Dynamic Models, Autocorrelation and Forecasting Prepared by Vera Tabakova, East Carolina University 9.1 Introduction 9.2 Lags in the Error Term: Autocorrelation 9.3 Estimating an AR(1) Error Model 9.4 Testing for Autocorrelation 9.5 An Introduction to Forecasting: Autoregressive Models 9.6 Finite Distributed Lags 9.7 Autoregressive Distributed Lag Models Principles of Econometrics, 3rd Edition Slide 9-2 Figure 9.1 Principles of Econometrics, 3rd Edition Slide 9-3 yt f ( xt , xt 1 , xt 2 ,...) (9.1) yt f ( yt 1 , xt ) (9.2) yt f ( xt ) et Principles of Econometrics, 3rd Edition et f (et 1 ) (9.3) Slide 9-4 Figure 9.2(a) Time Series of a Stationary Variable Principles of Econometrics, 3rd Edition Slide 9-5 Figure 9.2(b) Time Series of a Nonstationary Variable that is ‘Slow Turning’ or ‘Wandering’ Principles of Econometrics, 3rd Edition Slide 9-6 Figure 9.2(c) Time Series of a Nonstationary Variable that ‘Trends’ Principles of Econometrics, 3rd Edition Slide 9-7 9.2.1 Area Response Model for Sugar Cane ln A 1 2 ln P ln At 1 2 ln Pt et (9.4) yt 1 2 xt et (9.5) et et 1 vt Principles of Econometrics, 3rd Edition (9.6) Slide 9-8 yt 1 2 xt et (9.7) et et 1 vt (9.8) E(vt ) 0 var(vt ) v2 cov(vt , vs ) 0 for t s (9.9) 1 1 Principles of Econometrics, 3rd Edition (9.10) Slide 9-9 E (et ) 0 (9.11) 2 var(et ) e2 v 2 1 (9.12) cov et , et k e2k Principles of Econometrics, 3rd Edition k 0 (9.13) Slide 9-10 corr(et , et k ) cov(et , et k ) var(et ) var et k cov(et , et k ) e2k 2 k (9.14) var(et ) e corr(et , et 1 ) yˆt 3.893 .776 xt (se) (.061) (.277) Principles of Econometrics, 3rd Edition (9.15) (9.16) Slide 9-11 Principles of Econometrics, 3rd Edition Slide 9-12 Figure 9.3 Least Squares Residuals Plotted Against Time Principles of Econometrics, 3rd Edition Slide 9-13 T rxy cov( xt , yt ) ( xt x )(yt y ) var( xt )var( yt ) t 1 T T t 1 t 1 2 2 ( x x ) ( y y ) t t (9.17) T r1 cov(et , et 1 ) var(et ) eˆt eˆt 1 t 2 T 2 ˆ e t 1 (9.18) t 2 Principles of Econometrics, 3rd Edition Slide 9-14 The existence of AR(1) errors implies: The least squares estimator is still a linear and unbiased estimator, but it is no longer best. There is another estimator with a smaller variance. The standard errors usually computed for the least squares estimator are incorrect. Confidence intervals and hypothesis tests that use these standard errors may be misleading. Principles of Econometrics, 3rd Edition Slide 9-15 Sugar cane example The two sets of standard errors, along with the estimated equation are: yˆt 3.893 .776 xt (.061) (.277) 'incorrect' se's (.062) (.378) 'correct' se's The 95% confidence intervals for β2 are: (.211,1.340) (incorrect) (.006,1.546) (correct) Principles of Econometrics, 3rd Edition Slide 9-16 yt 1 2 xt et (9.19) et et 1 vt (9.20) yt 1 2 xt et 1 vt (9.21) et 1 yt 1 1 2 xt 1 (9.22) Principles of Econometrics, 3rd Edition Slide 9-17 et 1 yt 1 1 2 xt 1 (9.23) yt 1 (1 ) 2 xt yt 1 2 xt 1 vt (9.24) ln( At ) 3.899 .888ln( Pt ) (se) (.092) (.259) Principles of Econometrics, 3rd Edition et .422et 1 vt (.166) (9.25) Slide 9-18 It can be shown that nonlinear least squares estimation of (9.24) is equivalent to using an iterative generalized least squares estimator called the Cochrane-Orcutt procedure. Details are provided in Appendix 9A. Principles of Econometrics, 3rd Edition Slide 9-19 yt 1 (1 ) 2 xt 2 xt 1 yt 1 vt (9.26) yt 0 xt 1 xt 1 1 yt 1 vt (9.27) 1 (1 ) 0 2 1 2 yˆt 2.366 .777 xt .611 xt 1 .404 yt 1 (se) (.656) (.280) (.297) Principles of Econometrics, 3rd Edition 1 (9.28) (.167) Slide 9-20 9.4.1 Residual Correlogram H0 : 0 z T r1 H1 : 0 N (0,1) z 34 .404 2.36 1.96 Principles of Econometrics, 3rd Edition (9.29) (9.30) Slide 9-21 9.4.1 Residual Correlogram 1.96 r1 T 1.96 rk T or 1.96 r1 T 1.96 rk T (9.31) cov(et , et k ) E (et et k ) k var(et ) E (et2 ) (9.32) Principles of Econometrics, 3rd Edition or Slide 9-22 Figure 9.4 Correlogram for Least Squares Residuals from Sugar Cane Example Principles of Econometrics, 3rd Edition Slide 9-23 yt 1 2 xt et yt 1 (1 ) 2 xt yt 1 2 xt 1 vt Principles of Econometrics, 3rd Edition Slide 9-24 Figure 9.5 Correlogram for Nonlinear Least Squares Residuals from Sugar Cane Example Principles of Econometrics, 3rd Edition Slide 9-25 yt 1 2 xt et 1 vt t = 2.439 F = 5.949 (9.33) p-value = .021 yt 1 2 xt eˆt 1 vˆt (9.34) b1 b2 xt eˆt 1 2 xt eˆt 1 vˆt Principles of Econometrics, 3rd Edition Slide 9-26 eˆt (1 b1 ) (2 b2 ) xt eˆt 1 vˆt (9.35) 1 2 xt eˆt 1 vˆt LM T R2 34 .16101 5.474 Principles of Econometrics, 3rd Edition Slide 9-27 yt 1 yt 1 2 yt 2 p yt p vt (9.36) CPI t CPI t 1 yt ln(CPI t ) ln(CPI t 1 ) 100 100 CPI t 1 INFLN t .1883 .3733 INFLNt 1 .2179 INFLNt 2 .1013 INFLNt 3 (se) (.0253) (.0615) Principles of Econometrics, 3rd Edition (.0645) (.0613) (9.37) Slide 9-28 Figure 9.6 Correlogram for Least Squares Residuals from AR(3) Model for Inflation Principles of Econometrics, 3rd Edition Slide 9-29 yt 1 yt 1 2 yt 2 3 yt 3 vt (9.38) yT 1 1 yT 2 yT 1 3 yT 2 vT 1 yˆT 1 ˆ ˆ 1 yT ˆ 2 yT 1 ˆ 3 yT 2 .1883 .3733 .4468 .2179 .5988 .1013 .3510 .2602 Principles of Econometrics, 3rd Edition Slide 9-30 yˆT 2 ˆ ˆ 1 yˆT 1 ˆ 2 yT ˆ 3 yT 1 .1883 .3733 .2602 .2179 .4468 .1013 .5988 (9.39) .2487 u1 yT 1 yˆT 1 ( ˆ ) (1 ˆ 1 ) yT (2 ˆ 2 ) yT 1 (3 ˆ 3 ) yT 2 vT 1 Principles of Econometrics, 3rd Edition Slide 9-31 Principles of Econometrics, 3rd Edition Slide 9-32 u1 vT 1 (9.40) u2 1 ( yT 1 yˆT 1 ) vT 2 1u1 vT 2 1vT 1 vT 2 (9.41) u3 1u2 2u1 vT 3 (12 2 )vT 1 1vT 2 vT 3 Principles of Econometrics, 3rd Edition (9.42) Slide 9-33 12 var(u1 ) v2 22 var(u2 ) v2 (1 12 ) 32 var(u3 ) v2 [(12 2 ) 2 12 1] yˆ T j 1.96 ˆ j , yˆT j 1.96 ˆ j Principles of Econometrics, 3rd Edition (9.43) Slide 9-34 yt 0 xt 1xt 1 2 xt 2 q xt q vt , t q 1, ,T (9.44) E ( yt ) s xt s WAGEt WAGEt 1 xt ln(WAGEt ) ln(WAGEt 1 ) 100 100 WAGEt 1 Principles of Econometrics, 3rd Edition Slide 9-35 Principles of Econometrics, 3rd Edition Slide 9-36 Principles of Econometrics, 3rd Edition Slide 9-37 yt 0 xt 1 xt 1 q xt q 1 yt 1 yt 0 xt 1 xt 1 2 xt 2 3 xt 3 s xt s et p yt p vt (9.45) et (9.46) s 0 Principles of Econometrics, 3rd Edition Slide 9-38 Figure 9.7 Correlogram for Least Squares Residuals from Finite Distributed Lag Model Principles of Econometrics, 3rd Edition Slide 9-39 INFLN t .0989 .1149 PCWAGEt .0377 PCWAGEt 1 .0593 PCWAGEt 2 (se) (.0288) (.0761) (.0812) (.0812) .2361 PCWAGEt 3 .3536 INFLN t 1 .1976 INFLN t 2 (.0829) Principles of Econometrics, 3rd Edition (.0604) (9.47) (.0604) Slide 9-40 Figure 9.8 Correlogram for Least Squares Residuals from Autoregressive Distributed Lag Model Principles of Econometrics, 3rd Edition Slide 9-41 yt 0 xt 1 xt 1 2 xt 2 3 xt 3 1 yt 1 2 yt 2 vt ˆ 0 ˆ 0 .1149 ˆ 1 ˆ 1ˆ 0 ˆ 1 .3536 .1149 .0377 .0784 ˆ 2 ˆ 1ˆ 1 ˆ 2ˆ 0 ˆ 2 .0643 ˆ 3 ˆ 1ˆ 2 ˆ 2ˆ 1 ˆ 3 .2434 ˆ 4 ˆ 1ˆ 3 ˆ 2ˆ 2 .0734 Principles of Econometrics, 3rd Edition Slide 9-42 Figure 9.9 Distributed Lag Weights for Autoregressive Distributed Lag Model Principles of Econometrics, 3rd Edition Slide 9-43 autocorrelation autoregressive distributed lag models autoregressive error autoregressive model correlogram delay multiplier distributed lag weight dynamic models finite distributed lag forecast error forecasting HAC standard errors impact multiplier infinite distributed lag Principles of Econometrics, 3rd Edition interim multiplier lag length lagged dependent variable LM test nonlinear least squares sample autocorrelation function standard error of forecast error total multiplier form of LM test Slide 9-44 Principles of Econometrics, 3rd Edition Slide 9-45 yt 1 2 xt et et et 1 vt yt 1 2 xt yt 1 1 2 xt 1 vt (9A.1) yt yt 1 1 1 2 xt xt 1 vt (9A.2) yt yt yt 1 Principles of Econometrics, 3rd Edition xt2 xt xt 1 xt1 1 Slide 9-46 yt xt11 xt22 vt yt 1 2 xt ( yt 1 1 2 xt 1 ) vt Principles of Econometrics, 3rd Edition (9A.3) (9A.4) Slide 9-47 y1 1 x12 e1 1 2 y1 1 2 1 1 2 x12 1 2 e1 y1 x11 1 x12 2 e1 y1 1 2 y1 (9A.5) x11 1 2 (9A.6) x12 1 2 x1 Principles of Econometrics, 3rd Edition e1 1 2 e1 Slide 9-48 2 var(e1 ) (1 2 ) var(e1 ) (1 2 ) v 2 v2 1 Principles of Econometrics, 3rd Edition Slide 9-49 H0 : 0 H1 : 0 T d eˆt eˆt 1 t 2 2 (9B.1) T 2 ˆ e t t 1 Principles of Econometrics, 3rd Edition Slide 9-50 T d T eˆ eˆ t 2 2 t 2 t 1 t 2 T 2 eˆt eˆt 1 t 2 T 2 ˆ e t t 1 T 2 ˆ e t t 2 T 2 ˆ e t t 1 T 2 ˆ e t 1 t 2 T 2 ˆ e t t 1 (9B.2) T 2 eˆt eˆt 1 t 2 T 2 ˆ e t t 1 1 1 2r1 Principles of Econometrics, 3rd Edition Slide 9-51 d 2 1 r1 (9B.3) d dc Principles of Econometrics, 3rd Edition Slide 9-52 Figure 9A.1: Principles of Econometrics, 3rd Edition Slide 9-53 Figure 9A.2: Principles of Econometrics, 3rd Edition Slide 9-54 The Durbin-Watson bounds test. if d d Lc , reject H 0 : 0 and accept H1 : 0; if d dUc , do not reject H 0 : 0; if d Lc d dUc , the test is inconclusive. Principles of Econometrics, 3rd Edition Slide 9-55 yt 0 xt 1 xt 1 2 xt 2 3 xt 3 yt 0 xt 1 xt 1 Principles of Econometrics, 3rd Edition et s xt s et q xt q 1 yt 1 s 0 p yt p vt Slide 9-56 yt 0 xt 1 yt 1 vt (9C.1) yt 1 0 xt 1 1 yt 2 (9C.2) yt 0 xt 1 yt 1 0 xt 1 ( 0 xt 1 1 yt 2 ) 1 0 xt 10 xt 1 12 yt 2 Principles of Econometrics, 3rd Edition Slide 9-57 yt 1 0 xt 10 xt 1 12 ( 0 xt 2 1 yt 3 ) 1 12 0 xt 10 xt 1 120 xt 2 13 yt 3 yt 1 12 1j 1j 0 xt j 1j 1 yt ( j 1) 0 xt 10 xt 1 120 xt 2 (1 1 2 1 Principles of Econometrics, 3rd Edition (9C.3) j ) 01s xt s 1j 1 yt ( j 1) j 1 s 0 Slide 9-58 yt 01s xt s (9C.4) s 0 (1 1 2 1 ) 1 1 yt s xt s et s 0 Principles of Econometrics, 3rd Edition Slide 9-59 s 01s s 0 (1 1 s 0 Principles of Econometrics, 3rd Edition 2 1 0 ) 1 1 Slide 9-60 yt 0 xt 1 xt 1 2 xt 2 3 xt 3 1 yt 1 2 yt 2 vt (9C.5) 0 0 1 10 1 2 11 20 2 (9C.6) 3 12 21 3 4 13 22 s 1 s 1 2 s 2 Principles of Econometrics, 3rd Edition for s 4 Slide 9-61 yˆT 1 yT yT 1 yT 2 3 yˆT 1 yT (1 )1 yT 1 (1 )2 yT 2 (9D.1) (1 ) yˆT (1 ) yT 1 (1 )2 yT 2 (1 )3 yT 3 ..... (9D.2) yˆT 1 yT (1 ) yˆT Principles of Econometrics, 3rd Edition Slide 9-62 Figure 9A.3: Exponential Smoothing Forecasts for two alternative values of α Principles of Econometrics, 3rd Edition Slide 9-63
© Copyright 2026 Paperzz