Aerosol and chemical transport in tropical convection ACTIVE Geraint Vaughan University of Manchester, UK on behalf of the ACTIVE team The Consortium • • • • • • • • • • University of Manchester University of Cambridge University of York, UK York University, Canada DLR, Oberpfaffenhofen, Germany FZ Julich, Germany NCAR, Boulder, USA Australian Bureau of Meteorology Airborne Research Australia NERC Airborne Research Facility Scientific problems • How does air get to the Tropical tropopause layer (TTL)? By large-scale transport or by rapid convective uplift? What is the partitioning between these sources? • How much, and what kind of aerosol, reaches the TTL in deep convection? • How does this aerosol affect the development of cirrus clouds in the TTL? Objectives Relate measurements of aerosols and chemicals in the TTL to low-level sources. Determine how deep convection modifies the aerosol population reaching the TTL, and thus evaluate its impact on cirrus nucleation. Determine the relative contribution of convection and large-scale transport to the composition of the TTL over Darwin. Compare the effects of monsoon and premonsoon convection on the composition of the TTL. Determine the contribution of deep convection to the NOx and O3 budget in the TTL Measure how much black carbon reaches the outflow regions of the storms. Field campaign in Darwin Graphic courtesy of TWPICE Airborne measurements for ACTIVE Ozonesondes (profiles) ARA Egrett, 10 - 15 km NERC Dornier 0-5 km Egrett payload Basic Meteorology and position Pressure, temperature, wind (1 Hz), GPS DMT Single Particle Soot Photometer (SP-2) † Aerosol particle size distribution (0.2 – 1.0 µm), light absorbing fraction (LAP), carbon mass, metal 2 x TSI-3010 Condensation Particle Counter (CPC) Total condensation particles > 40 nm & > 80 nm DMT Cloud, Aerosol & Precipitation Spectrometer (CAPS) Cloud Droplet psd, aerosol/small particle assymetry, aerosol refractive index,large ice psd, (0.3<Dp<3,200 µm), Total Liquid Water Content DMT Cloud Droplet Probe (CDP) Particle Size Distribution (2< Dp<60 µm) SPEC Cloud Particle Imager CPI-230 Cloud particle/ice CCD images, (30 < Dp< 2,300 µm) Buck Research CR-2 frost point hygrometer Temperature, dew/ice point, 20 s, 0.1 2X Tunable diode laser Hygrometer (SpectraSensors) Water vapour, 2 Hz, 0.005 ppmv precision Julich CO analyser High precision (± 2 ppb), fast response (10 Hz) CO Cambridge Miniature Gas-Chromatograph Halocarbons (Cl, Br, I), 3-6 min, 5% TE-49C UV Ozone sensor Ozone concentration (± 1 ppbv, 10 seconds) Adsorbent tube carbon trap C4-C9 aliphatics, acetone, monoterpenes NO and NO2 chemiluminescent detector † 200 ppt @ 10 Hz; 30 ppt @ 4 s integration † alternates Aerosol Chemistry Humidity Cloud Physics Met/Position Dornier payload Basic meteorology Aventech probe ARSF/Manchester Position/Timing GPS ARSF Aerosol Mass Spectrometer Aerosol compositionn, 30 – 2000 nm Manchester Condensation particle counter Aerosol concentration > 10 nm Manchester Grimm Optical Particle Counter Aerosol size distribution, 0.5 – 20 μm Manchester Ultra high sensitivity aerosol spectrometer Aerosol size distribution 50 nm – 2 µm Manchester Aerosol spectrometer probe Aerosol size distn, 0.1 – 1 µm Manchester FSSP Aerosol, size ( 2- 47 µm) Manchester Filters Coarse aerosol composition Manchester Ozone UV absorption, 2B York CO AL5003 York VOC Adsorbent tubes York NO/NOx Chemiluminescence/catalysis York Halocarbons DIRAC gas chromatograph Cambridge Black Carbon PSAP DLR Aerosol Chemistry Met/Position Experiment Plan: two campaigns 7 Nov- 10 Dec 2005 concentrating on HECTOR. With SCOUT-O3: European campaign to study TTL and TLS using DLR Falcon and Russian Geophysika. 16 Jan-17 Feb 2006 concentrating on monsoon and continental convection. With TWP-ICE: US/Australian campaign to study cirrus clouds and convection using multiple aircraft and ground-based instruments Campaign 1 Nov 13 ED 14 20 21 27 E 28 D F 5 ED GF 4 ED Test Survey Singlecellular Hector 15 ED 16ED 17 GF 22 23 D 24 D GF 18 25 19 D GF 26 29 2 3E 9E 10 E 30ED 1 ED GF GF(2) 6E 7 8E Hector Mixed survey/Hector Multi-cellular Hector Dec Mini-monsoon Campaign 2 Jan 16 22ED T 29 23 E T 30 D 5 6 ED PT 12 ED 13 E PT Test Survey Westerly Monsoon Singlecellular 17 18 24 25 ED 26 D PT 27 ED 28 PT 31 E 1 ED 3 ED 7 19 D 8 ED T 14 ED 15 E Hector 2D 9 20ED 21 4 D 10ED 11 T PT 16 17 Feb Monsoon Aged anvil Lidar Monsoon trough Multi-cellular Hector Inactive Monsoon Evolution of Egrett CO profiles during ACTIVE Data from A. Volz-Thomas and W. Pätz 16 Nov 2005 15.4 5 17:00 Satellite data from BoM, aircraft tracks by G. Allen Cloud particles: CAPS Cloud imaging probe: large particles Data: A. Heymsfield and A. Bansamer Cloud and aerosol spectrometer: small particles Cloud Particle Imager Data: P. Connolly Dornier CO and aerosol, 16/11/05 Data from J. Hamilton, M. Flynn and P. Connolly Dornier CO and aerosol, 8/2/05 Data from J. Hamilton, M. Flynn and P. Connolly “Chemical Equator” flight 3/2/06 CO in ppbv, Aerosol > 300 nm in cm-3 Data from J. Hamilton, M. Flynn and P. Connolly Summary • Around 30 flights with each aircraft in and around tropical convection • Inflow conditions change from polluted early in November (smoke from biomass burning) to very clean in Jan/Feb • Hectors observed in polluted and clean regine • Monsoon convection observed in the second half of January The Consortium University of Manchester: University of Cambridge: University of York (UK): Geraint Vaughan (PI), Tom Choularton, Hugh Coe Martin Gallagher, Keith Bower John Pyle, Neil Harris, Peter Haynes, Rod Jones Ally Lewis York University (Toronto): Jim Whiteway DLR (Germany): Reinhold Busen FZ Julich, Germany: Andreas Volz-Thomas NCAR, Boulder: Andy Heymsfield Australian Bureau of Meteorology: Peter May Airborne Research Australia: Jörg Hacker Summary of flights Campaign 1 13 2 Egret t Campaign 2 3 Hector Survey Test Cirrus 7 2 5 3 1 1 Dornier Hector Survey Test Cirrus Monsoon 4 2 1 12 3 O3sondes: 15 7 23 Convection Survey Test 15 7 7 8 Convection Survey Test Summary Campaign 1 Campaign 2 • 7 Egrett Hector flights (3 NOX, 4 aerosol) • 2 Egrett cirrus flights (1 NOx, 1 aerosol) • 1 Egrett survey (aerosol) • 3 Egrett test flights • 7 Dornier convection flights • 3 Dornier survey flights • Intercomparison leg • 2 Dornier test flights • 23 ozonesondes • 2 Monsoon anvil flights (1 NOx, 1 aerosol) • 5 Egrett Hector flights (2 NOX, 3 aerosol) • 3 Egrett cirrus flights (1 NOx, 2 aerosol) • 4 Egrett survey (1 aerosol, 2 lidar, 1 transit) • 1 Egrett calibration flight • 7 Dornier convection flights • 7 Dornier survey flights • Intercomparison flight • 1 Dornier test flights • 8 ozonesondes Aircraft –ACTIVE, TWP-ICE, SCOUT-O3 Max ht 21 km 15 km M-55 Geophysica : In situ microphysics, chemistry ARA Egrett: In-situ microphysics, aerosol, chemistry NASA/DOE Proteus:Remote 15 km sensing, in-situ 11 km DLR Falcon: in-situ, remote sensing 9 km King Air: Upward-looking radar and lidar 5 km NERC Dornier: in-situ, aerosol, chemistry, 3 km ARA Dimona: Fluxes, BL structure Modelling plan Radar reflectivity Tracer fields (e.g. CO) CRM Cloud microphysics Low-level aircraft MAC Output Aerosol Active gases (O3, NOx) TOMCAT Large-scale fields TRAJ Large-scale fields (fine structure) Comparison with data Input Cloud microphysics Clo In Situ measurements EMM Modelling Large scale modelling: p-TOMCAT 3D CTM with detailed chemistry run at, say, 0.5x0.5 Air parcel trajectory model Transport into/out of TTL Large scale structure of TTL Role of lightning NOx on TTL ozone Modelling individual storms: MetOffice CRM + UMIST physics (EMM) physicsof anvils for comparison with data Fluxes of particles, tracers thro’ clouds Microphysics, Aerosols & Chemistry (MAC) More explicit size-resolved aerosol NOx production in lightning
© Copyright 2026 Paperzz