Carbonyl sulphide eddy covariance fluxes as a proxy for gross primary production Arnaud P. Praplan Division of Atmospheric Sciences, University of Helsinki, Helsinki, Finland 3rd ICOS Finland Science Workshop 28.5.2014 www.helsinki.fi/yliopisto 27/05/14 1 Introduction (I) Carbonyl sulphide (COS = OCS) Most abundant sulphur containing natural trace gas in the atmosphere (~500 pptv) Seasonal variations (stronger in the Northern Hemisphere) Low reactivity → long lifetime (3-4 years) Vertical gradient Campbell et al. (2008) Montzka et al. (2012) Berry et al. (2013) www.helsinki.fi/yliopisto 2 Introduction (II) OCS sources and sinks (1) ? DMS (SC2H6) ...or 2.5 Tg[S] or 0.94 Tg[C] (Atmosphere: 720'000 Tg[C]) Chin and Davis (1995) Watts (2000) Falkowski (2000) 3 www.helsinki.fi/yliopisto Introduction (III) OCS sources and sinks (2) ...are roughly balanced 2.5 Photolysis Reaction with O(3P) Reaction with OH Vegetation Annual flux (Tg/yr) 2 largest Oxic soils Anthropogenic (direct) 1.5 uncertainty Biomass Burning CS2 oxidation Sinks Sources DMS oxidation 1 Precipitation Volcanism Wetlands Anoxic soils 0.5 Coastal ocean (including salt-marshes and estuaries) Open ocean 0 Sinks Sources Watts (2000) www.helsinki.fi/yliopisto 4 Introduction (IV) Eddy covariance (EC) Burba (2013) Statistical method to determine exchange rates of trace gases over ecosystems. No single methodology, but unifying networks (e.g. ICOS). www.helsinki.fi/yliopisto 5 Introduction (V) Gross primary productivity Vargas et al. (2012) Kolari et al. (2009) GPP: Gross primary productivity = 0 (if solar elevation angle<0.02) = -NEE+Reco = from light response (9 days moving time window) NEE: Net Ecosystem Exchange = measued = -GPP+Reco Reco: ecosystem Respiration (always measured, night time) RAp: plant respiration RS: soil respiration RAs: autotrophic soil respiration Rh: heterotrphic soil respiration www.helsinki.fi/yliopisto 6 Introduction (VI) GPP from OCS EC fluxes CO2 + H2O ↔ H+ + HCO3reversible OCS + H2O → H2S + CO2 irreversible (enzymatic) Here: LRU* ~1.6 (Leaf-scale relative uptake) (leaf-scale normalized ratio of COS to CO2 assimilation rates (diffusivity, dissolution, reaction rates), ignore soil) Asaf et al. (2013) www.helsinki.fi/yliopisto 7 Introduction (VII) SMEAR II: Hyytiälä Station for Measuring Ecosystem-Atmosphere Relations located in a boreal pine forest environment (99% Scots pine) comprehensive and continuous measurements – gas phase – particles – ions Kulmala et al. (2001) www.helsinki.fi/yliopisto 8 Introduction (VIII) COS measurements (2013) 127m 23m Location: Eddy tower/REA cottage (close to main SMEAR II cottage and mast) Sampling Above canopy (23m) Period: Since April 2013 (with interruptions) www.helsinki.fi/yliopisto 9 “COS instrument” (I) COMPACT CW-QC-TILDAS-76-CS Continuous Wave - Quantum Cascade – Tunable Infrared Laser Differential Absorption Spectrometer – 76 – Carbonyl Sulphide = “QCL Mini Monitor” (1-20 Hz) 0.5 L, 30-60 Torr 2050 cm-1 (T-depenent) www.helsinki.fi/yliopisto 10 “COS instrument” (II) absorption spectrum Beer-Lambert Law N = A / (σ L) OCS CO2 H2O N: number density A: fractional absorption σ: absorption cross section L: optical path length → no calibration required! www.helsinki.fi/yliopisto 11 Results (I) Mixing ratio time series Montzka et al. (2012) Hyytiälä 2013 (SMEAR II) Southern hemisphere Northern hemisphere www.helsinki.fi/yliopisto 12 Results (II) CO2 and H2O www.helsinki.fi/yliopisto 13 Results (III) OCS fluxes www.helsinki.fi/yliopisto 14 Results (IV) sites comparison SMEAR II, Hyytiälä (Finland) 3 pine forests, wheat and cotton fields (Israel) Asaf et al. (2013) www.helsinki.fi/yliopisto 15 Results (V) GPPCOS Pine forest, Israel (710mm annual precipitation) Pine boreal forest (SMEAR II), Finland (700mm annual precipitation) Asaf et al. (2013) www.helsinki.fi/yliopisto 16 Results (VI) GPPCOS (corrected for night flux) www.helsinki.fi/yliopisto 17 Results (VII) GPP comparison www.helsinki.fi/yliopisto 18 Results (VIII) Night vs day flux Night: ca. - 6 pmol m-2 s-1 Day: ca. - 25 pmol m-2 s-1 www.helsinki.fi/yliopisto 19 Preliminary results 2014 (I) Mixing ratio 2013 2014 www.helsinki.fi/yliopisto 20 Preliminary results 2014 (III) Spring comparison (1) 2013 2014 www.helsinki.fi/yliopisto 21 Preliminary results 2014 (III) Spring comparison (2) 2013 (final fluxes) 2014 (preliminary fluxes) www.helsinki.fi/yliopisto 22 Conclusions We derived sub-canopy OCS fluxes in Hyytiälä. We also derived GPP values based on OCS fluxes. The mini QCL Mini Monitor agrees well with the LICOR instrument (CO2 and H2O) fluxes Due to low mixing ratio and trouble with the instrument, COS fluxes are noisy. Measurement restarted in 2014 show a reduced scattering. www.helsinki.fi/yliopisto 23 Future work Data filtering? Which criteria? Integration in the online processing/plotting (http://www.atm.helsinki.fi/Eddy_Covariance/OnlineECdata.php) Compute GPP directly from OCS flux routinely? Model(s) integration? Effect of snow? Other effects? www.helsinki.fi/yliopisto 24 Thank you! Questions? Comments? University of Helsinki: Timo, Ivan, Pasi, Sami Aerodyne Research, Inc.: Mark Academy of Finland Center of Excellence (projects no 1118615 and 272041) Nordic Center of Excellence CRAICC SMEAR II: Janne, Veijo The spring campaigns 2013/2014 “shifters” ICOS 271878, ICOS-Finland 281255 and ICOS-ERIC 281250 www.helsinki.fi/yliopisto 25
© Copyright 2026 Paperzz