ACTIVE: Aerosol and chemical transport in tropical convection

Aerosol and chemical
transport in tropical
convection
ACTIVE
Geraint Vaughan
University of Manchester, UK
on behalf of the ACTIVE team
The Consortium
•
•
•
•
•
•
•
•
•
•
University of Manchester
University of Cambridge
University of York, UK
York University, Canada
DLR, Oberpfaffenhofen, Germany
FZ Julich, Germany
NCAR, Boulder, USA
Australian Bureau of Meteorology
Airborne Research Australia
NERC Airborne Research Facility
Scientific problems
• How does air get to the Tropical tropopause
layer (TTL)? By large-scale transport or by
rapid convective uplift? What is the
partitioning between these sources?
• How much, and what kind of aerosol,
reaches the TTL in deep convection?
• How does this aerosol affect the
development of cirrus clouds in the TTL?
Objectives






Relate measurements of aerosols and chemicals
in the TTL to low-level sources.
Determine how deep convection modifies the
aerosol population reaching the TTL, and thus
evaluate its impact on cirrus nucleation.
Determine the relative contribution of
convection and large-scale transport to the
composition of the TTL over Darwin.
Compare the effects of monsoon and premonsoon convection on the composition of the
TTL.
Determine the contribution of deep convection
to the NOx and O3 budget in the TTL
Measure how much black carbon reaches the
outflow regions of the storms.
Field campaign in Darwin
Graphic
courtesy
of TWPICE
Airborne measurements for
ACTIVE
Ozonesondes (profiles)
ARA Egrett, 10 - 15 km
NERC
Dornier
0-5 km
Egrett payload
Basic Meteorology and position
Pressure, temperature, wind (1 Hz), GPS
DMT Single Particle Soot Photometer (SP-2) †
Aerosol particle size distribution (0.2 – 1.0 µm), light
absorbing fraction (LAP), carbon mass, metal
2 x TSI-3010 Condensation Particle Counter (CPC)
Total condensation particles > 40 nm & > 80 nm
DMT Cloud, Aerosol & Precipitation Spectrometer (CAPS)
Cloud Droplet psd, aerosol/small particle assymetry,
aerosol refractive index,large ice psd, (0.3<Dp<3,200 µm),
Total Liquid Water Content
DMT Cloud Droplet Probe (CDP)
Particle Size Distribution (2< Dp<60 µm)
SPEC Cloud Particle Imager CPI-230
Cloud particle/ice CCD images, (30 < Dp< 2,300 µm)
Buck Research CR-2 frost point hygrometer
Temperature, dew/ice point, 20 s,  0.1
2X Tunable diode laser Hygrometer (SpectraSensors)
Water vapour, 2 Hz,  0.005 ppmv precision
Julich CO analyser
High precision (± 2 ppb), fast response (10 Hz) CO
Cambridge Miniature Gas-Chromatograph
Halocarbons (Cl, Br, I), 3-6 min,  5%
TE-49C UV Ozone sensor
Ozone concentration (± 1 ppbv, 10 seconds)
Adsorbent tube carbon trap
C4-C9 aliphatics, acetone, monoterpenes
NO and NO2 chemiluminescent detector †
 200 ppt @ 10 Hz;  30 ppt @ 4 s integration
† alternates
Aerosol
Chemistry
Humidity
Cloud Physics
Met/Position
Dornier payload
Basic meteorology
Aventech probe
ARSF/Manchester
Position/Timing
GPS
ARSF
Aerosol Mass Spectrometer
Aerosol compositionn, 30 – 2000 nm
Manchester
Condensation particle counter
Aerosol concentration > 10 nm
Manchester
Grimm Optical Particle Counter
Aerosol size distribution, 0.5 – 20 μm
Manchester
Ultra high sensitivity aerosol
spectrometer
Aerosol size distribution 50 nm – 2
µm
Manchester
Aerosol spectrometer probe
Aerosol size distn, 0.1 – 1 µm
Manchester
FSSP
Aerosol, size ( 2- 47 µm)
Manchester
Filters
Coarse aerosol composition
Manchester
Ozone
UV absorption, 2B
York
CO
AL5003
York
VOC
Adsorbent tubes
York
NO/NOx
Chemiluminescence/catalysis
York
Halocarbons
DIRAC gas chromatograph
Cambridge
Black Carbon
PSAP
DLR
Aerosol
Chemistry
Met/Position
Experiment Plan:
two campaigns
7 Nov- 10 Dec 2005
concentrating on
HECTOR.
With SCOUT-O3:
European campaign
to study TTL and
TLS using DLR
Falcon and Russian
Geophysika.
16 Jan-17 Feb 2006
concentrating on monsoon
and continental
convection.
With TWP-ICE:
US/Australian campaign
to study cirrus clouds and
convection using multiple
aircraft and ground-based
instruments
Campaign 1
Nov
13 ED 14
20
21
27 E
28 D
F
5 ED
GF
4 ED
Test
Survey
Singlecellular
Hector
15 ED 16ED 17
GF
22
23 D 24 D
GF
18
25
19 D
GF
26
29
2
3E
9E
10 E
30ED 1 ED
GF GF(2)
6E
7
8E
Hector
Mixed survey/Hector
Multi-cellular
Hector
Dec
Mini-monsoon
Campaign 2
Jan
16
22ED
T
29
23 E
T
30 D
5
6 ED
PT
12 ED 13 E
PT
Test
Survey
Westerly Monsoon
Singlecellular
17
18
24
25 ED 26 D
PT
27 ED 28
PT
31 E
1 ED
3 ED
7
19 D
8 ED
T
14 ED 15 E
Hector
2D
9
20ED
21
4
D 10ED 11
T
PT
16
17
Feb
Monsoon Aged anvil Lidar
Monsoon trough
Multi-cellular
Hector
Inactive Monsoon
Evolution of Egrett CO profiles during
ACTIVE
Data from A. Volz-Thomas and W. Pätz
16 Nov 2005
15.4
5
17:00
Satellite data from BoM, aircraft tracks by G. Allen
Cloud particles: CAPS
Cloud imaging
probe: large
particles
Data: A. Heymsfield
and A. Bansamer
Cloud and aerosol
spectrometer: small
particles
Cloud Particle Imager
Data: P. Connolly
Dornier CO and aerosol, 16/11/05
Data from J. Hamilton, M. Flynn and P. Connolly
Dornier CO and aerosol, 8/2/05
Data from J. Hamilton, M. Flynn and P. Connolly
“Chemical Equator” flight
3/2/06
CO in ppbv,
Aerosol > 300 nm in
cm-3
Data from J. Hamilton, M. Flynn and P. Connolly
Summary
• Around 30 flights with each aircraft in and
around tropical convection
• Inflow conditions change from polluted
early in November (smoke from biomass
burning) to very clean in Jan/Feb
• Hectors observed in polluted and clean
regine
• Monsoon convection observed in the second
half of January
The Consortium
University of Manchester:
University of Cambridge:
University of York (UK):
Geraint Vaughan (PI),
Tom Choularton, Hugh Coe
Martin Gallagher, Keith Bower
John Pyle, Neil Harris,
Peter Haynes, Rod Jones
Ally Lewis
York University (Toronto):
Jim Whiteway
DLR (Germany):
Reinhold Busen
FZ Julich, Germany:
Andreas Volz-Thomas
NCAR, Boulder:
Andy Heymsfield
Australian Bureau of Meteorology:
Peter May
Airborne Research Australia: Jörg Hacker
Summary of flights
Campaign 1
13
2
Egret
t
Campaign 2
3
Hector
Survey
Test
Cirrus
7
2
5
3
1
1
Dornier
Hector
Survey
Test
Cirrus
Monsoon
4
2
1
12
3
O3sondes:
15
7
23
Convection
Survey
Test
15
7
7
8
Convection
Survey
Test
Summary
Campaign 1
Campaign 2
• 7 Egrett Hector flights (3
NOX, 4 aerosol)
• 2 Egrett cirrus flights
(1
NOx, 1 aerosol)
• 1 Egrett survey (aerosol)
• 3 Egrett test flights
• 7 Dornier convection flights
• 3 Dornier survey flights
• Intercomparison leg
• 2 Dornier test flights
• 23 ozonesondes
• 2 Monsoon anvil flights (1
NOx, 1 aerosol)
• 5 Egrett Hector flights (2
NOX, 3 aerosol)
• 3 Egrett cirrus flights
(1
NOx, 2 aerosol)
• 4 Egrett survey (1 aerosol,
2 lidar, 1 transit)
• 1 Egrett calibration flight
• 7 Dornier convection flights
• 7 Dornier survey flights
• Intercomparison flight
• 1 Dornier test flights
• 8 ozonesondes
Aircraft –ACTIVE, TWP-ICE, SCOUT-O3
Max ht
21 km
15 km
M-55 Geophysica : In situ
microphysics, chemistry
ARA Egrett: In-situ
microphysics, aerosol, chemistry
NASA/DOE Proteus:Remote
15 km sensing, in-situ
11 km DLR Falcon: in-situ,
remote sensing
9 km King Air: Upward-looking
radar and lidar
5 km
NERC Dornier: in-situ,
aerosol, chemistry,
3 km
ARA Dimona: Fluxes, BL
structure
Modelling plan
Radar
reflectivity
Tracer fields
(e.g. CO)
CRM
Cloud
microphysics
Low-level
aircraft
MAC
Output
Aerosol
Active gases (O3, NOx)
TOMCAT
Large-scale
fields
TRAJ
Large-scale
fields (fine
structure)
Comparison
with data
Input
Cloud microphysics
Clo
In Situ measurements
EMM
Modelling
Large scale modelling:
p-TOMCAT 3D CTM with detailed chemistry run at, say, 0.5x0.5
Air parcel trajectory model
Transport into/out of TTL
Large scale structure of TTL
Role of lightning NOx on TTL ozone
Modelling individual storms:
MetOffice CRM + UMIST physics (EMM)
physicsof anvils for comparison with data
Fluxes of particles, tracers thro’ clouds
Microphysics, Aerosols & Chemistry (MAC)
More explicit size-resolved aerosol
NOx production in lightning