GEOPHYSICAL RESEARCH LETTERS, VOL.!9, NO. 8, PAGES 761-764, APRIL24, 1992 METALLIFEROUS SEDIMENTSAND THE SCAVENGINGRESIDENCETIME OF Nd NEAR HYDROTHERMAL VENTS Alex N.Halliday 1,Jon P.Davidson 2,Peter Holden 2,Robert M.Owen i and Annette M.Olivarez 3 Abstract:.The isotopiccompositionof Nd is uniformin Piepgras andJacobsen, !988]. Thisis because particulate metalliferous sediments formedat distances varyingfrom >1000kmto within10km of theEastPacificRise(EPR) scavenging [RuhlinandOwen, 1986; Klinkhammeretal., !983; OwenandOlivarez,1988; OlivarezandOwen, 1989; Germanetal., 1990] resultsin shortresidencetimes palaeoridge. These dataindicate thathydrothermal vent fluids, despite havingconcentrations morethan500times compared withthemixingtimesof theocean.Goldsteinand Jacobsen [1987]utilizedtheNd andSr isotopic compositions ofriverwaters andtheoceans to showthatthepresent greater, havenoeffectontheNdisotopic composition of seawater. Thisimplicatesefficientscavenging of hydrothermal Nd byparticulates, resulting in extremely short hydrothermal flux of Nd to theoceansmustbesmall(<5%), residence times(< 1 year)closeto the hydrothermal vents. Therefore Nd isotopicstudiesof ancientseawater and obtained a residence time for Nd in seawater of 7 I00 years[GoldsteinandJacobsen, 1988]. Here we showthatthe isotopic composition of Nd in metalliferous sediments from neartheEastPacificRiseis totallyunaffected by hydrothermal inputs.Thisis because of theimportance of scavenging whichpreventshydrothermal Nd frommixing with seawateronanythingotherthana localscalecloseto thevents.AssuchNd isotopic compositions cannotbeused toinferancient hydrothermal fluxeswithoutindependent constraints ontheextentof scavenging. precipitates, particularly metalliferous sediments, cannot be used to delimitthe magnitudeof pasthydrothermal circulation withoutindependentconstraintson local scavenging rates(or residence times)relativeto thoseof modem oceans. Introduction Estimates of the magnitudeof hydrothermalfluxesin ancient oceans havebeenbasedin partontheNd isotopic compositions of chemicalsediments suchasbandediron formations [Jacobsen andPimental-Klose, 1988;Derryand Samplingandanalyticalapproaches Themetalliferous sediments in DSDP corefromLeg92 Jacobsen, 1988]. It has been observedthat the initial end of such earlymetalliferous sediments is relativelyhigh. This haslead to the conclusion that Nd derived from oceanic crust wasmoreimportantin thepastbecauseof higher hydrothermal fluxes. Modem metalliferoussedimentsare Fe-rich pelagicdeposits formedby precipitation from hydrothermal plumesemanatingfrom ventsnearocean ridges suchastheEastPacificRise. Theyformoneof the largest repositories of REE-richparticulates ontheocean floorandaredeposited asthehydrothermal plumeis wafted awayfromtheridgeby oceancurrents.In a recentisotopic study thevariableinfluenceof oceanridge-derived hydrothermal Pb on suchmetalliferoussedimentwas demons•ated [Barrett etal.,1987].Whiteetal.[1986]also showed thattherewasaMORB-like component ofHf in (site598), locatedto thewestof the EastPacificRise (19øS) representa completerecordof hydrothermalsedimentation at theflankof theEastPacificRiseoverthelast16 Myrs.They areidealfor studyingbecauseof the absenceof continentderiveddetritusandlackof organicdiageneticremobilization of Fe andMn [Ruhlin andOwen, 1986]. The lack of diagenetic modification is indicatedby porewaterMn analyses andcomparison of downcoreMn/Fe ratioswith thoseof modemhydrothermal precipitates thatoriginated from EPR ventfluids. Ruhlin and Owen [ 1986] showedthat the REE concentration and ZREE/Fe ratio at this site decreasewith increasingdepthdowncoreandtherefore increasingageof thesesediments.This can be relatedto proximityof theridge;the youngestsedimentswere formed 1139km fromthepalaeoridge whereastheoldest(deepest) sediments wereformedonly9 km fromthepalaeoridge. The concentration of REEsin particulates mightthenbe expected reflect thelocalctntinental crustal provenanco oftherare to increaseasa resultof scavenging from seawater,in earth elements (REEs), rather thanhydrothermal componentsproportionto the distancetravelledby the hydrothermal [Piepgras etal.,1979; Piepgras andWasserburg, 1980,1985; plumefromtheridge[RuhlinandOwen,1986]. A plotof seawater. In contrast, theisotopic composition of Nd in seawater hasbeenshownto beregionally variable andto Goldstein andO'Nions, 1981;Palmer andElderfield, 1985; rare earth element concentrations versus distance from pa!aeoridge axisdisplayeda breakof slopeat the ageat whichthesediments passedthroughthepalaeolysocline 1Department ofGeological Sciences,University ofMichigan, suggesting thattheconcentrations werealsoaffectedby post2Departrnent ofEarth &Space Sciences, University of depositional scavenging at the seawater/sediment interface California atLosAngeles, [Ruh!inandOwen, 1986]. The variationsin REE 3Department ofEarth Sciences, University ofNotre Dame concentration could then also reflect a decrease in burial rate with distancefrom the ridge. Six representative samplesfrom DSDP Leg 92, site598, coveringtherangein agesand palcodistance(9-1085 km) Copyright 1992 bytheAmerican Geophysical Union. Paper number 92GL00393 0094-8534/92/92GL_00393503.00 wereselected for Nd isotopic analysis.Detaileddescriptions of the samplescan be foundelsewhere[Ruhlin and Owen, 761 762 Hallidayetal.' Metalliferous sediments 1986].Thesediments arecomposed almostentirely of thebulksediment (Figurela). Similarlythebulksediment mixturesof carbonatesandmetalliferous (hydr)oxides, the has thesame orslightly higher 143Nd/r44Nd than the latterrepresenting theoverwhelmingly dominant repository ofNd. Attemptsweremadeto isolatethesecomponents utilizingsequential leachingexperiments asderailed in Table residue. Theresidues (withrelatively unradiogenic Nd) 1. In thefirst experimentthebulksediments wereanalyzed withno preparation.In the secondexperiment thesamples wereleachedwith hydrochloricacid,andthe leachateand residueanalyzed. The hydrochloricacidleachshould dissolve carbonates, butis alsoexpected to dissolve a large amountof themetalliferousoxides.For thethirdexperiment two samples(oldestandyoungest)wereleachedsuccessively with water, aceticacid and hydrochloricacidto matchthe preparation usedby Barrettet al. [ 1987]for Pbisotopic studies of sediments from the same site. The water is couldrepresent a smallcomponent of atmospheric particulates. Howeverthesevariations aretrivialandtheNd isotopic compositions areeffectively uniform, withnosign ofa greater MORBcontribution in oldersamples deposited closerto thepaleoridge (Figurelb). TheNd isotopic compositions aremoreuniformandlower (eNd= -5.2 to -4.4)thantherangeforPacificauthigenic sediments reported byPiepgras etal.[1979](eNd=-4.4 to-0.2). Thehigher valuesreportedby Piepgraset al. werefor metalliferous sediments andhydrothermal crusts.Comparable datawere obtainedO'Nions et al. [1978] and Goldsteinand O'Nions [19811. The uniformNd isotopiccompositions cannotreflectlate expectedto dissolveonly highlysolublephases(suchas NaCI), whereasmost carbonateswill be solublein acetic acid. The HC1 acidis expectedto dissolvethemain alteration of metalliferous oxides in thesediment pile.First, thereisnoevidence of REEenrichment withdepth, asmight metalliferous(hydr)oxidephases.The smallamountof residuein all theseexperiments(dissolvedin hydrofluoric, perchloricandnitric acids)is expectedto be a mixtureof minorsilicatesandorganiccompounds. beexpected if theNd isotopiccompositions wereduetolate adsorption of REEsfromdownward penetrating fluids.The Nd isotopiccompositions of metalliferous sediments The Nd isotopiccompositions of eachof theleachates andresiduesarepresented in Table 1. Metalliferous oxidedominated Nd isotopiccompositions areto beexpected from thebulk sediments andall the hydrochloric acid!eachates. These leachates have thesame, orhigher 143Nd/144Nd than ZREEsdecreases dramatically withdepth, ageandproximity to thepalcoridge[RuhlinandOwen, 1986]. Second,the Fe/Mn ratiosandorganiccarbonconcentrations, whichare verysensitive to diagenesis, areclearlywell preserved [OlivarezandOwen,1989]. Third,theoldestsamples have the lowest REE concentration and should have sufferedthe most extensive alteration. Yet these have the most pronounced positiveEu anomaliesrelativeto seawater [HOgdahl et al., 1968]indicatingthepreservation of a significant hydrothermal component [Ruh!inandOwen, TABLE1. 143Nd/144Nd ratios ofDSDPsediments fromsite598 Samplenumber 1 2 3 4 5 6 DSDP number 1/1-46/48 1/3-88/90 3.89 802 229 0.512380-2_8 0.512429+7 0.512365+13 2/4-28/30 8.74 3/13-!8/20 12.3 4/6-19/21 !4.6 5/6-58/60 15.9 450 95 0.512426_+9 -0.512377+13 227 70 0.512409+8 0.512451+8 -- 85 66 0.512418+7 0.512435+7 0.512421+23 9 54 0.5123905-_6 0.512402•4 -- Age (Ma) 0.47 Distancefrompaleoridge(km) 1085 Nd ppm 155 (1) Bulk sediment 0.512373+7 (2) Hydrochloricacid leach (2) Residue (3) Water leach 0.512389+8 0.512384+11 0.512377+15 (3) Acetic acid leach 0.512379_+9 (3) Hydrochloricacidleach (3) Residue 0.512411+12 0.512372.•.12 ........ ........ ........ 0.512387-+9 0.512390•_10 0.512360•_12 All dataobtained attheRadiogenic Isotope Geochemistry Laboratory attheUniversity of Michigan, usingstandard ionexchange separation techniques anda VG Sector moulticollector massspectrometer, asdescribed elsewhere (Hal!iday et al., 1989).%e average value ofI43Nd/144Nd fortheLaJolla Ndstandard was 0.511855+8 (2c• mean, n=18). Numbers inparentheses denote separate experiments (seetext). Forthedetailed leaching experiment (3) onsamples ! and6, thefollowing procedure was adopted. Thepowdered sample wasslurried inpuredeionized H20 andleftforc_.18hours, warmed for 1/2hourandfiltered. Thetiltrate(containing water-soluble components suchassalt),wascentrifuged andanyprecipitate whichhadcircumvented the filtration process was discarded. It was then evaporated andtaken upin! mlof2.5NHC1, andanalyzed for143Nd/144N d following standard ionexchange separation. Theresidue wasrinsed fromthefilterpaperintoa beaker, evaporated todryness, and !0% distilledacetic acid added. This shouldhave resultedin the dissolutionof most carbonate. The leachateandresidue wereagainseparated byfiltration andtheleachate analyzed. Theresidue wasevaporated to dryness, thenleached with10% distilled HC1 for2 hours. Leachate and residue were separated asbefore and theHCl-soluble component analyzed. Followi ng evaporation, totaldissolution of theremaining residue wasachieved using HF,HNO3 andHC10 4. Thisfraction wast•e• analyzed. Hallidayet al.' Metalliferoussediments BulkSediment I-I Leachate I "1 I,, I I,,, I Residue I I I 1:3 0.51245 - O ' : O •!1 7 63 [Michardet al, 1983;Piepgras andWasserburg, 1985; MichardandA!bar•de,1986;HinkleyandTatsumoto, 1987], thevariabilityreflectingdilutionwith seawater, and interaction andscavenging enrouteto thesamplingsite. Giventheextremelylow concentrations of Nd in seawa'ter (<10 -5ppm) [HOgdahl, 1968], compared withconcentrations 500 timeshigherin projectedendmember EPRventfluids 0.51240 - [Hinkley andTatsumoto,1987], the ratio of vent fluid to | "0 0.51235 Z I I I I I I i b Z ß.- seawater needs to be < 0.001, even at a distance as close as 9 km from thepa!eoridge,unlessNd is beingvery efficiently removedby scavengingcloseto the vents. A roughindependent estimateof the amountof ventfluid relativeto seawaterin thevertical sectionoverlyingthe pa!eosediment surfacecanbe obtainedfrom Mn/N:dratiosin the sediments. The Mn in the metalliferous 0.5130 sediment is derivedwhollyfrom thehydrothermal component sincethe - Mnenrichment intheplume relative toseawater is106. The isotopicdatapresented hereindicatethatthe Nd is derived entirelyfrom seawater.The ratio of Nd in seawaterto Mn in hydrothermal vent fluids isroughly 7x!0-5[German etal., 1990;Von Dammet al., 1985]. The sedimentdeposited9 0.5125 - ' I 18.7 -- I I I II ! r-i r-i o B o , 0 4 8 12 16 Age (Ma) Fig.1. Variationin isotopiccompositions of metalliferous sediments fromDSDPLeg92, Site598,locatedtothewest oftheEastPacificRise(19øS),asa functionof age.a) 143Nd/144Nd ofbulksediments, metalliferous oxide km from the ridge has a Mn/Nd ratio of 5400 [Ruhlin and Owen,1986]. ignoringdifferentialscavenging, theproduct of thesetwo figures(0.4) gives an order of magnitudevalue for thehydrothermalfluid/seawaterratio at thisdistance. The averageseawaterresidencetime of Nd wasdetermined by GoldsteinandJacobsen [GoldsteinandJacobsen,1988] at 7100 years. This is considerablyin excessof the scavenging residencetime of Mn in a hydrothermalplumedeterminedby Weiss [1977] at 50 years. However the only way for the hydrothermal fluid/seawater ratio of < 0.001 calculatedusing theNd isotopicdatato be reconciledwith thatcalculated usingMn/Nd ratiosis for the scavenging residencetime of Nd to be lessthan50 years.Post~depositional scavenging of Nd wouldnot affect thisconclusion,and the dataimplicate rapidscavenging nearthevents,effectivelyremovingthe hydrothermal component of Nd suchthatthereis no contribution to the metalliferoussediments.Applicationof modelsquantifyingtraceelementscavenging in ternasof oxideleachatesrelative to field for East Pacific Rise basalts residencetime relativeto dispersalrate in the oceans[Weiss, 1977; Craig, 1974] indicatesthat localizedresidencetimes for hydrothermal Nd fromtheplumehaveto be extremely short(< 1 year)to achieveevena factorof 2 reductionin concentration within !0 kms of the vents. The mostlikely [Whiteet al., 1987]. explanation of suchrapidscavenging is thatNd is removed leachates, andleachate residues. b) datashownin (a)relative tofieldfor EastPacificRisebasalts[Whiteet al., 1987].c) Pbisotopic dataof Barrettet al. [1987]formetalliferous 1986], consistent withtheiroriginaldeposition site,closest to thepalcoridge. Last,majorelementstudies of porewaters suggest a minor amountof carbonatedissolution;otherwise nosignificant post-depositional effects. Theresultsfor Nd contrastwith thosefor Pb [Barrett instantaneously at hydrothermalvents,presumablyby absorptionon the surfacesof the large volumesof dense particulates producedin andaroundtheplumes[Olivarezand Owen, 1989; German et al., 1990]. Hydrothermal Nd is notincorporated to any greatextent in oceancirculationat thepresenttime, aspredictedby etal,1987],whichshowa clearMORBcomponent overall Piepgras andWasserburg [! 980] andGoldsteinandJacob,,;en Leg92sites, whichincreases withproximity tothe [1987]. It is for the samereasonthat the REE patternof seawatershowsonly localizedminor evidenceof enhanced Eu relatingto thepositiveEu anomalyin hydrothermal, •ent fluids[GoldsteinandJacobsen, 1988]. Similarly, vents (Figurelc). Thisisnotsurprising in viewof thefact thatocean floorhydrothermal solutions maycontain upto 2,000 ppmPb[VidalandClauer,1981;Brevart etal.,198!] fluxesarebetterestimated by massbala]'•cing butless than 0.01ppmNd[Hink!ey andTatsumoto, 1987]. hydrothermal the Sr rather than Nd isotopic compositions of seawaterand Nevertheless, thehydrothermal component should stillbe detectable intheNdisotopic compositions if theycontributecontinentalrunoff [Goldsteinand Jacobsen,1987]. aslittleas3% of theNd. The concentrations of Nd in vent fluids relative toseawater typically lieintherange 6- 100 Increased hydrothermal ridgefluxeswill probabl,y not changethisscenariosinceit is the hydrothermal pa•,•dculates 764 Halliday etal.: Metalliferous sediments themselvesthatarecausingthe scavenging [Owenand Olivarez,1988, 1989]. The greaterthecontribution of hy•'othermal particulatesthe moreefficientthe scavenging andthe lesshydrothermalNd entersthe oceans.The Nd isotopiccompositions of metalliferoussediments ancientand Halliday,A.N., Mahood,G., Holden,P., Metz, J.M., modem are thereforean ineffectivemonitorof theintensity of oceanfloor hydrothermalactivity. The extentto which theNd isotopiccompositionof a metalliferous sediment indicatesthe importanceor otherwiseof hydrothermal fluxes Jacobsen, S.B.andPimental-Klose, M.R. EarthPlanet.$ci. Dempster,T.J. and Davidson,J.P. Earth Planet.Sci. Lett. 94, 274-290 1989. Hinkiey,T.K. andTatsumoto, M. Jl. Geophys. Res.,92, 11,400-11,410 1987. Lett., 87, 29-44 1988. Klinkhammer, G., Elderfield,H. andHudson, A. Nature, 305, 185-188 1983. Michard, A., Albar•de, F., Michard, G., Minster,J.-F. and Chafious, J.-L. Nature, 303,795-797 1983. Michard, A. and Albar•de. Chem. Geol., 55, 51-60 1986. Olivarez, A.M. and Owen, R.M. Geochim. Cosmochirn. will cleaxlydependonproximityof theplumesource,the plumevelocityandresidence times.REE residence timesare a functionof scavenging, whichis dependent onocean chemistry.Henceuseof Nd isotopiccompositions of chemicalsediments for studyingpalcogeography of continental landmassescouldyieldambiguous resultsfor the Acta, 53, 757-762 1989. O'Nions,R.K., Carter,S.R., Cohen,R.S., Evensen,N.M. and Hamilton, P.J. Nature, 273, 435-438 1978. Owen, R.M. andOlivarez, A.M. Mar. Chem.,25, 183-196 Precambrian,sinceREE residencetimesmay havebeen longerbecauseof greatersolubilityof Fe in theearlyoceans. It is thereforecritical to understandthe relativeimportanceof scavenging in thegeologicalpast,andto document the isotopiccompositionof Nd in thecontinental sources exposedat the time in question,beforetheNd isotopic compositions of Precambrian bandedironformations in particular,canbe utilizedto indicatethemagnitude of ancienthydrothermalfluxes [Jacobsen andPimental-Klose, 1988. Palmer,M.R. andElderfield,H. EarthPlanet.Sci.Lett.,73, 299-305 1985. Piepgras,D.J. andJacobsen,S.B. Geochim.Cosmochirn. Acta, 52, !373-1381 1988. Piepgras, D.J. andWasserburg, G.J. EarthPlanet.Sci.Lea., 50, 128-138 1980. 9881. Piepgras,D.J. andWasserburg,G.J. Earth Planet.Sci.Lett., Acknowledgements. This researchwas supported from NationalScienceFoundation,MichiganMemorialPhoenix ProjectandTurnerFundgrantsto ANH, for isotopicstudies of hydrothermalprocesses.ANH thanksKlausMezger, CharlieDeWolf andGarethDaviesfor criticismof the script Piepgras,D.J., Wasserburg,G.J., andDasch,E.J. Earth 72,341-356 1985. Planet. Sci. Lett., 45, 223-236 1979. Ruhlin, D.E. and Owen, R.M. Geochim. Cosmochim.Acta, 50, 393-400 1986. Vidal, P. and Clauer, N. Earth Planet. Sci. Lett., 55, 237-246 and, or, discussion. 1981. Von Damm, K.L., Edmond, J.M., Grant, B., Measures,C.I., Walden, B. and Weiss, R.F. Geochim. Cosmochim.Acta, 49, 2197-2220 1985. Weiss, R.F. Earth Planet. Sci. Lett., 37, 257-262 1977. References Barrett,T.J.,Taylor,P.N. andLugowski, J. Geochim. Cosmochim.Acta, 51, 2241-2253 1987. White, W.M., Holmann, A.W. and Puchelt,H. Jl. Geophys. Brevart,O., Dupre,B. andAll•gre,C.J. Econ.Geol.,76, Res., 92, 4881-4893 1987. White, W.M., Patchett,J. and Ben Othman, D. Earth Planet. Sci. Lett., 79, 46-54 1986. 1205-1210, 1981. Craig,H. EarthPlanet. Sci.Lett.,23, 149-1591974. Derry,L.A. andJacobsen, S.B. Geophys. Res.Lett.,15,397400 1988. German,C.R.Klinkhammer, G.P.,Edmond, J.M.,Mitra,A. andElderfield,H. Nature, 345, 516-518 1990. Goldstein, S.J.andJacobsen, S.B. Chem.Geol.66, 245-272 1987. Goldstein, S.J.andJacobsen, S.B. EarthPlanet.Sci.Lea., 89, 35-47 1988. ,Goldstein, S.L. andO'Nions,R.K. Nature,292,324-327 •_ . ,, A.N. Hal!iday and R.M. Owen, Departmentof Geological Sciences, University of Michigan,AnnArbor, MI 48109-1063. J.PDavidsonandP. Holden,Department of Earth& SpaceSciences, Universityof California,LosAngeles, CA 90024. A.M. O!ivarez,Department of EarthSciences, University of Notre Dame, Notre Dame, IN 46556. 1981. HOgdahl,O.T., Melson,S. andBowen,V.T. Adv.Chem. Ser., 73, 308-325 1968. (Received:December 5, 1991: accepted:February7, 1992.)
© Copyright 2026 Paperzz