GUTBROD (H.H.)
Nucl. P h y s . ,
HARVEY (B.G.)
comunication.
KAMMURI (T.),
NILSSON ( B . ) ,
..
(W.),
,
communication t o t h i s
7 5 ; t h i s c o n f e r e n c e , p.58
SCHLOTTHAUER-VOOS (U C ) , BOCK (R. ) , BOHLEN
(H.G.),
t o be p u b l i s h e d .
VON OERTZEN (W.) and BOCK ( R . ) ,
BROGLIA (R.A.)
[I 31 CHARLES (P.)
(K.A.)
(P .R.)
t o be p u b l i s h e d .
Nucl. P h y s . ,
Ll2]
c o n f e r e n c e , p.
E ,385.
, CHRISTENSEN
e t al.,
SCOTT (D.K.)
VON OERTZEN (W.) and BOCK ( R . ) , Nucl. Phys.
BECCHETTI (F .D.)
SCOTT (D.K.), p r i v a t e communication.
[28]
PUHLHOFER (F.)
e t al.,
t h i s conference, p. 55.
HEAVY-ION TRANSFER REACTIONS
DISCUSSION
M. DANOS (Washington)
i f t h i s s i t u a t i o n might not be improved by stay-
Concerning t h e r a t h e r l a r g e r a d i u s i n t r a n s f e r
i n g c l o s e r t o t h e Coulomb b a r r i e r , s o t h a t t h i s
r e a c t i o n s i t seems reasonable t h a t i t i s given
dependence on paramekers could be redueed o r
by the sum of the t h r e e r a d i i , two n u c l e a r r a d i i
eliminated.
and t h e diameter of the t r a n s f e r r e d p a r t i c l e ;
a t l a r g e r d i s t a n c e of c l o s e s t approach the
t r a n s f e r r e d p a r t i c l e (e.g,
a - p a r t i c l e ) has t o
tunnel through a b a r r i e r , a t c l o s e r d i s t a n c e s
t h e t r a n s f e r r e a c t i o n w i l l be quenched by comp e t i t i o n from compound processes.
You a r e q u i t e r i g h t . B u t t l e and Goldfarb have
s t r e s s e d f o r a long time t h e advantages of
working a t the Coulomb b a r r i e r . A s you w e l l
know, however, experimentally i t i s not s e f a v c r a b l e t o work a t very f a r back a n g l e s . But
Since t r a n s f e r r e a c t i o n s take p l a c e a t t h e nu-
t h i s i s an a r e a
- and
there a r e r e s u l t s present-
-
where one has been i m -
c l e a r s u r f a c e they a r e expected t o be extremely
ed a t t h i s Conference
s e n s i t i v e t o c o n f i g u r a t i o n mixing ; they may be
4
enhanced by f a c t o r s 10, o r even 10 This h a s
pressed by how s t r o n g c r o s s s e c t i o n s can be near
been a l r e a d y seen i n t h e theory of the a-decay
j u s t what i s happening a t these e n e r g i e s where
by Mang, Glendenning and o t h e r s .
c u r r e n t l y we have problems of a n a l y s i s
.
G. MORRISON (Saclay)
With r e s p e c t t o your suggested e x p l a n a t i o n of
the larger radius i n transfer reactions, the
problem i s t h a t the r e s u l t s a r e n o t c o n s i s t e n t .
The 2p t r a n s f e r appears t o take p l a c e f u r t h e r
i80°. Nevertheless, i t is important t o l e a r n
- and
at
s t i l l h i g h e r e n e r g i e s t h e r e i s the e x c i t i n g
p r o s p e c t t o take advantage of t h e high E t r a n s f e r s e l e c t i v i t y a t c o n d i t i o n s of l a r g e momentum
mismatch.
B. FERNANDEZ (Saclay)
o u t than the alpha t r a n s f e r ; i t appears t h a t
You have shown t h e importance of the extended
the 2p t r a n s f e r d a t a cannot be f i t t e d with e l a s -
n a t u r e of the heavy ions,which manifests i t s e l f
t i c s c a t t e r i n g p o t e n t i a l s , whereas the a l p h a
i n t h e so-called r e c o i l e f f e c t s . I t h i n k i t a l s o
t r a n s f e r can. However your suggestion is very
holds f o r t h e o p t i c a l p o t e n t i a l . A s was shown on
i n t e r e s t i n g i n t h a t i t implies an i n t e r m e d i a t e
Monday i n paper 11.4, t h e s i z e e f f e c t r e s u l t s i n
necking s i t u a t i o n i n m u l t i n u c t e o t ~t r a n s f e r .
p a r t i c u l a r i n l a r g e d i f f u s e n e s s e s . Now, a s you
This i s a l s o something t h a t has been suggested
have pointed o u t , i t w i l l be probably n o t
by Bondorf a s a way t o account f o r t h e non-ob-
p o s s i b l e to determine t h e o p t i c a l p o t e n t i a l
servance of 12c* i n the (160,12c) r e a c t i o n on
shapes from e l a s t i c s c a t t e r i n g , s o we w i l l prob-
heavy n u c l e i . I f some s o r t of e q u i l i b r i u m was
a b l y have t o c a l c u l a t e these p o t e n t i a l s i n t h e
s e t up i n t h e neck, t h e s t a t i s t i c a l d i s t r i b u -
future
t i o n of energy would make i t u n l i k e l y t h a t t h e
l i g h t e r outgoing p a r t i c l e i s e x c i t e d .
J.G.
G , MORRISON (Saclay)
CRAMER ( S e a t t l e )
.
G. MORRISON (Saclay)
I agree
- and
i n f a c t the w r i t t e n version of my
t a l k i n c l u d e s r e f e r e n c e t o your very i n t e r e s t i n g
One of the e a r l y hopes f o r heavy i o n t r a n s f e r
work examining t h e b a s i s of the heavy-ion o p t i -
r e a c t i o n s was t h a t Coulomb d i s t o r t e d waves could
cal potential.
be used t o d e s c r i b e the r e a c t i o n p r o c e s s , e l i m i n a t i n g the n e c e s s i t y of an a c c u r a t e knowledge of
optical-model parameters. Now we f i n d , i n some
of t h e d a t a and a n a l y s i s t h a t you have describe d , t h a t we a r e s t i l l not only dependent on a
knowledge of o p t i c a l parameters, but a l s o t h a t
these parameters a r e r a t h e r d i f f e r e n t from those
which d e s c r i b e the e l a s t i c s c a t t e r i n g . I wonder
FLEROV (Dubna)
F i f t e e n y e a r s ago t h e problem of complex n u c l e i
i n t e r a c t i o n s was discussed i n USSR. The q u e s t i o n
a r o s e about b u i l d i n g a b i g and expensive a c c e l e r a t o r . Academician L. Arzimovich compared i n
t h i s d i s c u s s i o n t h e heavy ion r e a c t i o n s w i t h
c o l l i s i o n s of two c a r s .
Many, people were a f r a i d
G ,C
. MORRISON
t h a t the information observed i n heavy i o n reac-
t i o n mechanism. On the o t h e r hand the s y n t h e s i s
t i o n s w i l l be unimportant. Nevertheless t h e
of new i s o t o p e s by t r a n s f e r r e a c t i o n s appeared
Coulomb e x c i t a t i o n experiments which s t a r t e d i n
t o be r a t h e r f r u i t f u l . Leaving Dubna f o r Aix I
Leningrad and t h e s y n t h e s i s of the f i r s t e l e -
discussed t h i s problem w i t h Doctor V. Volkov
ment-102
t h e l e a d e r of both t h e s e d i r e c t i o n s . We d i d n o t
(Joliotium) showed t h e b i g f u t u r e of
heavy i o n physics.
come t o t h e f i n a l conclusion. P r o f e s s o r
I n a l l t h i s p e r i o d we have had many doubts about
Morrison's r e p o r t w i l l help us very much out-
importance of t h e information which can be ex-
l i n e our p o s i t i o n i n t h i s f i e l d .
t r a c t e d i n t h e i n v e s t i g a t i o n of t r a n s f e r reac-
-